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Abstract

Grinding mill circuits are hard to control due to poor plant models, large ex-

ternal disturbances, uncertainties from internal couplings, and process vari-

ables that are difficult to measure. This paper proposes a novel fractional

order disturbance observer (FO-DOB) for a run-of-mine (ROM) ore milling

circuit. A fractional order low pass filter (Q-filer) is used in the DOB to

offer an additional degree of freedom in tuning for set-point tracking perfor-

mance and disturbance rejection performance. Another disturbance observer

is introduced in which a Bode ideal cut-off (BICO) filter is used for the Q-

filter. A full non-linear plant model is used for evaluation of the performance

gained over the ubiquitous PI controller. The simulation results show that

the FO-DOB and BICO-DOB schemes are useful additional tools for ROM

ore milling circuit control implementations.
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1. Introduction

Milling ore down to a fine product is usually the first step in any metal-

lurgical extraction process [1]. The product of the milling circuit is passed

downstream to some separation process such as leaching or flotation. Opti-

mizing the milling circuit performance is therefore important as consistent

material should be passed to the downstream process.

ROM ore milling circuits are generally difficult to control due to the

presence of strong external disturbances, poor plant models, and process

variables that are difficult to measure [2]. Currently PID control is the most

common control technology used in milling circuits [3]. This is different in

general from the process industries where model predictive control (MPC)

is the most common [4]. This might be attributed to the fact that PID

control is much easier to understand and maintain than an advanced control

method such as MPC, even though the advantages of using MPC over PID in

grinding circuit control is well documented (see for instance [5]). MPC does

however struggle to produce good results in the presence of strong external

disturbances and severe model-plant mismatch [6].

Disturbance observer (DOB) based control helps to compensate for model-

plant mismatch and external disturbances, both of which are common in

ROM ore milling circuit control. A DOB has already been applied to a

grinding mill circuit [6] with good results. The main contribution of this
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article is the presentation of the application of a fractional order disturbance

observer (FO-DOB) to the ROM ore milling circuit, as well as the intro-

duction of a novel Bode ideal cut-off disturbance observer (BICO-DOB) and

the application thereof in the control of the milling circuit. These make use

of a fractional order Q-filter and a BICO Q-filter respectively. This offers

additional tuning freedom to optimize performance in the presence of strong

external disturbances and severe model-plant mismatch. These disturbance

observers are implemented in conjunction with a standard PI controller to

show how these schemes may improve controller performance.

2. Description of the ROM Ore Milling Circuit

A brief process description is provided here, similar to that given in [7].

Gold-bearing ore is fed to the milling circuit at about 100 t/h. The ore

is ground down to product with a particle size of 80% smaller than 75 µm

(P80 = 75µm). A hydrocyclone is used in closed circuit with the mill to

separate the product from the out-of-specification material. The gold is then

extracted through a leaching process downstream.

The feed to the mill (see Fig. 1) is constituted of the underflow of the

cyclone, feed ore, water and steel balls. Steel balls are usually added in

discrete quantities by the operator but in this study it will be treated as

a continuous variable. The mill discharges the ground slurry into a sump

through an end-discharge grate. The slurry is diluted with water in the

sump and pumped to the hydrocyclone for classification. The product of the

milling circuit is the overflow of the hydrocyclone.

The controlled variables in the milling circuit are the product particle
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Figure 1: ROM ore milling circuit

size (PSE), the fraction of the mill volume filled with material (LOAD), and

the volume of slurry in the sump (SLEV). The manipulated variables are

the feed-rate of solids into the mill (MFS), the feed-rate of water into the

mill (MIW), the feed-rate of steel balls into the mill (MFB), the flow-rate

of water into the sump (SFW), and the flow-rate of slurry into the cyclone

(CFF). The operating point of the milling circuit variables and constraints

on these variables are based on [8] and given in Table 1.

The milling circuit model consists of separate modules for the feeder,

mill, sump and hydrocyclone. The model uses five states, namely water,

rocks, solids, fines, and steel balls to describe the flow of material through

the milling circuit. All the equations that constitute the non-linear model are

based on these material classifications. A full description of these equations
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Table 1: Constraints and operating point

Variable Min Max OP Description

MIW 0 100 33.33 Flow-rate of

water to the

mill [m
3

h
]

MFS 0 200 100 Flow-rate of

solids to the

mill [ t
h
]

MFB 0 4 2 Flow-rate of

steel balls to

the mill [ t
h
]

CFF 400 500 442 Flow-rate of

slurry to the

cyclone [m
3

h
]

SFW 0 400 267 Flow-rate of

water to the

sump [m
3

h
]

PSE 60 90 80 Product

particle-size

[% < 75µm]

LOAD 30 50 45 Total charge of

the mill [%]

SLEV 2 37.5 30 Level of the

sump [m3]
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can be found in [8].

The main sources of non-linearity in the process are the breakage func-

tions that describe how material change state inside the mill. The amount

of fines produced in the mill is expressed as

FP ,
Pmill

Dsφf

[
1 + αφf

(
LOAD
vmill

− vPmax
)] , (1)

where Pmill is the mill power, Ds is the density of feed ore, φf is the energy

needed to produce a ton of fine ore, αφf is the fractional change in φf per

change in fractional filling of the mill, vmill is the mill volume and vPmax is

the fraction of mill volume to be filled for maximum power usage. LOAD is

the total charge of the mill given by LOAD = Xw + Xs + Xr + Xb where

Xw, Xs, Xr and Xb are respectively the hold-ups in the mill of water, solids,

rocks and balls. The amount of rocks consumed in the mill is given by

RC ,
1

Dsφr
· Pmill · ϕ ·

(
Xr

Xr +Xs

)
, (2)

where φr is the rock abrasion factor and ϕ is the rheology factor, that relates

to the fluidity of slurry inside the mill, given by

ϕ ,

√√√√max
[
0,
(
Xw −

(
1
εws
− 1
)
Xs

)]
Xw

, (3)

with εws the maximum water-to-solids volumetric ratio at zero slurry flow.

A full description of the non-linear model is given in [8].

Two important parameters to note in the non-linear model is the fraction

of rocks in the feed ore (αr) that gives an indication of the composition of

the ore and the energy needed for a ton of fines produced (φf ) that gives an

indication of the hardness of the feed ore. A change in either of these two
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parameters may be considered as the introduction of an external disturbance

into the plant. This is because there is no control over the composition and

hardness of the feed ore entering the milling circuit. These parameters will

be varied in what follows to test the disturbance rejection capabilities of

different controllers.

Both of these parameters, αr and φf , mainly affect the grinding perfor-

mance of the mill. Because the solid ore itself also acts as grinding medium,

a change in αr implies a change in the composition of the grinding medium

and a change in φf implies a change in the hardness. Grinding harder ore

requires more energy and consequently a drop in throughput should the same

particle size be required.

2.1. Linearized milling circuit model

Model based milling circuit controllers, such as linear model predictive

control, and common PI(D) tuning rules require a linearized plant model.

Such a linear model of the plant is obtained through applying a standard

system identification (SID) procedure as described by [9], to the milling cir-

cuit model described by [8] around the operating point given in Table 1. The

final linearized model for control is given by:


∆PSE

∆LOAD

∆SLEV

 =


g11 g12 g13

g21 g22 g23

g31 g32 g33




∆CFF

∆MFS

∆SFW

 (4)

In (4), the transfer function elements are (with all time constants and

delays in hours):
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g11 = −3.63×10−4(−0.93s+1)
(0.81s+1)(0.02s+1)

exp(−0.011s),

g12 = −0.0048
1.02s+1

exp(−0.064s),

g13 = 7.52×10−4

0.60s+1
exp(−0.011s),

g21 = 0.0173(7.6276s+1)
(1.72s+1)(69.4s+1)

exp(−0.014s),

g22 = 0.00375
s

,

g23 = −0.0025
5.25s+1

exp(−0.014s),

g31 = −0.5651
s

exp(−0.014s),

g32 = 0.3611
s
,

g33 = 0.6119
s
.

(5)

The model does not contain reference to the manipulated variables MIW

and MFB. In this study the value of MFB is kept constant at its nominal

value of 2 [t/h]. The value of MIW is derived from the value of MFS through

a constant water to solids ratio into the mill as discussed in [10].

The linearized plant model (5) is only used for controller design. The

simulations that follow are all based on the full non-linear model of the

ROM ore milling circuit, unlike [11].

3. PI control

Decentralized PI control is implemented on the ROM ore milling circuit of

[8] as the baseline against which all the disturbance observed based schemes

will be compared. Because of the popularity of decentralized PI control

for milling circuits ([3]), this study investigates how the performance of the

widely applied decentralized controller may be improved simply through the

addition of various disturbance observers The disturbance observer will then

handle the loop interactions unaccounted for by the decentralized controller.
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3.1. PI controller design

Decentralized PID control is the most common approach to feedback con-

trol in multi-variable mineral processing plants [3]. Variables are usually cou-

pled in single-input-single-output (SISO) loops [2]. Traditionally the input-

output pairings on milling circuits are SFW → PSE, MFS → LOAD, and

CFF → SLEV ([10]). It was however found by [10] that these pairings give

rise to significant couplings that cause the sump to either overflow or run

dry as soon as significant ore hardness and composition disturbances were

introduced.

In this study the manipulated variables are paired with the controlled

variables as CFF → PSE, MFS → LOAD, and SFW → SLEV for which

[10] found much better robustness to feed disturbances that result in actua-

tors saturating. The internal model control (IMC) tuning rules as presented

in [12, p.308] are then applied to obtain three PI controllers. Pairing vari-

ables in SISO loops and independently designing a PI controller for each is

not generally the best method for decentralized controller design. Despite

the drawbacks of this method, it does usually satisfy metallurgical needs if

the variable pairings are well chosen ([2]) and coupled with its simplicity

makes it a common choice ([3]).

The IMC-based controller settings, as used here, explicitly specifies a

PI(D) controller through analytic tuning relations such that the closed-loop

response takes the form of a low-pass filter

Gcl,d =
1

(τcs+ 1)r
. (6)

Gcl,d is the desired closed-loop response, τc is the desired time constant for

the response, which is specified to be 0.01 according to [10], and r is the
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Table 2: Tuning parameters for PI controllers

Control loop Kc τI

CFF → PSE 2.229× 103 0.84

MFS → LOAD 5.327× 104 0.02

SFW → SLEV 3.269× 102 0.02

order of the response which is usually chosen to be 1 [12], as was also done

here. The tuning parameters for the controllers are given in Table 2.

These parameters are applicable to the parallel form of representing a PI

controller.

4. Disturbance observer based control

Disturbance observers have several attractive features. In the absence

of large modelling errors, DOBs allow independent tuning of disturbance

rejection and command following characteristics. Furthermore, compared to

integral action, disturbances observers are more flexible as they allow for the

selection of the order, relative degree, and the bandwidth of the low-pass

filter known as the disturbance observer filter or the Q-filter (see Fig. 2).

Although it is known that by appending disturbance states to a traditional

state estimator [13] the disturbance compensation can be easily handled, a

DOB is in fact more welcomed by control practitioners because the DOB

structure allows simple and intuitive tuning of the disturbance observer loop

gains independent of the state feedback gains.

As pointed out in [14] and [15] there is a trade-off between the phase

margin loss and the strength of low frequency attenuation when applying a
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Figure 2: Block diagram of a conventional disturbance observer

DOB. Given the required cutoff frequency of the Q-filter, it turns out that

the relative degree of the Q-filter is the major tuning knob for this trade-

off. As a motivation for the fractional order Q-filter, a solution based on an

integer order Q-filter with variable relative degrees is introduced which is the

key contribution of [16]. A fractional order disturbance observer based on

the fractional order Q-filter is presented, similar to the filter used in [14].

A DOB in a process control context can be found in [17] for generic

processes. However, for milling grinding processes, the application of a DOB

presented in [6] is more recent.

4.1. Integer order disturbance observer

The layout of a conventional disturbance observer in a control loop is

presented Fig. 2. Signals C(s), U(s), Dex(s), Y (s), Ysp(s), and N(s) are the

control signal, manipulated variable, external disturbance, controlled vari-

able, set-point, and noise signal values respectively. The signals D̂(s) and

D̂f (s) are the estimates of the lumped disturbances before and after being

filtered by the Q-filter. Gc(s) is the controller, P (s) is the actual plant, G(s)

is the nominal plant model (as shown in (5)) and Q(s) is the Q-filter.

The Q-filter is designed to be in the form of a low-pass filter such that the
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estimate of the lumped disturbance approximately equals the actual lumped

disturbance in the low-frequency range, and that noise be filtered out in the

high frequency range [6].

The inverse of the nominal plant model (G−1) is usually not realizable

[18]. This is due to the inverse of the nominal model usually having more

zeros than poles, and the predictor element resulting from taking the inverse

of a time delay that is usually present in the original model. In order to make

the disturbance observer realizable, two techniques are employed. Firstly the

model elements to be inverted are factored as

Gii = G+G−. (7)

Gii contains only the diagonal elements of G, and only these elements need

to be inverted such that the lumped disturbance estimate will contain the

uncompensated coupling effects as shown in [6]. G+ contains any time delays

and right-half plane zeros and is required to have a steady-state gain equal

to 1 to ensure that the two factors in (7) are unique. This is similar to what

is done when designing an IMC controller [12]. Only the minimum phase

component of the model (G−) is then inverted.

Secondly the layout of the DOB is modified such that the inverse of the

minimum-phase component of the plant is cascaded with the Q-filter. The

Q-filter is then specified with a minimum order based on the relative order

of the plant model. The modified disturbance observer is shown in Fig. 3.

These modifications do imply that only G− is now used as the effective

plant model as opposed to G. G− therefore becomes the model that the

disturbance observer wants to maintain and any difference between G− and
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Figure 3: Block diagram of the modified disturbance observer

the actual plant P , as will inherently be present, will be lumped together

with the estimate of the external disturbances. This is derived in [6] and

shown later in this section. It does mean that the disturbance estimate is

not only of the external disturbances, as shown in (9), but is advantageous

for controller performance.

The design of the DOB is independent of the design of the controller and

thus the same PI controller as discussed in section 3.1 can be used as the

feedback controller for the disturbance observer based control. Because this

plant is presented by a 3-input, 3-output model the Q-filter is specified as a

3× 3 matrix with diagonal elements of the form

Qii =

(
1

λiis+ 1

)n
(8)

where λii determines the filter bandwidth and n is the filter order (n ∈ N).

Based on the model presented in Sec. 2.1 the order of the Q-filter should be

at least 2 such that the cascaded transfer function Q(s)G−1
− (s) is realizable.

It is shown in [6] that the lumped disturbance estimate (D̂(s)) given by

the disturbance observer is
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D̂(s) = D̂ex(s) + D̂m(s) + D̂c(s) (9)

where Dex(s) is the external disturbance, Dm(s) is the internal disturbance

caused by model-plant mismatches and Dc(s) is the internal disturbance

caused by unconsidered coupling effects. This is an interesting result because

it shows that the disturbance observer will also help counter the effects of

model-plant mismatch and unconsidered coupling effects. It therefore implies

that even without any external disturbances or model-plant mismatch, the

DOB will improve the set-point tracking performance of a diagonal PI(D)

controller when applied to a inherently multivariable plant.

4.2. Fractional order disturbance observer

The concept of a FO-DOB was first proposed in [14] in a motion control

context and experimentally validated in [19].

The two tuning parameters in the DOB Q-filter is the filter bandwidth

and the filter order. Not limiting the filter order to the set of integers would

therefore be a valuable aid in tuning such that the optimal filter order may

be implemented. The concept of the fractional order disturbance observer is

to represent the diagonal elements of the filter transfer function as

Qii =

(
1

λiis+ 1

)α
(10)

where α ∈ R. Details of how the fractional order low-pass filter is realized is

given in Appendix A. Because the filter order is now not restricted to be an

integer, an optimal value for the filter order may be specified based on the

desired performance.
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To determine the optimal filter order, disturbances were introduced into

the system and set-point changes were made in the presence of model-plant

mismatch. The simulation conditions are as described in Section 5. The

disturbances introduced here are changes in the fraction of rocks in the feed

ore (αr) and the amount of energy needed per ton of fines produced (φf ).

The former is an indication of the composition of the feed ore while the latter

is an indication of the hardness of the ore. The ISE (integral squared error)

values (normalized to be between 0 and 1) are shown in Fig. 4. The ISE

will depend on the type of perturbation used e.g. a step or a ramp. A step

perturbation in the parameter values could occur in practice when the ore

feed is switched to come from a different stockpile.

The feed variations in the run-of-mine ore can introduce other forms of

disturbances as well, such as those that arise from pile formation and reclaim-

ing procedures that result in material segregation. Such drifting disturbances

are however easier to deal with by the DOB than the step disturbances used

in this study.

From Fig. 4 it is clear that smaller filter order values give better dis-

turbance rejection performance. This is the same result that was found for

linear models in [11]. It is interesting to note that the normalized ISE values

for set-point tracking is not monotonic. For filter orders slightly larger than

2 a minimum is achieved before the ISE values increase to a maximum at

order equal to 2.5 before decreasing again as the filter order increases. This

behaviour is not the same as was found for linear models in [11]. The dif-

ference between the result obtained here and that obtained in [11] is that

the non-linear plant model is used here. This non-monotonicity is also only
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Figure 4: Normalized ISE values for different filter orders for αr disturbance (∗-markers),

φf disturbance (4-markers) and set-point change (©-markers).

seen for the set-point change where the plant changes operating point. This

seems to indicate that there is no general rule for predicting the ISE values

obtained from the non-linear simulation. When the filter order increases to

above 3 the normalized ISE values once again increase monotonically.

In order to determine the filter order that achieves the best combined

performance the objective function

J = γ
M∑
1

1

M
ISEsp,M + (1− γ)

N∑
1

1

N
ISEd,N (11)

should be minimized with respect to the disturbance observer filter order. In

(11), γ is a weight in (0,1) that determines whether the emphasis is on distur-

bance rejection or set-point tracking, ISEsp,M and ISEd,N are the normalized

ISE values for set-point tracking and disturbance rejection respectively, M

is the number of different set-point changes to consider and N is the num-
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ber of different disturbances under study. Practically the value of M should

indicate the number of all common set-point changes. This value may be

irrelevant if only disturbance rejection is of concern. N should indicate the

number of all common and foreseeable disturbances that significantly affect

the plant.

Setting γ = 0.5 (equal weight on set-point tracking and disturbance rejec-

tion) the objective function gives the optimal filter order to be 2.1. Placing

more importance on disturbance rejection than set-point tracking will reduce

the optimal filter order. Because the optimal filter order is already quite close

to that of the integer order DOB, γ = 0.5 is sufficient here for comparison

purposes. The FO-DOB is therefore implemented with a Q-filter of order

2.1. The controller used is again the same PI-controller discussed in Sec. 3.1.

Calculating J according to (11) with the values as shown in Fig. 4 gives

J = 0.0583 for the FO-DOB as opposed to J = 0.2575 for the integer order

DOB. This suggests that there would be an improvement in overall perfor-

mance with the FO-DOB implementation when considering set-point track-

ing and disturbance rejection.

4.3. Bode ideal cut-off disturbance observer

Bode introduced the ideal cut-off filter in [20] such that the filter would

produce an optimal trade-off between the desired phase margin and the most

rapid cut-off. The transfer function of the filter is given by

β(s) =
K(√

1 + s2

ω2
o

+ s
ωo

)2(1−η) (12)
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Figure 5: Bode plot of a BICO filter (solid line) and a regular first-order filter (dotted

line).

where ωo is the cut-off frequency and η is a parameter relating to the filter

order such that the roll-off at frequencies much larger than ωo be −40(1 −

η) dB/dec. The Bode plot of this transfer function (with ωo = 1 and η = 0.5)

is shown in Fig. 5. The response of a first-order filter as given by (8) is also

indicated in the figure.

It is notable from Fig. 5 that the BICO filter has a flat amplitude response

in the pass-band of the filter and then a rapid cut-off. The phase of the BICO

filter is approximately constant in the stop-band which means that the phase

margin would be relatively insensitive to uncertainties.

Details of how the BICO filter may be implemented are given in Appendix

B.

For the BICO filter the two tuning parameters are ωo and η. These

parameter values are also determined through simulating different combina-
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tions and calculating the parameter values that produce the optimal overall

performance. This procedure is similar to that discussed in Sec. 4.2 for the

FO-DOB. Fig. 6 shows the ISE values obtained for different filter order and

bandwidth values. The optimal value is achieved for ωo = 2.75 and n = 1.

The relative order n = 1 is equivalent to η = 0.5 in equation (12).

5. Simulation Results

The PI controller discussed in Sec. 3 as well as the three disturbance

observers (as discussed in Sec. 4) are implemented on the non-linear model of

the ROM ore milling circuit. The external disturbance rejection capabilities

of each as well as the set-point tracking capabilities are tested and the results

are presented here.
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5.1. External disturbance rejection

External disturbance rejection is very important in run-of-mine ore milling

as a consistent product should be passed to the downstream process while

parameters in the milling circuit change continuously. Firstly a change is

made in the fraction of rocks in the ore entering the mill (αr). This param-

eter changes frequently as the distribution of rocks on the stockpile rarely

remains constant. The value of αr is decreased by 20% at 1 hour and the

effect this has on the PSE is shown in Fig. 7. The deviations in the PSE val-

ues may seem insignificant on a real plant but here the disturbances are kept

relatively small such that the manipulated variables are not driven to their

limits. This gives a much clearer comparison of the actual functioning of the

controllers as opposed to comparing their constraint handling capabilities.

The ISE as well as the percentage deviation from the nominal value for
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Table 3: Result summary for disturbance rejection and set-point tracking

αr-dist. φf -dist. SP-track

PI ISE 6.314 10.864 22.439

%OS 0.181 0.341 0.0

DOB ISE 5.043 10.665 17.377

%OS 0.194 0.351 0.201

FO-DOB ISE 5.235 10.863 17.338

%OS 0.195 0.344 0.198

BICO-DOB ISE 6.271 11.773 17.059

%OS 0.194 0.336 0.177

all 4 control schemes are shown in Table 3.

Next a change is made in the amount of energy needed for a ton of fines

produced (φf ). This parameter also changes frequently as the hardness of

the ore entering the mill change. The value of φf is decreased by 15% at 1

hour and the effect this has on the PSE is shown in Fig. 8. The ISE as well

as the percentage deviation for all 4 control schemes are shown in Table 3.

It is clear from Table 3 that the disturbance observer based control

schemes fare the best at disturbance rejection.

5.2. Set-point tracking in the presence of mismatch

The set-point tracking capability of each controller in the presence of

model-plant mismatch is presented here. Model-plant mismatch is a com-

mon occurrence on a run-of-mine ore milling circuit [7] and hinders the per-

formance of most controllers [21].

Some of the uncertainties present in actual milling models have been
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Figure 8: PSE in the presence of a strong external disturbance (change in φf ) with PI

(dotted line), DOB (solid line), FO-DOB (dashed line) and BICO-DOB (dash-dot line).

quantified in [1] and are known to be severe. For linear models the intro-

duction of model-plant mismatch is as simple as changing the gain, time

constant or time delay of the linear model as discussed in [21]. For the non-

linear model however the introduction of model-plant mismatch can only be

introduced through changes in the model parameters. These parameter value

changes are made before the onset of the simulation.

The parameters whose values are changed are αf , which is the fraction

of fines in the feed ore, and αr, which is the fraction of rocks in feed the

ore. The value of αf is increased by 10% and the value of αr is increased by

10%. Note that αr was used as an external disturbance in Section 5.1 and

here it is used to introduce model-plant mismatch. By changing the nominal

parameter values before the onset of the simulation, a linearized plant model

different to the one used for controller design will result.
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Figure 9: PSE in the presence of MPM with PI (dotted line), DOB (solid line), FO-DOB

(dashed line) and BICO-DOB (dash-dot line).

A step change is then made in the set-point for the PSE from 80% to

79%. The results are shown in Fig. 9. The summary of the performance of

each controller is shown in Table 3.

It is clear from Table 3 that the addition of a disturbance observer to the

normal PI controller gives better results than the PI controller alone because

of the decrease in the ISE values. The rise times of the responses are also

much smaller with the disturbance observer present.

The addition of the integer order DOB results in a substantial decrease

in the ISE values shown in Table 3 as also reported by [6]. The order of the

FO-DOB is close to the order of the integer order DOB and consequently

the results are rather similar. The overall performance is however improved

through the smaller value reported for J in (11). The BICO-DOB has poorer

disturbance rejection performance than the other two DOB varieties. It does
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however give the best set-point tracking performance. The ease of implemen-

tation of a DOB and the substantial performance improvement it delivers

makes it an attractive addition to the control loop.

6. Conclusion

Using a disturbance observer, it is not only possible to attenuate the ex-

ternal disturbances in a grinding mill circuit, but also reduce the effect of

model-plant mismatch as well as uncertainties from internal couplings. This

paper contributes a novel fractional order disturbance observer (FO-DOB)

for run-of-mine (ROM) ore milling circuit where a fractional order low pass

filter (Q-filer) is used in the DOB to offer additional tuning freedom to ob-

tain optimal set-point tracking and disturbance rejection performance. The

proposed FO-DOB scheme has been tested on a 3×3 non-linear MIMO plant

model, for disturbances that are common and significant as well as under

model-plant mismatch which is also usually present, to evaluate the perfor-

mance gained over the commonly used PI controller and an integer order

DOB. The simulation results show that the FO-DOB is a useful additional

method to consider when faced with external disturbances, model-plant mis-

match and unaccounted coupling effects.

A novel disturbance observer implemented with a BICO low-pass filter

is also introduced. The simulation results show that the BICO-DOB gives

relatively good performance under the circumstances tested here. It gives the

best set-point tracking of all the implementations tested, as well as maintain-

ing good disturbance rejection capabilities.
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Appendix A. Fractional Order Filter Implementation

The implementation of a fractional order low-pass filter (FO-LPF) and

its use in control is presented in [22]. The FO-LPF is of the form

HFOLPF (s) =

(
1

λs+ 1

)α
(A.1)

where α is a real number and α ∈ (0, 1). Code available from MATLAB

Central 1 may be used to obtain an implementable finite dimensional transfer

function

HFOLPF (z−1) =
B(z−1)

A(z−1)
=

∑q
k=0 bkz

−k

1 +
∑p

k=1 akz
−k (A.2)

which is based on the so-called “Impulse response invariant discretization

(IRID).”

In order to be able to implement a fractional order filter for which the

order is larger than 1, the FO-LPF in the form of (A.1) may be cascaded

with an integer order filter of order n as

H(s) =

(
1

λFOs+ 1

)α(
1

λIOs+ 1

)n
=

(
1

λs+ 1

)(α+n)

(A.3)

1See http://www.mathworks.com/matlabcentral/ fileexchange/21365
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if λFO = λIO. The order of the overall filter is now α + n where α ∈ (0, 1)

and n ∈ N. When two filters are cascaded to acquire the correct filter order,

the bandwidth of the filter will invariably change. In order to acquire a filter

of bandwidth ωB with an order of α + n, the filter time constant should be

specified to be

λ =

√
2
1/(α+n) − 1

ωB
. (A.4)

Appendix B. BICO Filter Implementation

The relative degree of the IRID representation of the BICO filter is 0.

Due to this fact the BICO filter should be cascaded with an low-pass filter

of order 2 such that the transfer function Q(s)G−1
− (s) is realizable (based on

the discussion of Sec. 4.1). This is similar to the method used in Appendix

A but here the order of the BICO filter is not restricted to be in (0,1).

Code for an impulse response invariant discretization implementation for

the BICO filter (similar to that shown in (A.2)) can be found from MATLAB

Central 2.
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