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1 Introduction

Consider three independent Wishart matrix variables S ∼ (Σ)   = 1 2 and B ∼ (Σ)

and define the transformation

X =
³
I +B

− 1
2SB

− 1
2

´− 1
2

B−
1
2SB

− 1
2

³
I +B

− 1
2SB

− 1
2

´− 1
2

 (1)

where B
1
2B

1
2 = B and 0  X  I  = 1 2 In this paper we derive the distribution of (X1X2)

and refer to it as the bimatrix variate beta type IV distribution. Specific properties are explored and then

used as the basis to derive two further important results.

Firstly, it follows from (1) that Λ1 =

¯̄̄̄
S1

S1 +B

¯̄̄̄
= |X1| and Λ2 =

¯̄̄̄
S2

S2 +B

¯̄̄̄
= |X2|  thus

1 = |X1X2| = Λ1Λ2 and 2 =

¯̄̄̄
X1

X2

¯̄̄̄
=
Λ1

Λ2
are the product and ratio of two dependent Wilks’s

statistics. We derive 
³
|X1|1 |X2|2

´
for the bimatrix variate beta type IV distribution and use it

to obtain exact expressions for the densities of 1 and 2 in terms of Meijer’s G-function. The Wilks’s

statistic is widely used for various statistical tests in multivariate analysis. Exact expressions have been

derived for the distribution of the Wilks’s statistic (Mathai and Rathie, 1969) and also for the product

and ratio of two independent Wilks’s statistics (Kshirsagar, 1972; Pham-Gia, 2008).

Secondly, the moment generating function of the bimatrix variate beta type IV distribution is derived

and then applied to define the bimatrix variate Kummer-beta type IV distribution. This is an extension of

the bimatrix variate beta type IV distribution. In the bivariate case it is an extension of the distribution

proposed independently by Libby and Novick (1982), Jones (2001) and Olkin and Liu (2003). Gupta et

al. (2001) defined the matrix variate Kummer-Dirichlet type I and type II distributions which reduce
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under certain conditions to the matrix variate Kummer-beta distribution (Nagar and Gupta, 2002) and

the matrix variate Kummer-gamma distribution (Nagar and Cardeño, 2001).

The distribution of (X1X2) is derived in Section 2 by using the transformation in (1). In Section

3 the product moment of this distribution is applied to obtain the exact expressions for the densities

of 1 = |X1X2| and 2 =

¯̄̄̄
X1

X2

¯̄̄̄
 The moment generating function of the bimatrix beta type IV

distribution is derived in Section 4. This result is used to define the bimatrix variate Kummer-beta type

IV distribution. In Section 5 the form of the densities of 1 and 2 is illustrated, as well as the effect

of the parameters on the conditional moments for the bivariate beta type IV distribution. The form of

the density of the bivariate Kummer-beta type IV distribution also receives attention.

2 Bimatrix variate beta type IV distribution

In this section the bimatrix variate beta type IV distribution is derived from a transformation of

independent Wishart distributed random matrices.

Theorem 1

Let S1 ∼ (1Σ)  S2 ∼ (2Σ)  B ∼ (Σ) be independently distributed. Define

X =
³
I +B

− 1
2SB

− 1
2

´− 1
2

B−
1
2SB

− 1
2

³
I +B

− 1
2SB

− 1
2

´− 1
2

  = 1 2 (2)

where B
1
2B

1
2 = B and 0X  I  = 1 2

Furthermore,   (− 1)   = 1 2 and   (− 1) 
The joint density of (X1X2) is

©

¡
1
2
 2
2
; 
2

¢ª−1½ 2Q
=1

|X|
1
2
− 1

2
(+1)

¾
· |I −X1|

1
2
(2+)− 1

2
(+1) |I −X2|

1
2
(1+)− 1

2
(+1) |I −X1X2|−

1
2
(1+2+) (3)

where 
¡
1
2
 2
2
; 
2

¢
=
Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢
Γ
¡
1+2+

2

¢  and Γ (·) is the multivariate gamma function.

The density in (3) is that of the bimatrix variate beta type IV distribution and is denoted as (X1X2) ∼




¡
1
2
 2
2
; 
2

¢
.

Proof:

The joint density of (S1S2B) is given by



½
2Q

=1

h
etr
¡−1

2
Σ−1S

¢ |S|
1
2
(−−1)

i¾h
etr
¡−1

2
Σ−1B

¢ |B| 12 (−−1) i (4)

where −1 = 2
1
2
(1+2+)Γ

¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢ |Σ| 12 (1+2+) 
Making the transformations

X =
³
I +B

− 1
2SB

− 1
2

´− 1
2

B−
1
2SB

− 1
2

³
I +B

− 1
2SB

− 1
2

´− 1
2

  = 1 2

and

Z = B
− 1
2SB

− 1
2   = 1 2

2



gives X = (I +Z)
−1
Z since Z commutes with any rational function of Z The Jacobian of the

transformation (see Gupta and Nagar, 2000) is

 (S1S2 →X1X2) =

½
2Q

=1

 (S → Z) (Z →X)

¾
= |B|(+1)

2Q
=1

|I −X|−(+1) 

Substituting this in (4) gives the joint density of (X1X2B) as

 (X1X2B) = 

½
2Q

=1

|X|
1
2
− 1

2
(+1)

¾½
2Q

=1

|I −X|−
1
2
− 1

2
(+1)

¾
· |B| 12 (1+2+)− 1

2
(+1)

etr

½
−1
2
B

1
2Σ−1B

1
2

∙
I +

2P
=1

X (I −X)
−1
¸¾



(5)

Making the transformation X →HXH
0  = 1 2 and B →HBH 0 whereH (× ) is orthogonal

(Díaz-García and Gutiérrez-Jáimez, 2006) and substituting in (5) gives


¡
HX1H

0HX2H
0HBH 0¢

= 

½
2Q
=1

|X|
1
2
− 1

2
(+1)

¾½
2Q
=1

|I −X|−
1
2
− 1

2
(+1)

¾
· |B| 12 (1+2+)− 1

2
(+1)

etr

½
−1
2

³
HB

1
2H 0

´
Σ−1

³
HB

1
2H 0

´ ∙
I +

2P
=1

HX (I −X)
−1
H 0
¸¾

We consider the symmetrized density function of (X1X2) defined by Greenacre (1973), that is

 (X1X2) =

Z
0

Z
()


¡
HX1H

0HX2H
0HBH 0¢dHdB whereH (× ) is orthogonal and dH

is the normalized invariant measure on  ()  Note that dB =dHBH 0 (Díaz-García and Gutiérrez-
Jáimez, 2006).

Then

 (X1X2)

= 

½
2Q
=1

|X|
1
2
− 1

2
(+1)

¾½
2Q
=1

|I −X|−
1
2
− 1

2
(+1)

¾
·
Z
0

|B| 12 (1+2+)− 1
2
(+1)

Z
()

etr

½
−1
2
H 0Σ−1HB

1
2

∙
I +

2P
=1

X (I −X)
−1
¸
B

1
2

¾
dHdB

(6)

It follows from Ehlers, Bekker and Roux (2009, Lemma 5, page 114) thatZ
()

etr

½
−1
2
H 0Σ−1HB

1
2

∙
I +

2P
=1

X (I −X)
−1
¸
B

1
2

¾
dH

=

Z
()

etr

(
−1
2

∙
I +

2P
=1

X (I −X)
−1
¸ 1
2

H 0Σ−1H
∙
I +

2P
=1

X (I −X)
−1
¸ 1
2

B

)
dH

Form the above, changing the order of integration in (6) and integrating with respect to B as well as

using Gupta and Nagar (2000, Equation 1.4.6, page 19) gives

 (X1X2) =
©

¡
1
2
 2
2
; 
2

¢ª−1½ 2Q
=1

|X|
1
2
− 1

2
(+1)

¾½
2Q
=1

|I −X|−
1
2
− 1

2
(+1)

¾

·
Z
()

¯̄̄̄
I +H

2P
=1

X (I −X)
−1
H 0
¯̄̄̄− 1

2
(1+2+)

dH

(7)
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Since  (X1X2) =

Z
()


¡
HX1H

0HX2H
0¢dH, it follows from (7) that


¡
HX1H

0HX2H
0¢

=
©

¡
1
2
 2
2
; 
2

¢ª−1½ 2Q
=1

|X|
1
2
− 1

2
(+1)

¾½
2Q
=1

|I −X|−
1
2
− 1

2
(+1)

¾

·
¯̄̄̄
I +H

2P
=1

X (I −X)
−1
H

¯̄̄̄− 1
2
(1+2+)



Making the transformation HXH
0 → X  = 1 2 and rewriting

¯̄̄̄
I +

2P
=1

X (I −X)
−1
¯̄̄̄
as¯̄̄

I +X2 (I −X2)
−1 −X2 (I −X2)

−1
X1

¯̄̄
|I −X1|−1

=
¯̄̄
I −X2 (I −X2)

−1
X1 +X2 (I −X2)

−1
X1X2

¯̄̄
|I −X1|−1 |I −X2|−1

= |I −X1X2| |I −X1|−1 |I −X2|−1

gives the result ¥

Remarks

1. If (X1X2) ∼ 


¡
1
2
 2
2
; 
2

¢
with density function given in (3)  then

(a) the marginal density functions are matrix variate beta type I, X ∼ 


¡

2
; 
2

¢
  = 1 2;

(b) the conditional density of X2|X1 is given by©

¡
2
2
; 1+

2

¢ª−1 |I −X1|
1
2
2 |X2|

1
2
2− 1

2
(+1) |I −X2|

1
2
(1+)− 1

2
(+1) |I −X1X2|−

1
2
(1+2+) 

0 X2  I

(8)

2. The matrix variate Dirichlet type IV, denoted as (X1    X) ∼ 


¡
1
2
     

2
; 
2

¢
 results

by extending (2) to  independent Wishart matrix variables, S ∼  (Σ),  = 1      all

independent of B ∼ (Σ)  The joint density of (X1    X) is given by

 (X1    X)

=
©

¡
1
2
     

2
; 
2

¢ª−1½ Q
=1

|X|
1
2
− 1

2
(+1)

¾

·
½

Q
=1

|I −X|−
1
2
− 1

2
(+1)

¾ ¯̄̄̄
I +

P
=1

X (I −X)
−1
¯̄̄̄− 1

2
(1+···++)

where 0 X  I,  = 1     

3 Distribution of product and ratio of dependent Wilks’s sta-

tistics

In this section we derive the exact expressions for the density functions of 1 = |X1X2| = Λ1Λ2
and 2 =

¯̄̄
1

2

¯̄̄
= Λ1
Λ2
, the product and ratio of two dependent Wilks’s statistics, in terms of Meijer’s

G-function. The proofs are based on the Mellin transforms of the density functions of 1 and 2, and

their inverse Mellin transforms
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Lemma 1

If (X1X2) ∼ 


¡
1
2
 2
2
; 
2

¢
with density function given in (3)  then


h
|X1|1 |X2|2

i
=


¡
1
2
+ 1;

2+
2

¢

¡
2
2
+ 2;

1+
2

¢

¡
1
2
 2
2
; 
2

¢
·32

¡
1
2
+ 1

2
2
+ 2

1+2+
2

; 1+2+
2

+ 1
1+2+

2
+ 2; I

¢
(9)

where 32 (·) is a hypergeometric function of matrix argument, (see Muirhead, 1982, Definition 7.3.1,

page 258)

Proof:

Using Gupta and Nagar (2000, Equations 1.6.6 and 1.6.8, page 36) the result in (9) follows. ¥

Theorem 2

Let (X1X2) ∼ 


¡
1
2
 2
2
; 
2

¢
and 1 = |X1X2| = Λ1Λ2

The density function of 1 the product of two dependent Wilks statistics, is given by

Γ
¡
1+
2

¢
Γ
¡
2+
2

¢
Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢ ∞P
=0

P


 (I)

!
Γ
¡
1+2+

2
 
¢

20
22

³
1|1212

´
 0  1  1 (10)

where  =

(
1+2+

2
− 1 + (+1)2 − 1

4
( − 1) for  = 1 3 5     2− 1

1+2+
2

− 1 + 2 − 1
4
( − 2) for  = 2 4 6     2

and  =

(
1
2
− 1 + (+1)2 − 1

4
( − 1) for  = 1 3 5     2− 1

2
2
− 1 + 2 − 1

4
( − 2) for  = 2 4 6     2

Furthermore  (I) is the zonal polynomial of I corresponding to  and

Γ ( ) = 
1
4
(1−)

Q
=1

Γ
£
+  − 1

2
( − 1)¤ (see Gupta and Nagar, 2000 )

Proof:

It follows from (9) that


¡
−1
1

¢
=
Γ
¡
1+
2

¢
Γ
¡
2+
2

¢
Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢ ∞P
=0

P


 (I)

!
Γ
¡
1+2+

2
 
¢ Q2

=1 Γ ( + )Q2
=1 Γ ( + )



where  and  are as defined above.

Using Meijer’s G-function (Mathai, 1993, Definition 2.1, page 60) and the inverse Mellin transform

(Mathai, 1993, Definition 1.8, page 23), the desired result (10) follows. ¥

Theorem 3

Let (X1X2) ∼ 


¡
1
2
 2
2
; 
2

¢
and 2 =

¯̄̄
1

2

¯̄̄
= Λ1
Λ2


The density function of 2 the ratio of two dependent Wilks’s statistics, is given by

Γ
¡
1+
2

¢
Γ
¡
2+
2

¢
Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢ ∞P
=0

P


 (I)

!
Γ
¡
1+2+

2
 
¢


22

³
2|1212

´
for 2  0 (11)

where  =

½ −2
2
−  +

1
2
( − 1) for  = 1 2     

1+2+
2

− 1 + − − 1
2
( − − 1) for  = + 1 + 2     2

and  =

½
1
2
− 1 +  − 1

2
( − 1) for  = 1 2     

−1+2+
2

− − + 1
2
( − − 1) for  = + 1 + 2     2
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Furthermore  (I) is the zonal polynomial of I corresponding to  and

Γ ( ) = 
1
4
(1−)

Q
=1

Γ
£
+  − 1

2
( − 1)¤ (see Gupta and Nagar, 2000 )

Proof:

It follows from (9) that


¡
−1
2

¢
=
Γ
¡
1+
2

¢
Γ
¡
2+
2

¢
Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢ · ∞P
=0

P


 (I)

!

Γ
¡
1+2+

2
 
¢
Γ
¡
1
2
+ − 1 ¢Γ ¡22 − + 1 

¢
Γ
¡
1+2+

2
+ − 1 ¢Γ ¡1+2+2

− + 1 
¢ 

where  and  are defined above.

Using Meijer’s G-function, the inverse Mellin transform and Mathai (1993, Equation 2.2.4, page 72) the

required result (11) follows. ¥

Remark

In the case when  = 1 the results in (10) and (11) simplifies to the densities of the product and ratio of

correlated beta type I random variables obtained by Nagar et al. (2009).

4 Bimatrix variate Kummer-beta type IV distribution

In this section we obtain the moment generating function of the bimatrix variate beta type IV

distribution and define the bimatrix variate Kummer-beta type IV distribution.

Lemma 2

Suppose that X = [X1 :X2] and T = [T 1 : T 2]  Then the moment generating function of the bimatrix

variate beta type IV distribution given in (3) is given by

M(T ) =
©

¡
1
2
 2
2
; 
2

¢ª−1 ∞X
=0

∞X
=0

∞X
=0

X


X


X


X
∈·

X
∈·

(1+2+
2

)

!!!

·



¡
2
2

¢


¡
2
2
 1+

2

¢¡
1+2+

2

¢






¡
1
2

¢


¡
1
2
 2+

2

¢¡
1+2+

2

¢


· (T 1) (T 2)(I)(I)

(I) (I) (I)
 (12)

Proof:

By definition, the moment generating function of X is given by

M(T )

=  [etr(TX)]

=
©

¡
1
2
 2
2
; 
2

¢ª−1 Z
01

Z
02

|X1| 121− 1
2
(+1)|X2| 122− 1

2
(+1)|I −X1| 12 (2+)− 1

2
(+1)

·|I −X2| 12 (1+)− 1
2
(+1)|I −X1X2|− 1

2
(1+2+)etr(T 1X1)etr(T 2X2)X2X1

=
©

¡
1
2
 2
2
; 
2

¢ª−1 Z
1

|X1| 121− 1
2
(+1)|I −X1| 12 (2+)− 1

2
(+1)etr(T 1X1)(X1)X1

(13)
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(X1)

=

Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1)etr(T 2X2)|I −X1X2|− 1

2
(1+2+)dX2

=
∞P
=0

∞P
=0

P


P


¡
1+2+

2

¢


!!

Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1)(X1X2) (T 2X2)dX2

=
∞P
=0

∞P
=0

P


P


¡
1+2+

2

¢


!!

·
Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1) (T 2X2)

Z
()

(H
0X1HX2)dHdX2

It follows from Muirhead (1982, Theorem 7.2.5, page 243 and Theorem 7.2.10, page 254) and Chikuse

(1981, Equation 2.7) that

(X1)

=
∞P
=0

∞P
=0

P


P


¡
1+2+

2

¢


!!

(X1)

(I)

Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1)(X2) (T 2X2)dX2

=
∞P
=0

∞P
=0

P


P


¡
1+2+

2

¢


!!

(X1) (T 2)

(I) (I)

Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1)(X2) (X2)dX2

=
∞P
=0

∞P
=0

P


P


¡
1+2+

2

¢


!!

(X1) (T 2)

(I) (I)

· P
∈·



Z
2

|X2| 122− 1
2
(+1)|I −X2| 12 (1+)− 1

2
(+1)(X2)dX2

=
∞P
=0

∞P
=0

P


P


P
∈·

¡
1+2+

2

¢


!!


¡
2
2

¢


¡
2
2
 1+

2

¢¡
1+2+

2

¢


(X1) (T 2)(I)

(I) (I)

(14)

Substituting (14) in (13) and continuing in the same way, the result follows. ¥

Definition

The  ×  symmetric positive definite random matrices X1 and X2 on the unit -sphere are said to

have the bimatrix variate Kummer-beta type IV distribution with parameters 1 2  and Ψ, denoted

by (X1X2) ∼ 


¡
1
2
 2
2
; 
2
;Ψ
¢
if their joint density is given by

|X1| 121− 1
2
(+1)|X2| 122− 1

2
(+1)|I −X1| 12 (2+)− 1

2
(+1)

·|I −X2| 12 (1+)− 1
2
(+1)|I −X1X2|− 1

2
(1+2+)etr [−Ψ (X1 +X2)]

where

−1 = M(−Ψ : −Ψ)

=
©

¡
1
2
 2
2
; 
2

¢ª−1 ∞X
=0

∞X
=0

∞X
=0

X


X


X


X
∈·

X
∈·

(1+2+
2

)

!!!

·



¡
2
2

¢


¡
2
2
 1+

2

¢¡
1+2+

2

¢






¡
1
2

¢


¡
1
2
 2+

2

¢¡
1+2+

2

¢


· (−Ψ) (−Ψ)(I)(I)

(I) (I) (I)


The expression for  follows directly from (12) 
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5 Shape analysis

In Section 5.1 we illustrate the effect of the parameters on the shape of the densities of 1 = |X1X2|
and 2 =

¯̄̄
1

2

¯̄̄
. The effect of the parameters on the conditional moments of the bivariate beta type

IV variables as well as on the form of the bivariate Kummer-beta type IV distribution are illustrated in

Sections 5.2 and 5.3 respectively. Only the two cases  = 2 and  = 1 are studied, for products and ratios

of dependent Wilks’s statistics, and conditional densities respectively. For the Kummer-beta type IV

distribution, again only the unidimensional case is studied. The cases  2 are much more complicated

to deal with numerically.

5.1 Distributions of product and ratio of dependent Wilks’s statistics

We consider the bimatrix case with  = 2 where the density function of 1 = |X1X2| = Λ1Λ2 (see

(10)) simplifies to

 (1) =
Γ2
¡
1+
2

¢
Γ2
¡
2+
2

¢
Γ2
¡
1
2

¢
Γ2
¡
2
2

¢
Γ2
¡

2

¢ ∞P
=0

P


 (I2)

!
Γ2
¡
1+2+

2
 
¢

40
44

³
1|12341234

´
 0  1  1 (15)

where

1 =
1+2+

2
−1+1 2 = 1+2+

2
−1+1 3 = 1+2+

2
−1+2− 1

2
and 4 =

1+2+
2

−1+2− 1
2
;

1 =
1
2
− 1 + 1 2 =

2
2
− 1 + 1 3 =

1
2
− 1 + 2 − 1

2
and 4 =

2
2
− 1 + 2 − 1

2


Figure 1 illustrates the shape of  (1) for increasing values of 2 and  We note that as 2 increases

the density shifts towards larger values of 1 The opposite happens when  increases.
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Figure 1: Density function of 1 = |X1X2| = Λ1Λ2 for

(i) increasing values of 2 (X1X2) ∼ 
2

¡
4 2

2
; 4
¢
and

(ii) increasing values of  (X1X2) ∼ 
2

¡
4 4; 

2

¢


Similarly for  = 2 the density function of 2 =
Λ1
Λ2

given in (11) simplifies to

 (2) =
Γ2
¡
1+
2

¢
Γ2
¡
2+
2

¢
Γ2
¡
1
2

¢
Γ2
¡
2
2

¢
Γ2
¡

2

¢ ∞P
=0

P


 (I2)

!
Γ2
¡
1+2+

2
 
¢

22
44

³
2|12341234

´
 2  0 (16)

where

1 = −2
2
− 1 2 = −2

2
− 2 +

1
2
 3 =

1+2+
2

− 1 + 1 and 4 =
1+2+

2
− 1 + 2 − 1

2
;

1 =
1
2
− 1 + 1, 2 =

1
2
− 1 + 2 − 1

2
 3 = −1+2+

2
− 1 and 4 = −1+2+

2
− 2 +

1
2


Figure 2 shows that graphs of  (2) for increasing values of 2 and  As 2 increases the density

shifts towards smaller values of 2 and the spread of the density decreases The parameter 1 has the

opposite effect. As  increases the density shifts towards smaller values of 2 and the spread of the

density increases
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Figure 2: Density function of 2 =
¯̄̄
1

2

¯̄̄
= Λ1
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for
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2

¡
4 2

2
; 4
¢
and

(ii) increasing values of  (X1X2) ∼ 
2

¡
4 4; 

2

¢


Nagar et al. (2009) illustrated the effect of the parameters on the density of the product of correlated

beta variables, i.e. 1 = 12. There are some algorithms available for calculating such functions as

(15) and (16) and facilitating the use of these distributions (see Gutierrez et al. (2000) and Koev and

Edelman (2006)). There are also mathematical packages, such as Maple and Mathematica for computing

and drawing densities in terms of Meijer’s G-function. In this paper we used simulations to give graphical

representations of the densities of 1 and 2.

5.2 Effect of parameters on the conditional moments of the bivariate beta

type IV distribution

In the case where  = 1 the conditional density of 2 given 1 in (8) is given by

 (2|1) =
©

¡
2
2
; 1+

2

¢ª−1
(1− 1)

1
2
2 

1
2
2−1

2 (1− 2)
1
2
(1+)−1 (1− 12)

− 1
2
(1+2+)  0  2  1

(17)

In Figure 3 the graphs of  (2|1 = 1) and  (2|1 = 1) show the underlying structure of

(17) for increasing values of  As  increases whilst all the other parameters are held constant,

 (2|1 = 1) becomes smaller. Similar graphs for increasing values of 2 are given in Figure 4 The

conditional expected value,  (2|1 = 1)  increases as 2 increases. The parameter 1 has the same

effect as  on  (2|1 = 1) and  (2|1 = 1) as can be seen from (17). A detailed discussion

of the bivariate case is given by Olkin and Liu (2003).
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5.3 Bivariate Kummer-beta type IV distribution

In the case where  = 1 the density of the bivariate Kummer-beta type IV distribution is given by

 (1 2) = 
1
2
1−1

1 
1
2
2−1

2 (1− 1)
1
2
(2+)−1 (1− 2)

1
2
(1+)−1 (1− 12)

− 1
2
(1+2+) exp [− (1 + 2)] 

where 0  1  1 and 0  2  1 The normalizing constant is

−1 =
Γ
¡
1+
2

¢
Γ
¡
2+
2

¢
Γ
¡
1+2+

2

¢ ∞P
=0

1

!

Γ
¡
1
2
+ 

¢
Γ
¡
2
2
+ 

¢
Γ
¡
1+2+

2
+ 

¢
· 11

¡
1
2
+ ; 1+2+

2
+ ;−¢ 11

¡
2
2
+ ; 1+2+

2
+ ;−¢

where 11 (·) is the confluent hypergeometric function with scalar argument. The distribution is denoted
as (12) ∼ 

¡
1
2
 2
2
; 
2
;
¢
 Figure 5 illustrates the effect of the parameter  on this density

function. Note that if  = 0 the density simplifies to the bivariate beta type IV (Jones, 2001).

x1

x2 x1

x2 x1

x2

  0  −3. 5   3. 5

x1

x2 x1

x2 x1

x2

  0  −3. 5   3. 5

Figure 5: Effect of  on  (1 2)  (12) ∼  (4 4; 4;)

6 Conclusion

In this paper we introduced the bimatrix variate beta type IV distribution and used it to derive

the exact expressions of the densities of the product and ratio of two dependent Wilks’s statistics. We

also defined the bimatrix variate Kummer-beta type IV distribution which followed from the moment

10



generating function of the bimatrix variate beta type IV distribution. The effect of the parameters on the

shape of the densities were also illustrated The availability of closed form expressions for the densities

of the product and ratio of two dependent Wilks’s statistics and the newly proposed bimatrix variate

Kummer-beta type IV distribution should stimulate further research and applications.
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