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ABSTRACT

The LULU smoothers are effective nonlinear smoothers for signals. We investigate their ability to remove different noise
types, namely symmetrical and skewed, as well as heavy- and light-tailed, thereby uncovering the true underlying signal.
These smoothers prove very effective in removing noise originating from the same distribution as that noise which originally
contaminated the signal.

1. INTRODUCTION

The LULU smoothers for signals (sequences) have been developed over the last three decades by Rohwer and his collaborators,
(Rohwer, 2005). For a signal x = (xz)f\;_ > the LULU operators L,, and U, act at position ¢ in the signal and forn =1, 2, 3...
as follows:

(Lp(2)); =max{min{x; _n, ..., z; }, ..., min{x;, ..., ;1, } }, and

(Un(2)); =min{max{x;_n, ..., i}, ..., max{Ts, ..., Tign -

The LULU operators are nonlinear but have very useful properties to their name, that is, they are separators, are total variation
preserving and fully trend preserving as defined in Rohwer (2005). However, since L, (z) <x < U, (x) the two operators will
produce slightly biased results when used individually, namely, L,, smoothes the signal from above and U,, smoothes from
below. We thus use the two together as either L,,oU,, or U, oL,,. These compositions are also biased, but to a far lesser degree.
The Discrete Pulse Transform (DPT) of x, DPT(x) = (D1(z), Da(z), ..., Dy (x)), is obtained as the iterative application
of L,oU, or U,oL, forn = 1,2,..., N. The components D, are obtained as follows, Dy(z) = (I — Py)(x), Dy(z) =
(I-P,)oQn_1(x), n=2,..., N, where P,, = L,,0oU,, or P, = U,0L,, and Q,, = P,0...0P;,n € N. The DPT can be seen
as the recursive peeling off of pieces of information of width n - we first remove isolated information of width 1, then of width
2, and so on. For some n the remaining signal is considered sufficiently smoothed (denoised). This optimal n is determined by

N
tracking the total variation removed at each step. The total variation of a signal x is defined as, TV (z) = > |x; — z—1].
i=—N
Since our LULU operators are total variation preserving (T'V (z) = TV (Pz) + TV ((I — P)x) where P is either L, oU,
or U, 0L,), we can easily track how much variation remains in the smoothed signal, TV (Pz), and how much we remove
with each iteration or in total, TV ((I — P)x), since no variation is lost at any step. Once the optimal n is decided upon, say
Nopt, the immediate question to ask is how well has the signal been smoothed or equivalently, how well does that which we
have removed, (I — P,,,, )z, represents the noise present in the original signal z:? It turns out that the DPT is quite effective
in removing impulsive noise. One explanation for this is that linear smoothers aren’t well suited to removing noise which
arises from a long-tailed probability distribution, (Velleman, 1977), which is characteristic when there are outliers present,
nor noise which is signal dependent, (Conradie et al., 2005), whereas the LULU operators are nonlinear thereby avoiding
these complications. Here we investigate the ability of the DPT to remove imposed noise and uncover the underlying signal
effectively. More specifically, by imposing noise chosen from various distributions, see Table 1, we shall determine if the
removed noise (I — P, ,)x accurately represents the noise initially imposed.
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2. THE GENERALIZED LAMBDA DISTRIBUTION

In order to simulate noise with various distributional shape properties, we use a parameterization of the Generalized Lambda
Distribution (GLD) introduced by van Staden & Loots (2009) and defined through its quantile function (QF) by

e+ p(a-0)E) —s(=222Y) ifa£0
o { a+¢§(<1+6(>13p)—6h(1(15p>>)) ifA=0

where 0 < p < 1, «is a location parameter, § > 0 is a spread parameter and 0 < § < 1 and A are shape parameters. The
GLD can be characterized through its first four L-moments, that is, the L-location, L; , the L-scale, Lo and the L-skewness
and L-kurtosis ratios, 73 = L3/Ls and 74 = L4/Lo. As shown in Table 1 and Figure 1, we selected eight distributions from

the GLD with different distributional shapes by choosing appropriate values for 73 and 74 and calculating the corresponding
parameter values. All selected distributions were standardized and/or shifted so that L; = 0 and Ly = 1.

Distribution Shape L-moments: (L1, Ly, 73,74) | Parameters of the GLD: («, 3,9, \)
1. Symmetric, Uniform distribution’ (0,1,0,0) 0,6,0.5,1)

2. Symmetric, short-tailed (0,1,0, 15) 0,2.9989,0.5,0.3025)

3. Symmetric, Normal distribution’ 0,1,0, 20 tan' (v2) -9)

4. Symmetric, Logistic distribution (heavy-tailed)’

(
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! Distribution is special case of the GLD 2 Distribution approximated by the GLD

5. Symmetric, truncated distribution

6. Skewed, Rayleigh distribution?

7. Skewed, Gumbel distribution®

8. Skewed, Exponential distribution (J-shaped)’

0,42,0.5,5)

1.0173,2.6641, 0.7305,0.2071)

1.1157,2.1486, 0.7723, 0.0487)
2,2,1,0)

Table 1. Distributions Chosen to Simulate Noise
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Figure 1. Probability Density Functions of the Noise Distributions in Table 1

The fact that we simulate the noise from a family of distributions, the GLD, with a single functional form as defined through its
QF, is important for our investigation as it enables a strongly justified comparison amongst the noise types.
3. SIMULATION

The underlying true signal used was (s;)

(a cos(wi)+bsin(wi)) where the parameters a and b are chosen in order to obtain
a weak, medium and strong signal respectively with respect to the noise. The period was chosen as 100 throughout, and the

frequency w was then calculated through the formula 27/100. The length of the signal was taken to be 100, that is, 100 data
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points. For this study we thus for simplicity use the subscripts 1, 2, ..., 1000 instead of —/V, ..., N. The amplitude of such a
signal is v/a? 4 b?, (Foerster, 2002). This signal is periodic and thus has an obvious cyclical trend which enables easy detection
of the true signal.

Typically the signal-to-noise ratio (SNR), (Parrish et al., 2000), is used to measure the strength of a signal. The three signals
were chosen to have SNR 1, 5 and 9 respectively, which correspond to a weak, medium and strong signal according to the
Rose Criterion (Watanabe et al., 2002). As suggested by its name, the SNR is defined as the signal relative to the noise, (see
for instance Donoho & Johnstone (1994)). To calculate the SNR, it is common practice to use a measure of location for the
signal and a measure of spread for the noise. For example, the SNR can be calculated as the mean signal relative to the standard
deviation of the noise (Parrish et al., 2000), and is given by SNR = %. We used L, as measure of spread for the noise.
Recall that we set Lo = 1 for all eight GLDs used to simulate the noise. Since our signals are periodic with zero mean levels,
we decided to measure each signal by its amplitude. Hence we calculated the SNR with SNR = %. So, given
Ls; = 1 and SNR equal to 1, 5 and 9 respectively, it then follows that the signal parameters a and b are given by 0.5, 4.5 and 8.5,
and 0.866, 2.179 and 2.958, respectively, for the weak, medium and strong signals. These three signals are shown in Figure 2.

The DPT was then applied to (s] +nF),j = 1,2,3, k = 1,2, ...,8 where (s}) is the j'" underlying signal and (n}) is the
k" noise signal. In Figure 3, some of these contaminated signals are illustrated. The strength of the signals for the various
SNRs can be seen clearly. The DPT was applied in four different ways in order to fully investigate the noise removal and
any bias due to the ordering, namely for (1) L,,oU,0L, 10U, _10...0Li0Uy, (2) U,oL,oU, 10 L, j0..0Uj0Lq, (3)
U,oL,oL,_10U,_10...oUj0Lq,and (4) L,,oU,oU, _10L,,_10...0L;0oU;. We shall use the notation LULU, ULUL, LUUL
and ULLU for these. The last two options are called the alternating bias operators since they alternately swop between the two
basic choices L,, o U, and U,, o L,,. See Jankowitz (2007) for other possibilities of reducing the bias.

Figure 2. Original Signals with SNR 1 (weak), 5 (medium) and 9 (strong)

For the three signals we thus apply the DPT with respect to (1)-(4) for the 8 different noise types. The total variation
is tracked throughout the DPT and the cumulative noise removed for (a) n where half of the added total variation has been
removed, and for (b) ng where all the added total variation has been removed, is investigated. We investigate (a) as it is
understood that the most disruptive noise occurs in the first levels of the DPT, and (b) because this is where it is naturally
thought that the original signal should be uncovered. The respective true noise distribution for £ = 1,2, ..., 8 is fitted to these
noise samples using method of L-moment estimation, (van Staden & Loots, 2009), to investigate if the noise removed up to the
two respective points is distributed similarly to the original noise imposed.

Noise Type 1 2 3 4 5 6 7 8
SNR = 1 2050 | 2066 | 2072 | 2078 | 2075 | 2056 | 2056 | 2039
SNR=5 | 2055 | 2070 | 2077 | 2083 | 2082 | 2061 | 2062 | 2047
SNR=9 | 2070 | 2087 | 2094 | 2101 | 2101 | 2078 | 2079 | 2071

Table 2. Total Variation (rounded) of the 24 Contaminated Signals
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SNR =1, Noise = 2 SNR =5, Noise =3 SNR =9, Noise = 1

SNR = 1, Noise = 5 SNR =5, Noise =7 SNR =9, Noise = 8

Figure 3. A Sample of the 24 Different Contaminated Signals

SNR =1, Noise = 1 SNR =5, Noise = 1 SNR =9, Noise = 1

SNR =1, Noise = 8 SNR =5, Noise = 8 SNR =9, Noise = 8

Figure 4. Total Variation Removed at each Level of the DPT for Noise Type 1 (Noise Types 1-5 are similar) and 8 (Noise Types 6-8 are similar)

4. LULU SMOOTHING OF THE CONTAMINATED SIGNALS

Due to the total variation preservation of the DPT, total variation is a good measure to track the smoothing process over n, i.e.
from level to level of the DPT. When the total variation removed with each n stabilizes, i.e. doesn’t change significantly from
n to n + 1, the added noise has been removed effectively. From the results of the 24 different contaminated signals, the total
variation removed at each level remains similar whichever combination, LULU, ULUL, LUUL or ULLU, is used to obtain the
DPT, and for each of the three SNRs. A slight difference can only be seen in the three skewed noise types, namely types 6, 7
and 8. It can be seen in Figure 4 how the total variation progresses through the DPT levels. The differences seen between the
different SNRs are due to the fact that the weak, medium and strong original signals have a total variation of 40.491, 204.487
and 368.423 respectively, thus the smoothing (decrease in total variation) occurs sharply up until that point and then stabilizes.
The contaminated signals have total variation as indicated in Table 2. Comparing Table 2 with Figure 4 it can be seen a huge
proportion of the total variation is removed in the first level of the DPT as the remaining total variation drops to around 600 in
all cases. The stabilization of the total variation removal varies for the three SNRs investigated. For the weak signal (SNR = 1)
half the total variation is removed at around n = 3 and all the added total variation (i.e. at stabilization) is removed by around
n = 14 for LULU and ULLU and by around n = 19 for LUUL and ULUL.

For the medium signal (SNR = 5) half the total variation is removed at around n = 3 as well and all the added total variation
(i.e. at stabilization) is removed by around n = 6. For the strong signal (SNR = 9) half the total variation is removed at around
n = 2 and all the added total variation (i.e. at stabilization) is removed by around n = 5. It would thus seem that the stronger
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the signal (or the weaker the noise) the quicker and more effective the noise removal, and also that the bias between the four L,,
and U,, combinations decreases.

To investigate whether the smoothed signal obtained when the total variation stabilizes does in fact resemble the original
uncontaminated signal, the MSE measure was used to calculate the differences between the smoothed signal through the DPT
levels and the original signal. The MSE is calculated as

S (@ — 7)?
MSE(z) = &=
SE(x) 1000

For SNR = 1 the combination ULLU provides the lowest MSE from the beginning of the smoothing process. The combination
ULUL gives the highest MSE although the differences between the combinations are not drastic. For SNR = 5 and 9 the same
is seen. See Figure 5 for the MSE for noise type 1. The medium and strong signal give very interesting results for the MSE
measurements. It can be seen in Figure 5 that the MSE starts to increase from level 14 of the DPT onwards. This indicates that
from this point onwards the smoothing process begins to smooth out the uncovered original signal instead of the noise. As the
SNR increases the MSE in the beginning levels of the DPT is more similar for the four L,, and U,, combinations, see Figure 5.

In Figure 6, the smoothed signals can be visually analysed. The higher the SNR the more effective the noise removal, i.e.
the more the smoothed signal resembles the original signal.

SNR =1 SNR =5 SNR =9

Figure 5. MSE at each Level of the DPT for Noise Type 1 (other noise types are similar)

SNR =1 SNR =5 SNR =9

SNR =1 SNR =5 SNR =9

Figure 6. The Smoothed Signals for Noise Type 1 and using LULU (all noise types and L, U, combinations are visually similar): First row indicates the
smoothed signal when half the added TV has been removed, Second row indicates the smoothed signal when all the added TV has been removed

5. NOISE REMOVAL OF THE LULU SMOOTHERS

As discussed in Section 3, the cumulative noise removed when (a) half of the added total variation has been removed, and
(b) when all the added total variation has been removed, is investigated. The original noise distributions were fitted to this
cumulative removed noise. The L-moments and four parameters of the GLD were then compared to evaluate the fit of the
removed noise. The results for the L-location, L1, and the L-skewness ratio, 73, are given in Tables 3 and 4. The following
observations can be made:
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e From Table 3 we see that LULU and ULLU result in a negative shift in location for each SNR, although the shift seems
to reduce from noise type 1 through to 8. The shift in location is of course due to the biasedness of the various smoothers,
already discussed in Section 1. For ULUL and LUUL the shift in location is seen to be positive for each SNR, but again
generally increases from noise type 1 through to 8. An interesting phenomenon can be seen for noise types 6 and 7 for
ULLU. For noise type 7 we see a shift of O for SNR = 1 and 5, but a negative shift for SNR = 9. Noise distributions 6 and
7 are very similar and thus behave similarly. It is thus evident that the smaller SNRs result in poorer removal of noise
type 7, i.e. do not as effectively remove the same noise that was imposed.

Noise Type
SNR =1 LULU

LUUL

ULLU

ULUL

SNR =5 LULU

LUUL | 044 | 040 038 | 036 | 036 | 0.60 | 068 |

ULLU

ULUL

SNR =9 LULU

LUUL

ULLU
ULUL

Table 3. L-Location Moments of the Fully Removed Noise (Grey: Negative Change, White: Positive Change, In Bold: interesting case)

e The shift in L-location must be considered simultaneously with the change in the L-skewness ratio, as seen in Table 4,
since a change in the level of skewness of a distribution will result in a shift in the location of that distribution. There we
see a decrease in the L-skewness ratio for LULU and ULLU. This decrease becomes less prominent as SNR increases
however. See Figure 7 for the fitted and original distributions for noise types 3 and 7. The shift in location and change
in skewness can be seen. The changes are due to the fact that U,, is applied first in LULU and ULLU. The operator U,
removes negative pulses and thus the removed noise favours slightly the negative direction. For ULUL and LUUL there
is a general increase in the L-skewness ratio for noise types 1 to 5, and the trend becomes stronger as SNR increases. The
changes are due to the fact that L,, is applied first in ULUL and LUUL. The operator L,, removes positive pulses and
thus the removed noise favours slightly the positive direction. For noise types 6 to 8, a decrease in the L-skewness ratio
is still observed. This is due to the fact that these noise distributions are already positively skewed and thus contain more
negative pulses from the start. Although the above discussed change in the L-skewness ratio is clear, the change is very
slight, as can be seen by the values in Table 4.

e The fitted distributions fit the original distribution very well when half the added total variation has been removed.
Furthermore, in general the fit improves towards the full removal of the added total variation.

e The L-scale does not vary significantly at all for any of the fits and for each SNR investigated. This is an important result
as it indicates that the removed noise has very similar spread to the noise which was initially imposed on the signals and
almost none of its variation has been left in the smoothed signal.

e The L-kurtosis ratio also does not vary significantly at all for any of the fits and for each SNR investigated, indicating the
mass in the tails and centre for each distribution of the imposed noise has been removed intact.
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Table 4. L-Skewness of the Fully Removed Noise (Grey: decrease in skewness, White: increase in skewness)

SNR =1, Noise =3

6. CONCLUSION

The ability of the LULU smoothers to remove the different noise types is very effective and from the results we see that the noise
removed is distributed similarly to the noise originally imposed. The underlying smoothed signal is also effectively uncovered
when the total variation removed at each step begins to stabilize. The effect of the different combinations of L,, and U,, produce
interesting results as indicated in Section 5. Future work will look at implementing more effective combinations of L,, and U,
to reduce the bias, such as those in Jankowitz (2007). As expected the fit of the noise removed improves as n increases towards
the optimum 7.

A further possibility for this study is to investigate using as a measure of smoothing the number of pulses removed at each

Figure 7. Theoretical and Fitted Noise Distributions

SNR =1, Noise =7

level of the DPT, i.e. at each n, and to compare this with using the total variation as a measure for this purpose.
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