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1 Introduction

Consider three independent Wishart matrix variables S; ~ W, (n;,%), i = 1,2 and B ~ W, (m, X)
and define the transformation

1
2 1

X, = (1,+Bs81) 'BisB(I,+B 5B ) ", 0

where B2B? =B and 0 < X, <I,, i=1,2. In this paper we derive the distribution of (X, X?3)
and refer to it as the bimatriz variate beta type IV distribution. Specific properties are explored and then
used as the basis to derive two further important results.

S S
Firstly, it follows from (1) that A; = S —:B‘ = |X1] and Ay = ‘82_5]3' = |X5|, thus
X A
71 = | X1X2| = AMAy and Z; = X—l = A—l are the product and ratio of two dependent Wilks’s
2 2

statistics. We derive E (|X1\h1 | X Q\hz) for the bimatrix variate beta type IV distribution and use it

to obtain exact expressions for the densities of Z; and Z3 in terms of Meijer’s G-function. The Wilks’s
statistic is widely used for various statistical tests in multivariate analysis. Exact expressions have been
derived for the distribution of the Wilks’s statistic (Mathai and Rathie, 1969) and also for the product
and ratio of two independent Wilks’s statistics (Kshirsagar, 1972; Pham-Gia, 2008).

Secondly, the moment generating function of the bimatrix variate beta type IV distribution is derived
and then applied to define the bimatriz variate Kummer-beta type IV distribution. This is an extension of
the bimatrixz variate beta type IV distribution. In the bivariate case it is an extension of the distribution
proposed independently by Libby and Novick (1982), Jones (2001) and Olkin and Liu (2003). Gupta et
al. (2001) defined the matrix variate Kummer-Dirichlet type I and type II distributions which reduce
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under certain conditions to the matrix variate Kummer-beta distribution (Nagar and Gupta, 2002) and
the matrix variate Kummer-gamma distribution (Nagar and Cardeno, 2001).

The distribution of (X1, X3) is derived in Section 2 by using the transformation in (1). In Section

3 the product moment of this distribution is applied to obtain the exact expressions for the densities

X1

of 73 =|X1X5| and Zy = ’ X The moment generating function of the bimatrix beta type IV
2

distribution is derived in Section 4. This result is used to define the bimatriz variate Kummer-beta type
1V distribution. In Section 5 the form of the densities of Z; and Zs is illustrated, as well as the effect
of the parameters on the conditional moments for the bivariate beta type IV distribution. The form of
the density of the bivariate Kummer-beta type IV distribution also receives attention.

2 Bimatrix variate beta type IV distribution

In this section the bimatrix variate beta type IV distribution is derived from a transformation of
independent Wishart distributed random matrices.

Theorem 1
Let §1~W,(n1,%), So ~ W, (n2,X) and B ~ W, (m,X) be independently distributed. Define

1
2

B :S§,B~% (1p+B*%sz-B*%) Li=1,2, 2)

1
2

X, = (1p+B*%SiB*%)

where B2B? =B and 0< X, <1I,, i=1,2.
Furthermore, n; > (p—1), i=1,2 and m> (p—1).
The joint density of (X1,X2) is

—1 2 an,l( +1)
B, (%, 2. m { X,;|z™ 2P
(8, (359} LTI
T, = X7 TR @D xR x|t (3)

where ﬁp ("1 na. m) _ Ly (7) L'y (T) r, (7)

T, ()

, and Ty (+) is the multivariate gamma function.
P

The density in (3) is that of the bimatriz variate beta type IV distribution and is denoted as (X1, X2) ~
BBIV (m na. ’m).
P

Proof:
The joint density of (Si,S2, B) is given by

2 1 1
K { [T [etr (-3%7'S)) snm—f"”}} [otr (<337'B) (B | (4)
1=1

where K—1 = 28(m+natmpT (m)T, (22T, () |32 (mtnetm)

Making the transformations

and



gives X, = (I, + Zi)_1 Z,; since Z,; commutes with any rational function of Z,. The Jacobian of the
transformation (see Gupta and Nagar, 2000) is

2
=1
— ‘B|(p+1) 12[ 1, —Xi\_(p+1).

=1

Substituting this in (4) gives the joint density of (X1,X2, B) as

2 2
f (X1, X2, B) = K{ [l |X¢|%’“§(”“)} { 111, - Xi|%m%<p+1>} (5)

=1

K2

2
BB (At =S ) oy {-%B%z—lB% [Ip XXl - Xi)‘l} } :

?

Making the transformation X; — HX;H’, i =1,2 and B — HBH' where H (p x p) is orthogonal
(Diaz-Garcfa and Gutiérrez-Jaimez, 2006) and substituting in (5) gives

f(HX,H',HX,H',HBH')

— K{ : |Xi|%”i%(P+1)}{ﬁ |Ip—Xi|%ni%(p+1)}
i=1 i=1

(2

2
B[R M) =3 () o {—% (HB*H') =" (HBIH) {I,, + L HX (I, - X)) H’] }
=

We consider the symmetrized density function of (X1, X2) defined by Greenacre (1973), that is

fs(X1,X9) :/ / f (HXlH’,HXgH',HBH')deB where H (p x p) is orthogonal and dH
B>0J0(p)

is the normalized invariant measure on O (p). Note that dB =dHBH' (Dfaz-Garcfa and Gutiérrez-
Jaimez, 2006).

Then
fs (X1, X05)
- K{IZ[ Xi|%7li—%(p+1)} { 12[ i, _Xi|—%ni—%(p+1)}
i=1 i=1

2
/ |B|F(mtnatm) =5 (kD) / etr {—%H’zlﬂB% [Ip Y X, (I, - Xi)_l} B? }deB.
B>0 O(p) i=1

(6)
It follows from Ehlers, Bekker and Roux (2009, Lemma 5, page 114) that
2

/ etr{—%H’zlﬂB% {Ip+ S X, (I, —Xi)_l] B%}dH
O(p) i=1

1=

1 1

2 2 2 2
:/ etr{% {I,,+2Xi(1pxi)—1] H'S'H [I,,Jrzxi(IpXi)—l] B}dH.
O(p) i=1

i=1 =

Form the above, changing the order of integration in (6) and integrating with respect to B as well as
using Gupta and Nagar (2000, Equation 1.4.6, page 19) gives

_ 2 1.1 2 Clp._1
Fs X0 Xa) = (8, (3. 5:9)) " {TTIX P 200 T, - xdeeden )

i=1
—1(ni+natm)

I,+HY. X,(I,-X,) 'H dH.




Since fs (X1,X2) = / f(HXH'HX,H')dH, it follows from (7) that
O(p)

SRCACIE T S SRl R (A S !

=1

— 5 (n1+n2+m)

2
I,+> X (I,— X)) " as

=1

Making the transformation HX;H' — X;, i = 1,2 and rewriting

I,+Xo(I,— X)) ' = Xo(I, —Xz)_lxl‘ I, — X4
- ’1,9 — X (I, — Xo) " X1+ Xo(I, - XQ)”XlXQ’ I, — X1 "I, — Xo| "

=T, — X1 X3| [T, - X1 T, - Xo|
gives the result. W

Remarks
1. If (Xq,X2) ~ BB;V (%, 22, 2) with density function given in (3), then

(a) the marginal density functions are matrix variate beta type I, X; ~ B; (%, %) , 1=1,2;

(b) the conditional density of Xo|X; is given by

{ﬁp (%’ n1;rm)}*1 I, — Xl\%m |X2\%"2_%(p+1) I, - X2|%(n1+7n)—%(p+1) I, — XX, —1(n1t+na+m) 7
0< Xy <1,

2. The matrix variate Dirichlet type IV, denoted as (X1,...,X,) ~ DZI,V (%L, N i %) , results
by extending (2) to r independent Wishart matrix variables, S; ~ W), (n;, %), i = 1
independent of B ~ W, (m,X). The joint density of (Xi,...,X,) is given by

f(X17"'7X’I‘)

= (B gy {Txinien ]

r ’—é(n1+~~+nr+m)

r 1,1 _
'{H|Ip_Xi| ini 2<p+1>}’1p+zx,»(1p_xi) :
i=1 i=1

where 0 < X; <I,, i=1,...,7

3 Distribution of product and ratio of dependent Wilks’s sta-
tistics
In this section we derive the exact expressions for the density functions of 73 = |X1X | = A1Ay

and Zy = |X+| = & the product and ratio of two dependent Wilks’s statistics, in terms of Meijer’s
Xo AQ

G-function. The proofs are based on the Mellin transforms of the density functions of Z; and Zs, and
their inverse Mellin transforms.



Lemma 1
If (X1,X5)~ BB{)V (L, 22, 2 with density function given in (3), then

B (3 + My 225) B, (5 + hoy i5)
6, (5 % %)

5 (% + ha, ﬂ_22 + ho, n1+r§2+m; n1+gz+m + ha, W + hQ;Ip)

B ||X[" Xl

(9)
where 3Fy (+) is a hypergeometric function of matrix argument, (see Muirhead, 1982, Definition 7.5.1,
page 258).
Proof:
Using Gupta and Nagar (2000, Equations 1.6.6 and 1.6.8, page 36) the result in (9) follows. [ |

Theorem 2

Let (Xl,XQ) ~ BB;V (%, %,%) and Z1 = |X1X2| = AlAQ.

The density function of Zi, the product of two dependent Wilks statistics, is given by

Ty (52) Ty (55)

> Cx (Ip)
Ty () Ty (3) T (3

3 AT, (g ) G (z1|;‘j""’“2ﬂ), 0<z <1 (10)

2p,2p y--yb2p
K

00
=0

) &

" R ke -3 (1) for G=1.35,,2p -1
wnere aj_ n1+n2+m71 k 1 P9 :246 9
2 + J/2 4(.] ) fO'f’j ;% 0,...,4D,
Lo 1+kynp—3G-1) for j=1,3,5...,2p—1
and bj =

2 1+kjp—3(-2) for j=2,4,6,...,2p.
Furthermore C,, (I,,) is the zonal polynomial of I, corresponding to k and

p
T, (a,r) = 7320-2) [ T la+kj —1(j—1)] (see Gupta and Nagar, 2000).
j=1

Proof:
It follows from (9) that

B2 -

where a; and b; are as defined above.

Using Meijer’s G-function (Mathai, 1993, Definition 2.1, page 60) and the inverse Mellin transform
(Mathai, 1993, Definition 1.8, page 23), the desired result (10) follows. W

Theorem 3

Let (X1,X2)~BBLY (3,%:%) and Z = |%| =42,

The density function of Zs, the ratio of two dependent Wilks’s statistics, is given by

Iy (22T, (252) &

Cr (Ip)
2 2 ZZ LSl 24 o (n1+n2+m,m) G;;:UQ (Z2|Zl’~~7;712p> for 29 >0 (11)
LG T, ) S B o (2103
k4 i(i-1) for j=1,2,...,p
J— 2 J 2 ) 4y )

where 4 { M 14 ki, —5(j-p—1) for j=p+1lp+2,....2p,
and b-_{%_l—’_kj_%(j_ll)‘ fOT]:=1,2,...,P

’ SRR 5 (j-p—1)  for j=p+Lp+2,....2p.



Furthermore Cy (I p) is the zonal polynomial of I, corresponding to k and

T, (a,r) = w3p(1=p) H Ila+kj—3(j—1)] (see Gupta and Nagar, 2000).

Jj=1

Proof:
It follows from (9) that

nitm na+m )
LOSIL ) &y

k=0

Co () Ty (572 R) Ty (5 + h = L) Ty (5 —h 4 L)

E (Zgil) = T, <n1+752+77l T h— 1"“&) T, (n1+752+m —h+1, K)

where a; and b; are defined above.

Using Meijer’s G-function, the inverse Mellin transform and Mathai (1993, Equation 2.2.4, page 72), the
required result (11) follows. W

Remark

In the case when p = 1, the results in (10) and (11) simplifies to the densities of the product and ratio of
correlated beta type I random variables obtained by Nagar et al. (2009).

4 Bimatrix variate Kummer-beta type IV distribution

In this section we obtain the moment generating function of the bimatrix variate beta type IV
distribution and define the bimatrix variate Kummer-beta type IV distribution.

Lemma 2

Suppose that X = [X1: Xs| and T = [Ty : Ts]. Then the moment generating function of the bimatrix
variate beta type IV distribution given in (3) is given by

[e'e] n1 +n2 +m

I I N D N B HIPIP I =

T ¢ d€ERTYERC

0t
Gor ()56 (8, 25) 2 (5), 8y (5 245)
nﬁ-ng—&-m) (n; +n2+m)
2 5 2 v
Ce (Ty) C(T2)Cs(I,)Cy(I)) (12)
CH(IP>CT(IP)CC (Ip)
Proof:
By definition, the moment generating function of X is given by
M(T)

= E [etr(TX)]

— (8 (%’%2;%)}—1/ / |X1‘%m—%(pﬂ)|X2|én2—%(p+1)|1p_X1|%(n2+m)—%(p+1)
P 0<X 1<I,JO<Xo<I

T, — Xo[2(mAm=3 D) | [, — X | X |2 (mtnetmletr( T, X Jetr(To X 2)dX 2dX

= {5p (%,%;%)}*1/ |X1|%n1*%(r)+1)‘1p7X1|%(anrm)*%(P+1)etr(T1X1)A(X1)dX1’
X1

(13)



= / | X o|3n2=3HD|T ) — X o3 (mtm) =30+ Detr( Ty X )|, — X Xo| "3 (mtnetm)qx,
x
o0

0o nitnotm
— DD %/ |X2|%n2—%(p+1)|1p _ X2|%(n1+m)—%(1’+1)CH(XlXQ)CT(TgXQ)ng
K T b X

| X o[22z (D) |, — X2|%<n1+m>—%<P+1>CT(T2X2)/ C.(H'X1HX,)dHdX,.
O(p)

It follows from Muirhead (1982, Theorem 7.2.5, page 243 and Theorem 7.2.10, page 254) and Chikuse
(1981, Equation 2.7) that

A(X)
(), Cu(X0)
kil Cuo(I,)

x~
Il
<
~
I
(=)

I
18
18

=[]

]

/ \X2|%n2—%(p+1)|1p _ Xg|%(”1+’")_%(P“)C,{(XQ)CT(Tng)dXQ
Xo

00 00 nitnotm
= 3 ZZZ( 2 ) Cu(X1)Cr (T )/ |X2|%n2—%(17+1)|1p_X2|%("1+m)—%(p+1)CH(X2)CT(X2)dX2
K=0i=0'r T( +l<:!tJ!r N Cio(Ip)Cr(Ip)
RS ), Cu(X0)Cr(Th)
SR GO,
927/ ‘X2|2n272(p+1)|1 — X p|z(mtm) =3 () 05 (X 5)d X 5
SERT Xo
— i.é izz Z (W)R (2) (”2 n1+m) CN<X1)CT<T2)C5(IP)
k=0t=0 v T S€Er-T k't' (n1+n2+m) CK(IP)CT(IP)

(14)

Substituting (14) in (13) and continuing in the same way, the result follows. W

Definition

The p x p symmetric positive definite random matrices X1 and Xo on the unit p-sphere are said to
have the bimatriz variate Kummer-beta type IV distribution with parameters ni, no, m and W, denoted
by (X1,X29) ~ BKB;V (”1 L. \I!) if their joint density is given by

25929
K|X1\%”1‘%(1’“)|X2|%”2‘%(7’+1)|Ip _ Xl‘%(nﬁm)—é(pﬂ)

I, — X2|%(n1+m)—%(p+1)|1p _ X1X2|—%(n1+n2+m)etr 0 (X + X,)]

where
K'!' = M(-¥:-9)
o 1 X X > (n1+n2+m)
= B3 23 0 0 0. e

k=0t=02=0 kK T ( §€KTYERC

90 (%) B, (%, mdm) fie (5), By (45, 55)
<n1+n2+m) (n1+n2+m)
2 2 v

)
The expression for K follows directly from (12).



5 Shape analysis

In Section 5.1 we illustrate the effect of the parameters on the shape of the densities of Z; = |X ;X 5|
and Z, = ‘%‘ The effect of the parameters on the conditional moments of the bivariate beta type
IV variables as well as on the form of the bivariate Kummer-beta type IV distribution are illustrated in
Sections 5.2 and 5.3 respectively. Only the two cases p = 2 and p = 1 are studied, for products and ratios
of dependent Wilks’s statistics, and conditional densities respectively. For the Kummer-beta type IV
distribution, again only the unidimensional case is studied. The casesp > 2 are much more complicated
to deal with numerically.

5.1 Distributions of product and ratio of dependent Wilks’s statistics

We consider the bimatriz case with p = 2 where the density function of Z; = |X1X 3| = AjAy (see
(10)) simplifies to

f( )_ Iy (m;—m) ) (nz-i—m) i Z ( ) (m+"2+m )G4’O |a1,a2,a3,a4 0< <1 (15)
VIRERER®) S H FE ) Gl (22 ) 0 <o
where
a; = 7n1+22+m71+k17 as = 7n1+22+m71+k1, as = 7n1+22+m71+k27% and ay = 7n1+7;2+m71+k27%,
b1:%71+k1,b2 1+k’1,b3——71+k27— and b4—ﬂfl+k27—

Figure 1 illustrates the shape of f(z1) for increasing values of mny and m. We note that as no increases
the density shifts towards larger values of z;. The opposite happens when m increases.

20 T 20
(T Ny =4 f el m=4
() n2 =8 (22) m=8
np, = 16 12 m =16
8,
4 4
T T 0 [ T
, 06 08 1 0 0.8 1
1

Figure 1: Density function of Z; = |X1X | = AjAs for
(i) increasing values of na, (X1, X2) ~ BBV (4,%;4) and
(i) increasing values of m, (X1, X2) ~ BB3Y (4,4;2).

Similarly for p = 2, the density function of Z; = %; given in (11) simplifies to

r atm r nzdm I ai,a2,a3,a
f (Zg) _ 2 ( 2 ) 2 ( )) Z Z ( 2)F2 (nﬁ-gz—i—m, Ii) Giji (Z2|b11,’b22,’b;:2;44> . 20>0 (16)

where
a; = _L — kl, ay = —2 — ko + 2, 013 = —n1+7£2+m —1+k and a4 = —n1+7;2+m 14+ ko —
by =2 —1+k,bp=" —1+4ky— 1, by=—"tdm L and by = —mtladm _p, 4 1

Figure 2 shows that graphs of f(z) for increasing values of n, and m. As ny increases the density
shifts towards smaller values of z5 and the spread of the density decreases. The parameter n; has the
opposite effect. As m increases the density shifts towards smaller values of zo and the spread of the
density increases.
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Figure 2: Density function of Zs = X— = f\—; for
(i) increasing values of na, (X1, X5) ~ BB}V (4,%2;4) and

(i) increasing values of m, (X1, X2) ~ BBLY (4,4;2).

Nagar et al. (2009) illustrated the effect of the parameters on the density of the product of correlated
beta variables, i.e. Z; = X1X5. There are some algorithms available for calculating such functions as
(15) and (16) and facilitating the use of these distributions (see Gutierrez et al. (2000) and Koev and
Edelman (2006)). There are also mathematical packages, such as Maple and Mathematica for computing
and drawing densities in terms of Meijer’s G-function. In this paper we used simulations to give graphical
representations of the densities of Z; and Zs.

5.2 Effect of parameters on the conditional moments of the bivariate beta
type IV distribution

In the case where p =1 the conditional density of X» given X; in (8) is given by

[ (zalzr) = {B (%2 m;‘—m)}_l (1— xl)%m xz%nrl (1- :1:2)%("1+m)_1 (1— xlmg)_%("ﬁ"ﬁm) , 0<ao < 1.

(17)
In Figure 3 the graphs of E (X3|X; =21) and var (X2|X; =21) show the underlying structure of
(17) for increasing values of m. As m increases whilst all the other parameters are held constant,
E (X5|X; = 1) becomes smaller. Similar graphs for increasing values of ny are given in Figure 4. The
conditional expected value, E (X5| X1 = x1), increases as ny increases. The parameter n; has the same
effect as m on E (X3|X1 =x1) and var (X2|X1 = 1) as can be seen from (17). A detailed discussion
of the bivariate case is given by Olkin and Liu (2003).

1 0.03
08 1 R
~ 0.02
—~ 06 E
> I
I . .3
X' g4t _N
~ X 001
I e — m=4 el E— m=4
w02 ——m=38 g m=38
m=16 m=16
0 0 ;
0 02 04 06 08 1 0 02 04 06 08 1
X X

Figure 3: Effect of m on E (X3|X; = 1) and var (X2|X1 = 1), (X1,X2) ~ BBV (4,4, %)
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\>-<’ --------------------- n2 4 E 0014 — ng = 4
woozye np=38 = np =8
ny =16 ny =16
O T T T O T T T T
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X, X,

Figure 4: Effect of ny on E(X5|X; = x1) and var (X3|X; = 21), (X1, X3) ~ BBV (4, %;4)

5.3 Bivariate Kummer-beta type IV distribution

In the case where p =1 the density of the bivariate Kummer-beta type IV distribution is given by

ln—1 Lpo— i1 _ 1 _ _1
Fenm) = Kap ™ ad™ 7 (1= a0) 2027 (1 ) 20T (1 ) TEO Y o [y (2 + )]
where 0 < z; <1 and 0 <z < 1. The normalizing constant is

Pt D () = 1D (3 + BT (5 +F)
I (Ttneim) = k! T (Ldnedm 4 p)
S Fy (B A Ry R g o) (T Ry MR 4 ks )

K' =

where 1Fj (+) is the confluent hypergeometric function with scalar argument. The distribution is denoted
as (X1,Xz) ~ BKB' (&, %2, 2:9)) . Figure 5 illustrates the effect of the parameter ¢ on this density
function. Note that if 1 =0 the density simplifies to the bivariate beta type IV (Jones, 2001).

Figure 5: Effect of ¢ on f (z1,22), (X1, X2) ~ BKBIV (4,4;4;4)

6 Conclusion
In this paper we introduced the bimatrix variate beta type IV distribution and used it to derive

the exact expressions of the densities of the product and ratio of two dependent Wilks’s statistics. We
also defined the bimatrix variate Kummer-beta type IV distribution which followed from the moment

10



generating function of the bimatrix variate beta type IV distribution. The effect of the parameters on the
shape of the densities were also illustrated. The availability of closed form expressions for the densities
of the product and ratio of two dependent Wilks’s statistics and the newly proposed bimatrix variate
Kummer-beta type IV distribution should stimulate further research and applications.
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