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Abstract: In this paper D-optimal population designs for the simple linear random coefficients regression model with values
of the explanatory variable taken from a set of equally spaced, non-repeated time points are considered. The D-optimal designs
depend on the values of the variance components and locally optimal designs are therefore considered. It is shown that, if
the time points are linearly transformed, then the D-optimal population designs for both the fixed effects and the variance
components do not necessarily map onto one another. This result is illustrated numerically by means of a simple example.
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1. PROBLEM

The present paper is broadly concerned with optimal experimental design for linear mixed models fitted to longitudinal data
when the fixed effects and variance component parameters are of particular interest. The essential problem is that of choosing
the numbers of individuals to be allocated to various groups or cohorts and of choosing the times for taking measurements on
the individuals within each group.

The construction of optimal population designs for longitudinal models has been extensively studied in the design literature
in various contexts. However, there are relatively few results on design spaces comprising a finite number of time points. Thus
Abt, Gaffke, Liski and Sinha (1998) investigated optimal designs for the precise estimation of the linear and quadratic regression
coefficients and for growth prediction in the quadratic regression model with a random intercept numerically. However, they
only considered a limited number of individual designs on which to base the population designs. Further studies, which are also
of a highly computational nature, are presented in the papers by Ouwens, Tan and Berger (2002) and Berger and Tan (2004) on
maximin and robust designs for linear mixed models. Nie (2007) provided optimal designs for estimation of both fixed effects
and variance components for linear mixed models but his results apply only for designs with an even number of time points per
individual over the design space [-1, 1]. Most recently Tekle, Tan and Berger (2008) considered constructing D-optimal cohort
designs for linear mixed models numerically using a finite number of time points, while Debusho and Haines (2008) constructed
optimal designs for the simple linear regression model with a random intercept term and with values of the explanatory variable
taken from a set of equally spaced time points.

The aim of this paper is to compute optimal designs for the simple linear random coefficients regression model with values
of the explanatory variable taken from a set of equally spaced time points. The model, some basic ideas and notation, an
appropriate equivalence theorem and the dependence of the designs on a linear transformation of time points are introduced
in Section 2. The nature and the numerical construction of D-optimal population designs for the model of interest, based on
individual designs for which the time points are not repeated, is discussed in Section 3 and some concluding remarks are given
in Section 4.
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2. PRELIMINARIES

2.1. Model and information matrices

Consider a longitudinal experiment with K individuals such that each of these individuals provides measurements at di

time points tij taken from the set {0, . . . , k} where k is an integer with k ≥ 1, j = 1, 2, . . . , di and i = 1, 2, . . . , K. Suppose
that a simple linear random coefficient regression model provides an appropriate fit to the data. Then the model for the jth
observation on the ith individual, yij , at the time point tij is given by

yij = β0 + b0i + β1 tij + b1i tij + eij , j = 1, 2, . . . , di and i = 1, 2, . . . , K. (1)

where the intercept β0 and the slope β1 are fixed effects, b0i and b1i are random effects particular to the ith individual and eij

is an error term associated with the ijth observation. Furthermore it is assumed that b0i ∼ N (0, σ2
b0

), that b1i ∼ N (0, σ2
b1

),
that eij ∼ N (0, σ2

e), that Cov(eij , b0i) = Cov(eij , b1i) = Cov(eij , eij′) = 0 and that Cov(b0i, b1i) = σb0b1 where i, j, j′ =
1, . . . , K with j �= j′.

The linear mixed model (1) can be expressed succinctly in matrix form as

yi = Xi β + Zi bi + ei, i = 1, . . . , K

where yi = (yi1, yi2, . . . , yidi
), Xi = (1di

ti) is the design matrix with 1di
the di × 1 vector of 1’s and ti the vector of time

points (ti1, ti2, . . . , tidi), β = (β0, β1), Zi = Xi, bi = (b0i, b1i) and ei = (ei1, ei2, . . . , eidi). It now follows immediately
from the assumptions introduced earlier that the mean and the variance matrix of the observed vector yi are given by

E(yi) = Xi β and V ar(yi) = Vi = Xi GXT
i + σ2

e Idi

respectively, where

G =
(

σ2
b0

σb0b1

σb0b1 σ2
b1

)
is the variance matrix of the random effects b0i and b1i and i = 1, . . . , K. It is in fact convenient to regard σ2

e as a nuisance
parameter and to express Vi as

Vi = σ2
e

(
Xi Gγ XT

i + Idi

)
with Gγ =

1
σ2

e

G =
(

γb0 γb0b1

γb0b1 γb1

)
,

thus introducing γb0 =
σ2

b0

σ2
e

, γb1 =
σ2

b1

σ2
e

and γb0b1 =
σb0b1

σ2
e

as ratios of variance components.

Following Debusho (2004), the information matrix for the fixed effects β at the vector of time points ti can immediately be
derived as

Iβ(ti) = XT
i V−1

i Xi =
(

1T
di

V−1
i 1di

1T
di

V−1
i ti

tT
i V−1

i 1di
tT
i V−1

i ti

)
and furthermore the information matrix for the ratios of variance components, written θ = (γb0 , γb1 , γb0b1), can be expressed
as

Iθ(ti) =

⎛⎝ h(γb0 ,γb0 ) h(γb0 ,γb1 ) h(γb0 ,γb0b1 )

h(γb0 ,γb1 ) h(γb1 ,γb1 ) h(γb1 ,γb0b1 )

h(γb0 ,γb0b1 ) h(γb1 ,γb0b1 ) h(γb0b1 ,γb0b1 )

⎞⎠
where the elements of this matrix are functions of the elements of Iβ(ti). Specifically

h(γb0 ,γb0 ) = 1
2 [Iβ(ti)]

2
11 , h(γb0 ,γb1 ) = 1

2 [Iβ(ti)]
2
12 , h(γb0 ,γb0b1 ) = [Iβ(ti)]11 [Iβ(ti)]12 ,

h(γb1 ,γb1 ) = 1
2 [Iβ(ti)]

2
22 , h(γb1 ,γb0b1 ) = [Iβ(ti)]22 [Iβ(ti)]12 , and

h(γb0b1 ,γb0b1 ) = [Iβ(ti)]
2
12 + [Iβ(ti)]11 [Iβ(ti)]22 for i = 1, . . . , K.
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The information matrices for β and θ over all K individuals with associated sets of time points ti, i = 1, . . . , K, are thus given

by
K∑

i=1

Iβ(ti) and
K∑

i=1

Iθ(ti) respectively and correspond, at least approximately, to the inverses of the variance matrices of the

maximum likelihood (ML) and the restricted maximum likelihood (REML) estimates of β and θ (Verbeke and Molenberghs,
2000, p. 64).

2.2. Population designs and the D-optimality criterion

Consider an individual design for model (1) which comprises non-repeated time points. Then the d-point design t =
(t1, . . . , td), with tj ∈ {0, 1, . . . , k} and 0 ≤ t1 < t2 < . . . < td ≤ k, which puts equal weight on each point is termed a
d-point individual design. The space of all such designs can thus be defined as the set

Sd,k = {t : t = (t1, t2, . . . , td), tj ∈ {0, 1, . . . , k}, j = 1, . . . , d, 0 ≤ t1 < t2 < . . . < td ≤ k}

and comprises Nd =
(
k+1

d

)
designs.

Consider now a population design comprising r distinct individual designs with ni individuals allocated to the design with
di time points ti = (ti1, . . . , tidi

) for i = 1, . . . , r. Suppose further that the cost incurred in taking a single observation is
constant and that no extra costs are incurred on recruiting the

∑r
i=1 ni individuals to the study. Then the information matrix

for the parameter α at this population design on a per observation basis, where α denotes either β or θ, is given by

1
N

r∑
i=1

niIα(ti) =
r∑

i=1

nidi

N
Mα(ti)

where N =
∑r

i=1 nidi is the total number of observations taken and Mα(ti) =
1
di

Iα(ti) is the standardized information

matrix at the individual design ti, i = 1, . . . , r. Now consider relaxing the condition that ni be an integer and introducing the
approximate population design

ξ =
{

t1, . . . , tr
w1, . . . , wr

with wi replacing
nidi

N
and thus with 0 < wi < 1 and

∑r
i=1 wi = 1. Then the weight wi represents the proportion of the

total number of observations taken at the individual design ti and the information matrix for the parameter α at the population
design ξ is given by Mα(ξ) =

∑r
i=1 wiMα(ti). Note that if the individual designs within the population design comprise the

same number of time points, that is di = d, then the proportion of individuals allocated to the design ti is equal to the weight

wi and that otherwise this proportion can immediately be recovered as vi =
wi/di∑r
i=1 wi/di

for i = 1, . . . , r.

Interest in the present paper centres in particular on the construction of D-optimal population designs for the fixed effects
β and the variance components θ in model (1). Specifically the D-optimal criterion is defined in the usual way as

ΨD(ξ) = − ln |Mα(ξ)| = − ln

∣∣∣∣∣
r∑

i=1

wiMα(ti)

∣∣∣∣∣
and clearly depends on the variance components σ2

b0
, σ2

b1
and σ2

e through their ratios γb0 =
σ2

b0

σ2
e

, γb1 =
σ2

b1

σ2
e

and γb0b1 =
σb0b1

σ2
e

.

In order to accommodate this dependence, designs which are locally optimal in the sense of Chernoff (1953) are considered, with
a best guess for the unknown variance components being adopted. The General Equivalence Theorem relating to approximate
D-optimal population designs follows from the results presented in Debusho and Haines (2008) and, more fundamentally, is a
special case of the Equivalence Theorem for multivariate design settings given in Fedorov (1972, p.212). The theorem is based
on the fact that the directional derivative of ΨD(ξ) = − ln |Mα(ξ)| at ξ in the direction of an individual design t is given by

φ(t, ξ) = p − tr{Mα(ξ)−1 Mα(t)}
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where p is the number of parameters in α and is stated without proof as follows:

Theorem 2.1: For the random intercept model (1) and individual designs t taken from a space of designs T , the following three
conditions on the D-optimal population design ξ∗ are equivalent:

1. The design ξ∗ minimizes − ln |Mα(ξ)|.

2. The design ξ∗ minimizes maxt∈T tr{M−1
α (ξ)Mα(t)}.

3. The directional derivative φ(t, ξ∗) attains its minimum at the support designs of ξ∗ and maxt∈T tr{M−1
α (ξ∗)Mβ(t)} =

p.

The theorem is important in that it can be invoked to confirm the global optimality or otherwise of candidate D-optimal
population designs and also in that it forms the basis for algorithmic design construction. Finally note that the D-efficiency of a

design ξ1 relative to a design ξ2 is given by
{ |Mα(ξ1)|
|Mα(ξ2)|

} 1
p

(Atkinson, Donev and Tobias, 2007, p. 151). The ratio is raised to

the power 1
p so that the D-efficiency can be interpreted in terms of the sample size. For example, if the D-efficiency of a design

ξ1 relative to a design ξ2 is 3, then 3 times the number of observations in design ξ2 are needed for ξ2 to be as efficient as design
ξ1.

2.3. Linear transformation of the time points

Suppose that the time points comprising the generic vector t = (t1, . . . , td) are linearly transformed as

t∗j = u + v tj , j = 1, . . . , d

where u and v are constants. Then the design matrix for the transformed points is given by X∗ = XA where X = (1d t) and

A =
(

1 u
0 v

)
. The transformed model for the ith individual can therefore be written as

yi = X∗
i β∗ + Z∗

i b∗
i + ei,

where β∗ = A−1 β, Z∗
i = X∗

i and b∗
i = A−1 bi with b∗

i ∼ N (0,G∗) and G∗ = A−1 G (A−1)T . Thus a linear
transformation of the time points induces the transformation β∗ = A−1 β in the fixed effects and b∗

i = A−1 bi in the random
effects. More particularly the variance matrix of the random effects after transformation, namely G∗, depends on the matrix A
and the structure of the original variance matrix G, and hence of Gγ , may well not be preserved (Longford 1993, pp. 93-98).

Specifically, since A−1 =

⎛⎜⎜⎝
1 −u

v

0
1
v

⎞⎟⎟⎠ , it follows that the variance matrix for the random effects in the transformed model

corresponds to G∗ = σ2
e G∗

γ where

G∗
γ = A−1 Gγ (A−1)T =

⎛⎜⎜⎝ γb0 − 2
u

v
γb0b1 +

u2

v
γb1

γb0b1

v
− u

v2
γb1

γb0b1

v
− u

v2
γb1

γb1

v2

⎞⎟⎟⎠ . (2)

Note however that the variance matrix of yi does not change with a linear transformation of the time points, that is V∗
i =

X∗
i G∗ (X∗)T + σ2

e I = Vi, and thus that the associated information matrices are related in a straightforward manner as
Iβ∗(t∗i ) = AT Iβ(ti)A.
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3. RESULTS

3.1. Random intercept model

Consider the random intercept model, that is model (1) with the random effect b1i omitted and thus with θ = γb0 , Zi = 1d

and Gγ =
(

γb0 0
0 0 .

)
Then Vi = σ2

e(I + γb0J) where J is a di × di matrix of 1’s and does not depend on ti, i = 1, . . . , K.

It thus follows immediately that the D-optimal population designs for the fixed effects β and for the variance component γb0 in
this model setting are invariant to linear transformations of the time points, in accord with the detailed findings of Debusho and
Haines (2008).

3.2. Random slope model

Consider now the random slope model, that is model (1) with the random effect b0i omitted and thus with θ = γb1 , Zi = ti

and Vi = σ2
e(I + γb1titT

i ), i = 1, . . . , K. Then, for a linear transformation of the time points of the form t∗j = u + vtj , j =
1, . . . , d, it follows that

Gγ =
(

0 0
0 γb1

)
but G∗

γ =
γb1

v2

(
u2 −u
−u 1

)
and thus that the variance matrix for the random effects has a totally different structure unless u = 0. This means that if the
time points comprising a design which is optimal for a random slope model are linearly transformed, then the resultant design
is not necessarily optimal for the associated transformed random slope model.

3.3. Numerical example

Suppose that a longitudinal study is to be planned with model (1) fitted to the data and with the model parameters β and
θ estimated as precisely as possible. Suppose further that observations for the response variable can only be taken at the
time points 0, 1, 2, 3 and 4, i.e. k = 4, and that the best guess for the variance matrix of the random effects is given by

Gγ =
(

1 −0.05
−0.05 0.25

)
. with σ2

e known and equal to 1. The D-optimal population designs for this model setting based on

d-point individual designs were constructed numerically and are summarized, together with values of the optimality criterion,
in Table 1. It is interesting to note that not all of the D-optimal population designs for β are optimal for θ. Thus the D-optimal
population design for β based on single-point individual designs puts equal weight on the designs at the extreme time points
0 and 4, whereas the D-optimal population design for θ puts weights on the individual designs at 0 and at 4 and also at the
internal points 1 and 2.

Suppose now that the time points 0, 1, 2, 3 and 4 are linearly transformed according to the relation t∗j = tj − 2 to give new
time points −2,−1, 0, 1 and 2. The D-optimal population designs for model (1) based on these transformed time points were
computed, again numerically, and are presented, together with values of the optimality criterion, in Table 2. Observe that not
all of these new designs are linearly transformed versions of the designs in Table 1. Thus the D-optimal population design
with d = 3 for the precise estimation of θ is based on one individual design, namely (0, 1, 4), when taken from the time points
0, 1, 2, 3 and 4 but on two individual designs, namely (−2,−1, 2) and (−2, 1, 2), when taken from the time points −2,−1, 0, 1
and 2. In fact, in this particular case,

A =
(

1 −2
0 1

)
and G∗

γ = A−1 Gγ (A−1)T =
(

1.8 0.45
0.45 0.25

)
and thus the population designs of Table 2 are D-optimal for model (1) with time points −2,−1, 0, 1 and 2 and with the variance
matrix for the random effects given by G∗

γ and not by Gγ .

Finally it should be noted that D-optimal population designs for different best guesses of the variance matrix of the random
effects Gγ can clearly differ. For example, the D-optimal population design for the precise estimation of θ in model (1) with
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Table 1. D-optimal population designs for model (1) based on the time points {0, 1, 2, 3, 4} with B indicating the best design
over the set of all individual designs.
(a) D-optimal population designs for β

d Design, ξ∗d ΨD(ξ∗d)

1
(0) (4)
1
2

1
2

1.030

2 (0, 4)
1 0.971

3 (0,1,4)
1 1.591

4 (0,1,3,4)
1 2.109

5 (0,1,2,3,4)
1 2.521

B (0, 4)
1 0.971

(b) D-optimal population designs for θ

d Design, ξ∗d ΨD(ξ∗d)

1 (0) (1) (2) (4)
0.323 0.144 0.209 0.324 5.297

2 (0, 4)
1 2.219

3 (0,1,4)
1 2.864

4 (0,1,3,4)
1 3.554

5 (0,1,2,3,4)
1 4.120

B (0, 4)
1 2.219
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Table 2. D-optimal population designs for model (1) based on the linearly transformed time points {−2,−1, 0, 1, 2} with B
indicating the best design over the set of all individual designs and w a weight such that 0 < w < 1

2 .
(a) D-optimal population designs for β

d Design, ξ∗d ΨD(ξ∗d)

1 (−2) (2)
1
2

1
2

0.806

2 (−2, 2)
1 0.806

3 (−2, 1, 2)
1 1.591

4 (−2,−1, 1, 2)
1 1.940

5 (−2,−1, 0, 1, 2)
1 2.345

B (−2) (2) (−2, 2)
w w (1 − 2w) 0.806

(b) D-optimal population designs for θ

d Design, ξ∗d ΨD(ξ∗d)

1 (−2) (0) (2)
1
3

1
3

1
3

4.216

2 (−2, 2)
1 1.726

3 (−2,−1, 2) (−2, 1, 2)
0.013 0.987 2.505

4 (−2,−1, 1, 2)
1 3.048

5 (−2,−1, 0, 1, 2)
1 3.594

B (−2, 2)
1 1.726
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Gγ =
(

0.25 0.05
0.05 2.00

)
based on individual one-point designs taken from the set of time points {0, 1, 2, 3, 4} puts equal weight

on the designs at 0, at 1 and at 4 and is not the same as the corresponding population design for Gγ =
(

1 −0.05
−0.05 0.25

)
given in Table 1.

4. CONCLUSIONS

In this study locally D-optimal population designs for the simple linear random coefficients regression model with values of the
explanatory variable taken from a set of equally spaced, non-repeated time points are considered. A linear transformation of the
time points ti to the time points t∗i = u+vt∗i , i = 1, . . . , d, is introduced. It is then shown that the D-optimal population designs
for the random coefficients model with random effects variance matrix G and time points ti, i = 1, . . . , d, do not necessarily
coincide with optimal designs for the same model setting and the same variance matrix G but with the linearly transformed
time points t∗i , i = 1, . . . , d. Rather, these D-optimal population designs with variance matrix G and time points ti coincide

with the optimal designs for the random coefficients model with variance matrix G∗ = AGAT where A =
( 1 u

0 v

)
and

time points t∗i , i = 1, . . . , d. The results are illustrated algebraically by means of the random slope model and numerically by a
simple example.

The results of this paper are based on the assumption that the degree to which observations are correlated is the same for
every pair of observations within an individual. However it is common for observations measured on an individual at time
points close to each other are more highly correlated than observations measured at time points which are well separated.
This knowledge could well be used to develop optimal designs within a broader framework of linear mixed models than that
presented here. Furthermore the models used in the present study were restricted to one explanatory variable, namely time.
However linear mixed effects models can accommodate more variables. There is therefore scope for further research into the
construction of optimal designs in such cases.
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