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ABSTRACT

The traditional exponentially weighted moving average (EWMA) chart is one of the most
popular control charts used in practice today.  The in-control robustness is the key to the proper
design and implementation of any control chart, lack of which can render its out-of-control shift
detection capability almost meaningless.  To this end, Borror, Montgomery and Runger [5;
hereafter BMR] studied the performance of the traditional EWMA chart for the mean for i.i.d.
data.  We use a more extensive simulation study to further investigate the in-control robustness
(to non-normality) of the three different EWMA designs studied by BMR [5].  Our study
includes a much wider collection of non-normal distributions including light- and heavy-tailed,
symmetric and asymmetric bi-modal as well as the contaminated normal, which is particularly
useful to study the effects of outliers.  Also, we consider two separate cases: (i) when the process
mean and standard deviation are both known and (ii) when they are both unknown and estimated
from an in-control Phase I sample.  In addition, unlike in BMR [5],  the average run-length
(ARL)   is  not  used  as  the  sole  performance  measure  in  our  study,  we  consider,   the  standard
deviation (SDRL), the median (MDRL), the first and the third quartiles as well as the first and
the ninety-ninth percentiles of the in-control run-length distribution for a better overall
assessment of the traditional EWMA chart’s in-control performance. Our findings sound a
cautionary note to the (over) use of the EWMA chart in practice, at least with some types of non-
normal data. A summary and recommendations are provided.

Keywords: Average run-length, Boxplot, Distribution-free, Median run-length, Nonparametric,
Percentile, Run-length, Simulation.

1.  Introduction

The traditional exponentially weighted moving average (EWMA) chart introduced by Roberts

[12] is one of the most popular control charts used in practice today in a diverse number of settings and

applications.  The EWMA chart is simple to implement and has been recognized to be more effective than

the Shewhart chart for detecting small shifts.  Now, the in-control robustness is the key to the proper

design and implementation of any control chart, lack of which can render its out-of-control shift detection
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capability almost meaningless.  This is why we focus on the in-control robustness of the traditional

EWMA  chart  in  this  paper.   BMR  [5]  showed  that  the  in-control  average  run-length  (ARL)  of  the

Shewhart individuals chart is very sensitive to the normality assumption and the chart’s in-control

performance is significantly deteriorated otherwise.  Consequently, based on their study on a number of

gamma and t-distributions, they recommended using a properly designed EWMA chart when there is a

concern about the assumption of normality.  The EWMA chart contains the Shewhart chart as a special

case  and  it  has  been  shown  to  pick-up  smaller  shifts  better  (the  EWMA statistic  has  some  optimality

properties as a forecast tool for an IMA(1,1) process), and as a result the EWMA chart has been applied

in a variety of situations.   More recently, Stoumbos et al. [16]  and  Testik et al. [17] studied the

robustness of the EWMA chart in the multivariate case, Maravelakis et al. [9] studied the robustness of

EWMA charts for monitoring the variance; and Apley et al. [3] studied EWMA charts for auto-correlated

data with model uncertainty.  The EWMA chart appears to enjoy widespread popularity in practice, even

in applications where not much is known about the underlying process distribution, as its robustness (to

non-normality) is either assumed or taken for granted based on the findings of BMR [5].  Montgomery

[10, p. 413], for example, states that “It (the EWMA) is almost a perfectly nonparametric (distribution-

free) procedure.”

Against  this  backdrop,  we  further  investigate  the  robustness  of  the  EWMA  chart  in  a  more

thorough study in order to get more insight into its in-control performance for non-normal univariate

individuals data.  The in-control performance is the key to the correct implementation of a control chart.

Unless the in-control performance of a chart is stable and robust, is clearly understood and known, its use

and effectiveness can be limited and in fact can be misleading in the realm of detecting shifts.   A robust

statistical procedure, as described by Balakrishnan et al. [4, p. 7299] is a procedure that performs well not

only under ideal conditions (under which it is designed and proposed) but also under departures from the

ideal.   In the same spirit, a control chart is robust if its in-control run-length distribution remains stable

(unchanged, or nearly unchanged) when the underlying distributional assumption(s) (normality, for

example) are violated (see e.g.,[13]).
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BMR [5] used a Markov chain approach (see e.g. [6]) and the steady-state control limits to investigate the

in-control ARL of the traditional EWMA chart for the mean assuming that the population mean and

variance are both known (so-called Case K) in case of some gamma and t-distributions for selected values

of the chart’s design parameters, l  and L.  We investigate the robustness of the traditional EWMA chart

in  a  much  larger  study  involving  many  more  factors  than  in  BMR.   First,  we  use  a  much  larger  set  of

distributions (sixteen; discussed later) that includes the ones used in BMR. Second, we study the

performance of the EWMA chart using both steady-state control limits and the exact control limits using

intensive computer simulations. The exact time-varying control limits that gradually widen are of interest

because they improve the sensitivity of the EWMA chart to mean shifts that occur early.  It may be noted

that our simulation results match very well with the results in BMR [5] for the subset of distributions

considered by them.  Third, unlike in BMR where the ARL is used as the sole performance measure, we

examine the in-control run-length distribution and because the run-length distribution is skewed (to the

right) to make an overall assessment, we also look at other measures such as the standard deviation of the

run-length (SDRL) as well as some percentiles, such as the median (denoted MDRL), the two quartiles as

well  as  some (tail)  extreme percentiles,  which provide valuable information about  the performance of  a

control chart.  This has been recommended by several authors (see, for example,[7], [11] and [18]) in the

literature.  We calculate and examine the ARL, the SDRL, the 1st ,  25th, 50th (MDRL), 75th and the 99th

percentiles of the in-control run-length distribution using both the steady-state and the exact control

limits.   Finally,  we examine the robustness  of  the traditional  EWMA chart  in  situations when the mean

and the variance of the underlying normal distribution are known (Case K) and when they are unknown

(Case U).

The rest of the paper is organised as follows: In the next section we give a detailed description of

all the distributions used in our simulation study. In the following section we provide a very basic

background on the EWMA control chart. Then, we present our results and finally we close with a

summary and some recommendations in the last section.
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2. Distributions investigated

The  probability  density  functions  (p.d.f.’s)  we  use  as  well  as  expressions  for  their  means  ( 0m )

and variances ( 2
0s ) are shown in Table 1.  The graphs of a number of the p.d.f.’s are displayed in Figure

1 to show the variety of distributional shapes considered.  The following facts may be noted about the

distributions used in our study:

i. The uniform distribution is symmetric with lighter tails than the normal distribution.

ii. The right triangular distribution is asymmetric, positively skewed and bounded below and above

(unlike the gamma distribution which is unbounded above).

iii. Student’s t(v) distribution is normal-like (i.e. bell-shaped and symmetric) with heavier tails than the

normal distribution; this distribution was selected since it can be very similar in appearance to the

normal distribution

iv. The gamma distribution is positively skewed and is bounded below by zero; this distribution was

chosen to study the effect of skewness and may occur when monitoring quality characteristics such as

time until failure or breaking strength.

v. The bi-modal distributions; frequently encountered in industrial practice (see e.g. Schilling and

Nelson, 1976) and may occur when several machines pool their output into a common stream. These

distributions are constructed by mixing two normal distributions in different proportions.  We

considered the following:

a) The symmetric bi-modal distribution, formed by mixing equal proportions (50% to 50%) of a

)1,0(N  and a )1,4(N  distribution; this produces a distribution with a mean of 2 and a standard

deviation of  2.236.

b) The asymmetric bi-modal distribution, formed by mixing a )1,0(N  distribution with a

),4( 3
1=sN distribution in a 19:1 ratio (95% to 5%); the resulting distribution has a mean of 0.2

and a standard deviation of 7156.1 .
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c) The contaminated normal (CN) distribution.  This is a mixture distribution widely used in

robustness/outlier studies (see e.g. [13]) and can arise in situations where we observe a process

that follows a standard normal distribution most of the time but occasionally follows a normal

distribution with a larger variance.  The CN distribution is widely used in the SPC literature, see

for example, the recent papers of Alfaro et al. [1] and Sheu et al.  [14].  In simple terms, the CN

model implies that most of the data are “good” but there are occasional “outliers.”  Our interest is

to see how sensitive the EWMA chart is to occasional outliers which may or may not occur due to

assignable causes.

We considered two contaminated normal distributions:

o CN1: a 95%-5% mixture of a )1,0(N  and a )5,0( =sN  distribution, and

o CN2: a 95%-5% mixture of a )1,0(N  and a )10,0( =sN  distribution.

Thus, the CN1 distribution has mean zero and a standard deviation of 1.483 whereas the CN2

distribution has mean  zero but  a variance of 2.439.

For space limitations we only show the p.d.f.’s of the standard normal (solid line) and the t(3)-

distributions (dashed line) in Panel (b) of Figure 1;  the t(4), t(5) and  t(6) distributions are not shown but

are all symmetric and heavier-tailed than the )1,0(N  distribution. Note that the t distributions become

increasingly lighter tailed as the degrees of freedom increases.

Panel (f) in Figure 1 shows the differences in tail behaviours among the standard normal (dotted

line), the )3(t  (dot-dash line) and the CN2 (solid line) distributions.  It is seen that the CN2 has

significantly heavier tails than the standard normal whereas the )3(t  is  in-between the standard normal

and the CN2 in terms of tail heaviness.  Note that the heavier the tail of the distribution, the higher the

chance of observing outliers.

< Table 1 here >

< Figure 1 here >
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3. Background on the EWMA control chart

Assume that ,...,, 321 XXX  denote independent and identically distributed observations with an

in-control mean 0m  and a standard deviation 0s .  First assume that both of these parameters are  known;

this scenario is referred to as the “standards known” case and is denoted Case K.  The exponentially

weighted moving average (EWMA) control charting statistic for individual observations in Case K is

defined as

1)1( --+= iii ZXZ ll for ,...2,1=i   and 00 m=Z                                  (1)

where iX  is the current observation and the constant 10 £< l  is the smoothing parameter.

The exact control limits for the EWMA chart in Case K are

])1(1[
2

/ 2
00

iLLCLUCL l
l

lsm --
-

±=   for ,...2,1=i                  (2)

where 0>L  determines the width of  the control  limits.  For  larger  values of i , the exact control limits

approach steady-state values. The steady-state EWMA control limits in Case K are

l
lsm
-

±=
2

/ 00 LLCLUCL .                                         (3)

When  the in-control mean and standard deviation are unknown, they are typically estimated from

an in-control Phase I sample (so-called reference or calibration sample) before prospective (i.e. online)

monitoring starts in Phase II; this scenario is referred to as the “standards unknown” case and denoted

Case U.  Note that, the Phase I sample is taken when the process was thought to operate in-control and

without any special causes of concern (see e.g. [10], page 199). The point estimates of the unknown in-

control mean and standard deviation (denoted by m̂  and ŝ , respectively) are used to obtain the starting

value 0Z  and substituted in equations (2) and (3) for the respective known parameter values to estimate

the Phase II control limits of the traditional EWMA control chart for individual observations. The EWMA

control chart statistic for individual observations in Case U is defined as

1)1( --+= iii ZXZ ll for ,...2,1=i   and m̂0 =Z .                                 (4)
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The estimated time-varying and steady-state control limits for Phase II applications in Case U are given

by

])1(1[
2

ˆˆˆ/ˆ 2iLLCLLCU l
l

l
sm --

-
±=   for ,...2,1=i       (5)

and

l
l

sm
-

±=
2

ˆˆˆ/ˆ LLCLLCU ,     (6)

respectively.

The EWMA statistic iZ  (defined in (1) and (4) for Case K and Case U, respectively) is plotted on

a control chart with the UCL and the LCL given in (2) or (3) (or with the LCU ˆ  and the LCL ˆ  given in (5)

or (6)).  If a point plots on or outside the control limits, the chart signals and the process is declared out-

of-control (OOC) so that a search for assignable causes is started.  In this paper we study the performance

of the EWMA chart in Case K and in Case U under both sets of limits.

Typically, the EWMA chart is designed for a specified in-control ARL value and a magnitude of

the anticipated shift by finding the combination of L  and l  that provides the desired in-control ARL and

the shortest out-of-control ARL to detect that shift (see e.g. Montgomery [10 p. 411]).  However, the

determination of the charting parameters ),( Ll , although an important consideration, is not the focus of

this  paper.   Our objective is  to  investigate  the in-control  robustness  of  the EWMA chart  in  Case K and

Case U, respectively, for the three pairs of charting parameters studied in BMR [5] (shown in Table 2),

under the exact time-varying control limits and the steady-state limits under the sixteen distributions

listed in Section 2.

< Table 2 here >

4. Results: Tables, Graphs and Discussion

The results concerning the robustness of the EWMA chart in Case K and Case U are studied and

discussed separately in the next two sections. First we focus on Case K.
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Standards known: Case K

In Case K the robustness of the EWMA chart are affected and depends on three factors:

i. The design parameters ( L,l ). Note that, these pairs of design parameters only guarantees an in-

control ARL of 370 if we use steady-state control limits.

ii. The type of control limits i.e. whether we use the exact time-varying limits or the steady-state

limits, and

iii. The underlying distribution of the observations.

The run-length distribution of the EWMA chart was obtained via Monte Carlo simulations using

200,000 repetitions. The simulations were conducted according the following steps.

i. One of the 16 distributions (listed Table 1) and a pair of design parameters i.e. ),( Ll ,  listed in

Table 2, are chosen.

ii. The mean ( 0m ) and the standard deviation ( 0s ) of the chosen distribution are calculated

according to the formulae provided in Table 1.

iii. The control limits are calculated according to equations (2) or (3) (exact or steady-state limits,

respectively) using the 0m and 0s  values from step (ii) and the ),( Ll  -values chosen in step (i).

iv. An individual observation, iX , is generated from the selected distribution and the plotting

statistic, iZ , is calculated according to (1) with 00 m=Z .

v. If UCLZ i <  and LCLZ i > , then a run-length counter is incremented.

vi. Steps (iii) - (v) are repeated until UCLZ i ³  or LCLZ i £ ; when this occurs, a signal is given and

the run-length i.e. the time i ,  is recorded.

vii. Steps (i) - (vi) are repeated until 200,000 iterations are completed.

 The results of our simulation study are summarized in Table 3 and in Figures 2, 3 and 4,

respectively.  The columns of Table 3 display the numerical values of the in-control run-length

distribution characteristics examined: the 1st percentile, the 25th percentile, the MDRL, the 75th percentile,
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the 99th percentile, the ARL and the SDRL, using both the steady-state and the exact control limits, for

each of the 16 distributions used in the study; these distributions are listed in column 2 of Table 3. A

couple of quick observations can be made from Table 3.

i. In case of the symmetric bi-modal distribution, the tabulated values are quite (strikingly) different

from those for the rest of the distributions; in fact, in all cases these values are much higher compared

to  the  rest.  For  example,  when  the  steady-state  limits  and )492.2,05.0(),( =Ll  are  used,  the  in-

control ARL is 5,042.5, which is significantly (about 13 times) higher than the next largest in-control

ARL value of 392.5 (for the asymmetric bi-modal distribution); this is also true when the exact

control limits and/or the other two ),( Ll combinations are used.  Although larger in-control ARL

values are desirable in general, one as large as 5,042.5 is not useful in practice.

ii. For the contaminated normal distribution, the in-control ARL values are significantly smaller than the

rest, which is clearly problematic since they indicate more false alarms.   To emphasize this last point,

when occasional outliers are present, it is not advisable to use these EWMA designs (i.e. charts) since

there  can  be  a  larger  number  of  false  alarms,  much  more  than  what  is  expected  under  normality.

These two observations demonstrate that the EWMA chart in Case K is not nonparametric, that is, its

in-control run-length distribution is not the same or nearly the same for all continuous distributions.

The rest of Table 3 is discussed further.

< Table 3 here>

For an alternative and perhaps a more appealing way to explain these results, we show Figures 2, 3

and 4.   Each figure shows boxplot-like graphs (see[11]) of the 1st, 25th, 50th, 75th and the 99th percentiles of

the in-control run-length distributions of an EWMA chart under each of 11 (out of the total of 16)

distributions and a given ),( Ll  combination; the symmetric bi-modal distribution is not shown because as

we explained earlier, the corresponding results were “way out of line”; the t(6), t(5), Gamma(4,1), and the

Gamma(3,1) are also excluded as the corresponding results are similar to the t and the gamma distributions

that are shown.  Note that, in each “boxplot,” the “whiskers” are extended to the 1st and the 99th percentiles
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instead of  the typical  minimum and the maximum.  In addition,  each boxplot  also shows the mean (as  a

square) and the median (as a circle) inside the box.   Also, note that each of the figures displays the results

for one particular ),( Ll  combination when using the steady-state (in panel (a)) and the exact control limits

(in panel (b)), respectively.   These figures give a clearer indication of the location, spread and the shape of

the in-control run-length distributions.

< Figures 2, 3 and 4 here >

To illustrate, for example, Figure 2 shows that both for the steady-state and exact control limits,

the in-control run-length distribution of the EWMA chart with charting constants )2.492,0.05(),( =Ll is

stable around 370 with nearly the same inter-quartile range (IQR) values across all of the underlying

distributions except for the contaminated normal distributions.  The shapes of the distributions also look

very similar.  Thus, this pair of charting parameters appears to produce an EWMA chart which is robust for

all distributions studied here except for the contaminated normal distributions.  In this latter important case,

however, the EWMA chart is seen to have a shorter ARL and a shorter MDRL (280.9 and 196,

respectively, from Table 3, for the CN1 distribution) and shorter IQR value (302 for CN1 from Table 3),

which suggest a much higher number of false alarms.  The situation gets worse with increasing variance

(CN1 to CN2) with both the ARL and MDRL decreasing along with the IQR.

While Figure 2 makes an encouraging case for the EWMA chart for the

combination )2.492,0.05(),( =Ll , Figure 3 paints a remarkably different picture for the pair

)703.2,1.0(),( =Ll  and the corresponding EWMA chart.  The in-control run-length distributions are

quite different (in location, scale and shape) for this chart for the majority of the underlying distributions,

and the overall conclusion is that this particular EWMA chart is not robust to non-normality.  The same

general conclusion can be made for the EWMA chart corresponding to the pair )2.86,0.2(),( =Ll  from

Figure 4 where the severity of non-robustness is clearly obvious.  An excessive number of false alarms

will  be  expected  under  this  chart  for  the t, gamma and the contaminated normal distributions.   Some

particular observations with respect to Figures 3 and 4 are:
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(i) The ARL and the spread/variability in the run-length decreases for all the t and the gamma

distributions and for the asymmetric bi-modal distribution. This means that these EWMA

charts will signal more false alarms than what would be typically expected under normality.

(ii) For the right triangular and the uniform distributions the converse is seen to happen, i.e. the

ARL and the variability in the run-length increases. This would cause fewer false alarms than

expected. Although a higher in-control ARL might seem favourable, it may lead to higher

out-of-control ARL so that it would take longer to detect a change when a change occurs.

 Finally, it is interesting to note that although the boxplot-like graphs in panel (a) and (b) in each

of Figures 2, 3 and 4 suggest that the in-control performance of the EWMA chart with steady-state limits

are very similar to that with exact limits, taking a closer look at the actual values given in Table 3, it

becomes apparent that there is a difference between the performances of the EWMA chart based on the

two  types  of  limits.   For  example,  for  all  of  the  three  the ),( Ll  combinations and for any of the

distributions, the values of the in-control run-length characteristics based on the exact limits are slightly

smaller than those based on the steady-state limits. This seems reasonable since the exact limits are

narrower at start-up and becomes wider and later approach the steady-state limits; so, the EWMA based

on exact limits is more likely to signal incorrectly at start-up leading to a shorter overall run-length.  Next

we discuss our findings for Case U.

Standards unknown: Case U

Because estimates are substituted for the unknown parameter values in Case U, it is of interest to

examine the effects of estimation on the Phase II run-length distribution and hence the performance and

the robustness of the traditional EWMA chart.  We examine this via five factors:

i. The design parameters ( L,l ): We again used the three combinations or pairs used in Case K and

listed in Table 2. Note that, these pairs of design parameters only guarantees an in-control ARL of

370 (in Case K) if we use steady-state control limits.
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ii. The type of control limits i.e. whether we use the exact time-varying limits or the steady-state

limits.

iii. The underlying process distribution. Note that in order to study the in-control robustness of the

EWMA control chart in Phase II applications it is important to assume/ensure that the Phase I and

Phase  II  distributions  are  the  same.  If  this  is  not  the  case,  we  can  view  the  process  as  having

encountered a change and hence to be OOC – this is not the focus of the present investigation.

For Phase II robustness study when parameters are estimated, we have focussed on the following

nine distributions: N(0,1), t(3), Gam(1,1), Right Triangular, Uniform, Asymmetric bi-modal,

Symmetric bi-modal, CN1 and CN2. This set of distributions is a representative subset of the 16

distributions considered in Case K and gives an overall picture of the robustness of the EWMA

chart in Phase II of Case U.

iv. The size )(m of the in-control Phase I sample which is denoted by mXXX ,...,, 21  from which the

parameters are estimated.  In our study we used 50=m  and 100=m ; note that, we assume that

the in-control Phase I observations are independent and identically distributed.

v. The point estimators for the unknown mean and unknown standard deviation.  For the mean we

used mXX
m

i
i /

1
å
=

=  and for the standard deviation we used two popular estimators

4
1

2
4 /)1/()( cmXXcS

m

i
iå

=

--=  and )1(/|| 2
1

12 --=å
=

- mdXXdMR
m

i
ii , respectively, where

4c  and 2d  are constants that ensure that the point estimates are unbiased in case of the normal

distribution. These two standard deviation estimators were used by Cryer and Ryan [8] to

investigate and compare the performance of the Shewhart-type X  chart for the normal

distribution.. Hence, we have two pairs of point estimators to choose from: ),( 4cSX  or

)/,( 2dMRX  respectively, for )ˆ,ˆ( sm  in the equations for the estimated Phase II control limits

given in (5) and (6).
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It is important to stress that, given a pair of point estimators ( sm ˆ,ˆ ) calculated using an in-control

Phase I sample, we obtain the conditional run-length distribution and hence we observe the conditional

performance of the EWMA chart.  That is, the observed performance of the chart is based on that specific

in-control Phase I sample.  Thus, the (conditional) performance and the (conditional) run-length

distribution will be different for each practitioner based on his/her own in-control Phase I sample.

Therefore the conditional performance does not give us complete insight in to the overall performance of

the  chart.   In  order  to  get  an  overall  picture  and  a  more  general  idea  about  the  effects  of  parameter

estimation, we study the unconditional run-length distribution; this unconditional distribution can be

thought of the run-length distribution averaged over all possible values of the parameter estimators.

To obtain one observation from the conditional run-length distribution the following simulation

algorithm was used:

i. The levels of the five key factors (listed above) are selected i.e. the type of control limits, one of

the 9 underlying process distributions, the size ( m ) of the in-control Phase I sample, one of the 2

pairs of point estimators ),( 4cSX  or )/,( 2dMRX  and one of the 3 pairs of design parameters

),( Ll .

ii. An in-control Phase I sample of size ( m )  is simulated from the chosen distribution and then used

to calculate the point estimates ( sm ˆ,ˆ )  and  estimate  the  Phase  II  control  limits  according  to

equations (5) and (6).

iii. An individual Phase II observation, iX , is generated from the selected distribution (which is the

same as the Phase I distribution) and the plotting statistic, iZ , is calculated according to (4) with

the starting values taken as XZ == m̂0 .

iv. If LCUZ i
ˆ<  and LCLZ i

ˆ> , then a run-length counter is incremented.
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v. Steps (iii) and (iv) are repeated until LCUZ i
ˆ³  or LCLZ i

ˆ£ ; when this occurs, a signal is given

and  the  run-length  i.e.  the  time i ,  is recorded. This run-length is one observation from the

conditional Phase II run-length as it depends on the in-control Phase I sample is simulated in (ii).

To obtain the unconditional run-length distribution and its associated characteristics (such as the

1st, 25th, 50th, 75th and 99th percentiles as well as the ARL and SDRL) steps (ii) - (v) were repeated

200,000 times; these 200,000 independent conditional run-length observations were used to calculate the

associated unconditional characteristics of the Phase II run-length distribution. For example, the average

of the conditional run-lengths is an estimate of the unconditional average run-length.

These values were calculated for each combination of the levels of the five factors listed above.  Due to

space limitations however, the results are not shown here but are available from the authors on request.

The results in Case U lead to the following general observations:

i. The  run-length  distribution  in  Case  U,  like  in  Case  K,  is  positively  skewed;  the  ARL is larger

than the MDRL,

ii. In Case U the in-control  SDRL is larger than the in-control ARL (in some cases much larger).

This is unlike the situation in Case K where the in-control SDRL is smaller than the in-control

ARL (see Table 3). This clearly indicates that extra variability is introduced when then mean and

the standard deviation are unknown and needs to be estimated.

iii. In general, we can conclude that the unconditional Phase II run-length distribution in Case U is

not the same as the run-length distribution in Case K (for the normal distribution).

For  a  more in-depth (yet  concise)  analysis  of  the simulation results  of  Case U,  we focus on the

unconditional in-control ARL in the interpretation and the comparison that follow; similar analysis can be

done for any of other characteristics of the run-length distribution. These ARL comparisons are shown in

Table 4, which shows the percentage difference between the unconditional Phase II in-control ARL in

Case U and the nominal in-control ARL of 370. Here are two examples to illustrate the interpretation of

the results in Table 4:
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Example 1: From Table 4 we observe that if we use (steady-state limits + the CN2 distribution + the

pair of design parameters (0.05, 2.492) + 50=m  in-control Phase I observations + 2dMR  as an

estimator for the unknown standard deviation) the unconditional Phase II in-control ARL of the EWMA

chart is 80% less (i.e. listed simply as -80 in Table 4) than the nominal in-control ARL value of 370.

Example 2: From Table 4 we observe that if we use (exact limits + the Gam(1,1) distribution + the

pair of design parameters (0.1, 2.703) + 100=m  in-control Phase I observations + 4cS  as an estimator

for the unknown standard deviation ) the unconditional Phase II in-control ARL of the EWMA chart is

26% larger (i.e. listed simply as 26 in Table 4)  than the nominal in-control ARL value of 370.

< Table 4 here>

From Table 4, we observe that:

i. For the pair 2.492),05.0(),( =Ll ,  in  general,  the  in-control  ARL  in  Case  U  is less than the

nominal in-control ARL of 370 (i.e. the percentage differences are predominantly negative)

except for the t(3) and the Gam(1,1) distributions where we observe the reverse, that is, the in-

control ARL in Case U is larger than 370 (i.e. the percentage differences are predominantly

positive) when 4cS  is used as an estimator for the standard deviation; this is true for both types

of control limits and both values of m.  Thus, in general, we would expect more false alarms in

Case U when using the design parameters 2.492),05.0(),( =Ll ,  since  most  of  the  percentage

differences are negative.

ii. For the pair 2.703),1.0(),( =Ll , point i (as listed above) is again observed but we also see that

for the N(0,1), the Right Triangular,  the Uniform and the Symmetric bi-modal distributions the

in-control ARL in Case U is larger than the nominal in-control ARL of 370 (i.e. the percentage

differences are positive), specifically when using 2dMR  as  an  estimator  for  the  standard

deviation.
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iii. For the pair 2.86),2.0(),( =Ll ,  in  general,  the  in-control  ARL  in  Case  U  is larger than the

nominal in-control ARL of 370. Thus, in general, we expect less false  alarms  in  Case  U  when

using 2.86),2.0(),( =Ll  since most percentage differences are positive.

iv. For  the  CN1  and  the  CN2  distributions,  the  in-control  ARL  in  Case  U  is  always less than the

nominal in-control ARL of 370 (i.e. the percentage difference is always negative); this implies

more false alarms for these two distributions no matter what design parameters, the value of m

and the estimator we use for the unknown standard deviation.  This is a big problem.

Finally, one may also be interested in the efficacy of the standard deviation estimators and the

effects they may have on the performance of the EWMA chart in Case U.  This issue was examined in

some detail and the results, not presented here, show that (i) 4cS  is a better estimator of σ and (ii) that as

one might expect, as the size (m) of the in-control Phase I sample, increases the performance of the  Phase

II EWMA chart in Case U becomes more like that of Case K.  Details on these results can be obtained

from the authors on request.

5. Conclusions: Summary and Recommendations

We have taken a closer look at and done a more thorough examination of the in-control run-

length distributions of three traditional exponentially weighted moving average (EWMA) charts

considered in BMR [5], both in the standards known and unknown cases.  The in-control robustness is

crucial in the proper design and implementation of a control chart, without which its shift detection

capability becomes questionable at best.  Our results show that in general the traditional EWMA charts

are neither nonparametric nor completely robust to all nonnormal distributions.  In fact, even the best (in

terms of in-control robustness) of the three EWMA charts in BMR [5], the one with the smallest λ = 0.05,

performs very poorly for the symmetric bi-modal or the contaminated normal distribution.  It is seen that

in the bi-modal case the number of false alarms is significantly less than the nominal whereas in the

contaminated normal case, which is a model for occasional outliers, there is an excessive number of false

alarms (significantly higher than the nominal) and the situation gets progressively worse as the variance
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of  the  underlying  distribution  increases.   Parameter  estimation  (Case  U)  is  also  seen  to  affect  the

robustness of the traditional EWMA chart applied in Phase II.  The larger the size of the in-control Phase

I sample, from which the parameter estimates are obtained, the closer the performance of the EWMA

Case U chart to that in Case K.

Although it appears that a traditional EWMA chart can be designed (tuned) for a specific

application that is fairly robust to a violation of the underlying distributional assumptions, this is bound to

be cumbersome and can not be entirely satisfactory.  Also, the EWMA chart is seen to be more robust for

smaller values of the smoothing parameter λ , but one concern about taking a value of λ too small is the

so-called inertia problem (see, for example, Woodall and Mahmoud [19]).  These authors showed that

“under a worst-case scenario, a sample mean more than 15 standard errors from the target value does not

lead to an immediate out-of-control signal” while using the most robust traditional EWMA chart in BMR

corresponding to λ = 0.05 and L = 2.492.  The point is that the traditional EWMA chart, designed for the

normal distribution, no matter how well tuned, may not perform satisfactorily (more false alarms) for all

non-normal process distributions, particularly not for the heavier tailed, the contaminated and the bimodal

distributions.  Our advice is not to discontinue the use of the EWMA chart in practice; instead we suggest

using caution against its over-use, particularly in situations where the (shape of the) underlying process

distribution is not sufficiently known and occasional outliers are a concern.   Since the EWMA chart is

well-known to detect smaller shifts more effectively and yet its in-control robustness is somewhat of a

concern from a practical standpoint, it may be useful  to consider nonparametric adaptations of the

EWMA (NPEWMA) charts,  such  as  the  ones  considered  in  Amin  et  al.  [2].  This  work  is  currently  in-

progress and the results will be reported elsewhere.  Note that although we consider only univariate

EWMA charts in this paper, similar results are expected for the multivariate case

Finally, our findings are relevant in all applications of traditional EWMA charts including the

model-based or residual-based control charts (e.g. Apley et al. [3] ) where robustness is also a concern.
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 (a)  Uniform and Right triangular (b)  Standard normal and t(3)

(c)  Gamma (d)  Symmetric bi-modal

(e)  Asymmetric bi-modal (f) Tails of standard normal, CN2 and t(3)

Figure 1: Graphs of the p.d.f.’s of the distributions used in the robustness study

0 0.2 0.4 0.6 0.8
0

1

2

Uniform
Right triangular

4- 2- 0 2 4
0

0.1

0.2

0.3

0.4

Standard normal
t(3)

0 5
0

0.1

0.2

0.3

0.4

Symmetric bi-modal

0 5
0

0.1

0.2

0.3

0.4

Asymmetric bi-modal

10- 0 10
0

0.005

0.01

0.015

0.02

Standard normal
CN2
t(3)



21

Figure 2: Boxplot-like graphs of the in-control run-length distributions
of the EWMA control chart with design parameters 05.0=l  and 492.2=L
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Figure 3: Boxplot-like graphs of the in-control run-length distributions of
the EWMA chart with design parameters 1.0=l  and 703.2=L
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Figure 4: Boxplot-like graphs of the in-control run-length distributions of
the EWMA control chart with design parameters 2.0=l  and 86.2=L 1
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Table 1: Distributions used in the robustness study

Distribution p.d.f, mean and variance

Uniform 1)( =xf 10 << x  : 12/12/1 2
00 == sm ,

Right triangular 22)( +-= xxf 10 << x  : 18/13/1 2
00 == sm ,

Standard normal 2

2

2
1)(

x

exf
-

=
p

ÂÎx  : 1,0 2
00 == sm

Student’s t(v)  with degrees
of freedom v  = 3, 4, 5 and 6.*

12
2

1( )
2( ) (1 )

( / 2)
xf x

n+
-

n +
G

= +
nG n np

ÂÎx  : 3,
2

0 2
00 ³

-
== nsm ,

v
v

Gamma with parameters
),( qk  = (4,1), (3,1), (2,1),

(1,1) and (0.5,1).*
1 /1( )

( )
x

kf x x ek q

q k
- -=

G
0>x  : 22

00 kqskqm == ,

Symmetric bi-modal 2
)4(

2

22

2
5.0

2
5.0)(

-
--

+=
xx

eexf
pp

ÂÎx  : 5,2 2
00 == sm

Asymmetric bi-modal 2

22

)3/1(2

)4(

2
3/2

05.0
2
95.0)(

-
--

+=

xx

eexf
pp

ÂÎx  : 7156.1,2.0 2
00 == sm

Contaminated normal
2

22

22
2
05.0

2
95.0)( s

spp

xx

eexf
--

+=

ÂÎx : 22
00 05.095.0,0 ssm +==

*Note: The t(4), t(6) and the gamma distributions were also studied by BMR [5].

Table 2:  EWMA design parameters ),( Ll  studied in BMR [5]

Pair 1 Pair 2 Pair 3
2.492),05.0(),( =Ll 2.703),1.0(),( =Ll 2.86),2.0(),( =Ll
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Table 3: Characteristics of the in-control run-length distribution of the EWMA charts for various distributions

Pair 1 : 2.492),05.0(),( =Ll Pair 2 : 2.703),1.0(),( =Ll Pair 3 : 2.86),2.0(),( =Ll

St
ea

dy
-s

ta
te

 c
on

tr
ol

 li
m

its

Distribution 1st 25th MDRL 75th 99th ARL SDRL 1st 25th MDRL 75th 99th ARL SDRL 1st 25th MDRL 75th 99th ARL SDRL
N(0,1) 15 117 263 512 1663 372.1 358.3 11 113 260 511 1690 371.2 363.6 8 110 259 512 1696 370.7 366.05

t(6) 13 110 248 484 1585 352.2 340.1 8 92 214 422 1395 306.3 300.3 5 68 159 316 1050 229.3 227.2
t(5) 12 108 244 477 1564 347.6 337.5 7 87 204 403 1310 291.2 285.4 4 62 146 290 969 210.7 208.7
t(4) 11 106 242 475 1553 344.7 335.1 6 83 191 379 1248 275 270.5 3 56 132 260 863 188.5 186.3
t(3) 8 111 256 505 1667 367.1 359.8 5 80 190 376 1245 272.6 269.6 3 52 124 246 818 178 176.7

Gam(4,1) 13 116 263 512 1666 372.7 359.6 8 102 238 470 1556 341.6 336.4 5 76 181 360 1184 259.9 257.5
Gam(3,1) 13 116 262 513 1677 373 361.7 8 100 233 462 1530 334.6 330.3 4 70 165 329 1101 238.1 237.2
Gam(2,1) 11 115 261 513 1686 372.9 363.2 7 94 219 435 1441 314.9 310.4 4 61 144 287 953 207.8 206.6
Gam(1,1) 10 112 260 511 1677 370.3 362.5 5 81 191 379 1244 273.7 270 3 48 113 224 747 162.3 161.5

Gam(0.5,1) 8 105 248 492 1637 356.7 353.7 4 66 158 316 1050 228.8 228.4 2 38 91 181 604 131.3 130.6
Right triangular 15 120 270 526 1733 383.1 370.8 11 125 290 574 1894 415.9 408.8 9 136 325 645 2123 465.7 461.4

Uniform(0,1) 16 121 271 528 1736 385.1 372.1 13 137 315 618 2037 449.5 440.1 14 239 570 1136 3785 821 819.1
Asymm. bi-modal 14 121 275 540 1760 392.5 380.1 9 102 237 469 1532 339.7 333.1 5 73 172 341 1125 246.5 244.1
Symm. bi-modal 72 1469 3503 6988 23053 5042.5 5011.9 201 5277 12687 25335 83620 18267.9 18221.8 3464 99777 239366 479066 1586839 345245.5 344873.9

CN1 7 85 196 387 1272 280.9 275.07 3 54 127 253 835 182.9 181 2 32 77 153 504 110.4 109.3
CN2 4 66 154 306 1008 221.4 217.6 2 39 91 180 599 130.5 129.4 1 23 55 109 360 78.7 78.2

Pair 1 : 2.492),05.0(),( =Ll Pair 2 : 2.703),1.0(),( =Ll Pair 3 : 2.86),2.0(),( =Ll

Ex
ac

t c
on

tr
ol

 li
m

its

Distribution 1st 25th MDRL 75th 99th ARL SDRL 1st 25th MDRL 75th 99th ARL SDRL 1st 25th MDRL 75th 99th ARL SDRL
N(0,1) 1 86 231 479 1615 341.3 356.4 2 100 247 500 1667 359.2 364.1 3 104 253 507 1674 364.9 364.5

t(6) 1 75 213 451 1564 320.2 342.1 1 77 199 407 1377 291.3 299.5 1 62 154 312 1049 224.5 228.3
t(5) 1 75 212 444 1529 315.6 335 1 73 188 387 1315 276.8 285.6 1 56 140 284 948 203.9 206.8
t(4) 1 73 209 441 1522 313.1 334 1 68 178 366 1236 261.2 269.8 1 51 126 256 856 183.8 186.7
t(3) 1 81 227 477 1646 339.2 360.1 1 69 177 363 1233 260.1 268.7 1 48 119 242 817 174.1 177.2

Gam(4,1) 1 85 232 482 1657 343.6 361.6 1 88 224 459 1537 328.1 336.5 1 70 175 354 1189 254.6 258.3
Gam(3,1) 1 84 230 480 1634 342.1 360.9 1 84 216 442 1498 316.9 326.8 1 64 160 324 1081 232.2 235.1
Gam(2,1) 1 82 230 482 1639 342.2 361.8 1 78 204 422 1419 301.1 312.1 1 55 140 283 943 202.7 205.7
Gam(1,1) 1 79 225 476 1640 337.9 362.1 1 65 175 361 1239 258.6 270.5 1 43 108 220 743 157.8 161.3

Gam(0.5,1) 1 72 215 460 1612 325.6 352.6 1 53 145 302 1038 215.5 227.4 1 34 87 177 598 127.1 130.7
Right triangular 2 95 244 500 1687 358.4 369.9 3 114 280 563 1865 405.4 407 5 133 320 640 2142 462.5 463.9

Uniform(0,1) 4 99 250 508 1699 364 370.8 7 129 309 616 2050 444.5 444 12 239 569 1134 3768 819.3 815.5
Asymm. bi-modal 1 78 231 495 1706 348.8 375.7 1 80 215 446 1518 317.5 333 1 64 163 331 1109 236.9 242.5
Symm. bi-modal 53 1448 3482 6962 23148 5028.8 5027.8 195 5320 12666 25316 84351 18295 18272 3421 99588 240877 480231 1602691 346632.9 346679.3

CN1 1 57 168 358 1244 254.3 273.9 1 44 118 244 832 173.7 181.4 1 29 74 150 505 107.5 109.4
CN2 1 40 128 279 985 196.7 216.2 1 30 82 172 587 122.4 128.6 1 21 53 107 358 76.5 77.9
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Table 4: Percentage difference between the unconditional Phase II in-control ARL in Case U and the nominal in-control ARL of 370

Pair 1: 2.492),05.0(),( =Ll Pair 2: 2.703),1.0(),( =Ll Pair 3: 2.86),2.0(),( =Ll

m = 50 m = 100 m = 50 m = 100 m = 50 m = 100

St
ea

dy
-s

ta
te

 c
on

tr
ol

 li
m

its

Distribution 2dMR 4cS 2dMR 4cS 2dMR 4cS 2dMR 4cS 2dMR 4cS 2dMR 4cS
N (0,1) -18 -29 -18 -23 9 -15 -4 -13 52 7 14 -2
t(3) -58 29 -56 59 -63 17 -63 12 -72 -30 -72 -27
Gam(1,1) -49 239 -48 10 -27 221 -41 29 -41 13 -60 -34
Right triangular -15 -29 -14 -21 42 -4 18 -2 983 98 133 61
Uniform(0,1) -7 -32 -5 -23 61 -10 37 -4 2480 105 361 92
Asymm. bimodal -34 -22 -35 -18 -19 -4 -32 -10 -10 6 -38 -18
Symm. bimodal -10 -32 -9 -24 58 -9 33 -2 1087 116 324 106
CN1 -63 -8 -62 -21 -71 -35 -71 -45 -79 -63 -79 -67

CN2 -80 -6 -79 -28 -84 -45 -84 -57 -88 -72 -88 -76

E
xa

ct
 c

on
tr

ol
 li

m
its

N (0,1) -24 -34 -24 -29 6 -17 -7 -16 50 5 12 -3
t(3) -63 203 -61 37 -66 5 -65 6 -73 102 -73 -18
Gam(1,1) -54 61 -53 2 -28 260 -45 26 -42 9 -61 -36
Right triangular -20 -34 -19 -27 39 -6 15 -4 932 98 135 62
Uniform(0,1) -12 -36 -10 -28 58 -12 35 -6 11928 103 376 91
Asymm. bimodal -41 -29 -43 -26 -24 -8 -36 -15 378 3 -40 -20
Symm. bimodal -15 -36 -13 -28 64 -10 32 -3 1626 115 319 106
CN1 -67 -13 -66 -28 -72 -37 -72 -48 -79 -64 -80 -68

CN2 -82 -10 -82 -34 -85 -46 -85 -59 -88 -72 -88 -76


