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ABSTRACT

The South Africa National Road Agency Ltd has entered into a research and laboratory
testing agreement with the CSIR to support the revision of the South African Pavement
Design Method (SAPDM). The research includes characterising a bitumen-rubber semi-
open graded mix, known in South Africa as BRASO. The general concern was whether the
BRASO asphalt mix can be tested under the same test conditions as conventional asphalt
mixes using the recently developed test protocols for SAPDM. This paper presents the
analyses of laboratory testing data of a BRASO mix. The fundamental mechanical
properties, including dynamic modulus, permanent deformation and beam fatigue
characteristics of the BRASO, were determined in laboratory to enable future monitoring of
the field performance of BRASO. It is anticipated that the test results presented in this
paper will provide the required basis to develop reliable BRASO resilient response and
damage models for SAPDM.

1 INTRODUCTION

Bitumen rubber (BR) asphalt due to its proven flexibility is a unique paving material which
has the potential to improve performance of road and airfield pavement applications, in
areas where the expected cause of failures is associated with oxidative ageing and fatigue
cracking. Bitumen rubber asphalt has been used successfully in South African road
construction for over 30 years. However, traffic loading has significantly increased over
this period.

There is some (legitimate) concern that current test methods for BR asphalt in South Africa
do not cater for the additional demands imposed on this type of mix, particularly since
current methods do not sufficiently consider field performance based properties such as
fatigue and permanent deformation as well as the stiffness of the mix. There was also
some concern as to whether BR asphalt can be tested under certain laboratory conditions
designed for conventional mixes to assess their stiffness and deformation properties, and
whether BR asphalt can be properly characterised for inclusion into the new South African
pavement design method (SAPDM). These mixes include a bitumen-treated base (BTB)
mix with a 40/50 binder, a coarse continuously graded mix together with a medium
continuously graded mix with A-E2 binder and a medium continuously graded mix with a
60/70 penetration grade binder.
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This paper presents test results of a laboratory testing program conducted on bitumen-
rubber semi-open graded mix (BRASO) using a recently developed hot-mix asphalt test
protocols for South Africa. The test results were used to assess applicability of resilient
response models on the BRASO, and to develop a time-temperature related master curve
to predict dynamic modulus as well as determine permanent deformation and fatigue
characteristics of the mix. The aim is to increase the understanding of the mix, its
properties and its suitability for different applications on roads in South Africa.

2 MATERIALS AND SAMPLE PREPARATION

2.1 Raw materials source and preparation

Raw materials (aggregate and binder) were sampled at Much Asphalt’'s Eikenhof asphalt
plant in accordance with Technical Methods for Highways (TMH1) procedure (TMHS5,
1981). Both the aggregates and binder were sourced at the plant. In the laboratory, to
further ensure homogeneity of the materials sampled, bags of similar aggregate sizes
were mixed together by riffing and quartering. Aggregates were oven dried at
approximately 140°C, after which the materials were split by riffling to the approximate
guantities required for the various compactions. Dry sieve analyses were then be carried
out on randomly selected bags to ensure that the material has been adequately riffled
(three bags tested per aggregate size). The required grading (target grading) was made up
in triplicate and tested using wet sieve analysis for conformance with South African
specifications.

2.2 Mix preparation

In South Africa, hot-mix asphalt samples are produced in accordance with the methods in
TMH1. The bitumen-rubber semi-open graded mix (BRASO) used in this study was
designed by Much Asphalt. The mix design was reproduced and then tested in the CSIR
laboratory. The crumb rubber modified binder used in the mix was taken from the centre of
heated and stirred bitumen tanks at the asphalt plant.

The mixing temperature for the binder was determined using the method in TMH1 Method
C2 (TMHL1, 1986). The aggregates and binder were prepared in accordance with the
protocols in TMH1. After mixing, the loose material was conditioned using a method known
as “short term ageing”. The aim is to simulate the aging that takes place during the
production of the mix at the plant and transport to site. The procedures are described by
Von Quintus et al. (1991) and Bell et al. (1994). Short term aging conditioning is achieved
by aging the loose mix in an oven at compaction temperature for four hours before
compaction. The mix was manufactured at 170°C and compacted at temperature of about
145°C, after having been short-term aged for four hours in an oven set at the compaction
temperature.

Although both short-term and long-term aged samples were prepared for the study, the
intent of this paper is not to compare effect of ageing. However, only the short-term ageing
samples are discussed in this paper. Long-term ageing is achieved when compacted
specimens made from short term aged mix are put back into the oven and aged for five
days at a temperature of 85°C. The BRASO samples presented in this paper were
compacted to a design air voids content of 5.6% using a design binder content of 7.5%.
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The mix was used to produce compacted slab samples for beam fatigue and shear testing,
and gyratory compacted cylindrical samples for dynamic modulus testing. The slabs were
compacted using the Transport Research Laboratory (TRL) slab compactor in accordance
with the CSIR in-house test protocol. From the slabs, rectangular prismatic beams of
dimensions 400 x 60 x 50 mm were cut for the beam fatigue testing, and cores of size
150mm diameter x 50 mm high were cut for shear testing. An Industrial Process Controls
Ltd (IPC) servopac gyratory compactor was used to produce cylindrical samples of 150
mm diameter and 170 mm high in accordance with the American Association of State
Highway and Transportation Officials (AASHTO) test procedure AASHTO T312 (AASHTO,
2009). The compacted samples were trimmed and cored to produce 100 mm in diameter
by 150 mm high samples for dynamic modulus testing.

3 LABORATORY TESTING PROGRAM

3.1 Dynamic modulus testing

The current pavement design methods have adopted the dynamic (complex) modulus as
the most appropriate for determining hot-mix asphalt (HMA) stiffness for flexible pavement
design (SANRAL, 2007; NCHRP 1-37A, 2004). The dynamic modulus measured from
laboratory testing can be used for the resilient response characterisation of asphalt mixes.

Dynamic modulus testing was conducted on the BRASO mix using a recently developed
CSIR protocol for HMA mixes in South Africa (Anochie-Boateng et al., 2010). A
commercially available Universal Testing Machine (UTM-25) was used to conduct the
dynamic modulus tests on the BRASO mix. The test setup includes a temperature
environmental chamber, which is capable of controlling the test temperatures of the
specimen. A haversine compressive load pulse with no rest periods was applied by the
UTM-25 testing device on the gyratory compacted BRASO mix specimens of 100 mm in
diameter and 150 mm high at five test temperatures of (-5, 5, 20, 40, 55°C) and six loading
frequencies (25, 10, 5, 1, 0.5, 0.1Hz). The specimen’s vertical deformation was determined
by averaging the readings of three axial linear variable displacement transducers (LVDTS).
Axial stresses and the corresponding axial strains were recorded for the last five load
cycles for each test to compute the dynamic modulus of the samples tested. A total of 20
load cycles were applied on the specimens at each loading condition.

Five specimens were tested at each loading condition to conform to the CSIR dynamic
modulus test protocol (Anochie-Boateng et al., 2010). Strain controlled testing was
followed such that the measured strain was always maintained within the range of 75 to
125 microstrains. The applied stress was varied so that the magnitudes of the strains were
limited to approximately 100 microstrains in order to ensure linear behavior of the sample.

3.1.1 Dynamic modulus test results and analyses

Analysis of laboratory test data of asphalt mix stiffness for mechanistic-empirical pavement
design purpose often involves generation of master curves. Hot-mix asphalt master curves
are used to account for the effects of temperature and frequency (or loading rate) on
stiffness modulus, and are generated using the time-temperature superposition principle. It
allows for test data collected at different temperatures and frequencies to be shifted along
the frequency axis relative to a reference temperature to form single characteristic master
curve. Detailed step by step construction of master curves for South Africa asphalt mixes
is described in the CSIR test protocol (Anochie-Boateng et al., 2010). A master curve was
produced for the BRASO mix tested.

565



A non-linear least square regression technique was used to fit the data with a sigmoidal
function defined in Equation 1. Using the time-temperature superposition principle, the
dynamic modulus test data were then shifted horizontally relative to the temperature of
20°C (reference temperature).

The master curve relationship is presented as follows:

a
|Og ‘E *‘ = 6 + 1+ eB+V{IOg(f)+C\.10A+VTS|ogT 1AV TSlog(527.61) J} (1)
where
|E*] = dynamic modulus
1) = minimum value of |E*|

o+a = maximum value of |E*|
p, v = shape parameters of the model

The fitting parameters («,f,6,y, and c) were determined through numerical optimisation of
Equation 1 using the stiffness modulus values data of the BRASO mix obtained from
laboratory testing.

Recall that a short-term oven ageing for four hours at 145°C was used to prepare the
BRASO mix. In this condition, the viscosity as a function of temperature was expressed
using the American Society for Testing Materials (ASTM) viscosity-temperature
relationship (ASTM D2493, 1998) given in Equation 2.

loglogn =A +VTSlog T, 2)
where
n = viscosity (Pa.s)
Tr = temperature (K)
A = regression intercept

VTS =regression slope of viscosity temperature susceptibility

The temperature dependency of the dynamic modulus is incorporated in the reduced
frequency parameter, f, in Equations 3a and 3b. The reduced frequency is defined as the
actual loading frequency multiplied by the time-temperature shift factor, a(T).

f =a(T)xf (3a)
logf =logf +loga(T) (3b)
where

f = frequency, Hz

a (T) = shift factor as a function of temperature

T = temperature

Figure 1 represents the dynamic modulus master curves for five replicate BRASO
samples, and Figure 2 presents the detailed master curve at five temperatures produced
for the BRASO mix using the average dynamic modulus values of the 5 replicate samples
tested. It can be seen that the test data obtained at the low test temperatures (-5°C and
5°C) were shifted to the right whereas the high test temperatures (40°C and 55°C) data
were shifted to the left to meet the master curve.
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Figure 3 shows that the BRASO mix tested has lower stiffness than the four conventional
asphalt mixes tested for the SAPDM project. This trend is expected. The BR binder is less
viscous compared to the binders used in the conventional mixes. It appears that the
recoverability of deformation is far greater in BRASO when compared to the other mixes.
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Figure 1 Dynamic modulus master curve for 5 replicate BRASO samples
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Figure 2 Average dynamic modulus master curve for BRASO mix
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Figure 3 Comparison of dynamic modulus (stiffness) of BRASO with conventional
mixes

3.2 Permanent deformation testing

The repeated simple shear test at constant height (RSST-CH), also known as Superpave
shear test is used for determination of permanent shear strain and complex shear modulus
G* of asphalt samples. The test procedures are based on AASHTO standard test method
AASHTO 320-03 (AASHTO, 2007), with certain alterations and improvement to better suit
the requirements of the revision of the SAPDM project (Anochie Boateng et al, 2010). The
SST-CH specimen was glued to platens at the top and the bottom. A horizontal cyclic
shear load is introduced to the sample by moving the bottom platen using the shear
actuator of the shear tester. The response of the sample, in terms of shear displacement is
measured using the linear variable displacement transducer (LVDT) mounted horizontally.
The horizontal or shear LVDT measures the differential displacement between the top and
bottom platen. In the original test method the LVDTs were mounted to the asphalt material
itself, but this often led to LVDTs coming loose during the test. The current AASTHO
method allows both mounting to the specimen and mounting to the platens. During the test
the height of the sample is kept constant by the vertical actuator responding to movement
of an LVDT mounted vertically.

In the RSST-CH (performed to standard protocol) a horizontal shear force of 69 kPa was
applied to the cylindrical specimen. The load was applied for 0.1 second followed by a 0.6
second rest period. The horizontal deformation was measured over the height of the
specimen during the test. The rate at which permanent shear strain accumulates in the
material during the test has been used to predict deformation in the field. RSST-CH
permanent deformation tests were performed at three different temperatures and two
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densities. Tests run up to 30 000 repetitions or 5% permanent strain, which ever was
reached first.

The BRASO sample was tested at two densities, i.e. design density (DD) (5.6%) and field
density (FD) (close to 7%). This was done to characterise the permanent deformation of
material during the stable condition of its design life (design density) and during the phase
immediately after construction (field density).

3.2.1 Permanent deformation test results and analyses

The average shear deformation curves for the specimens compacted to design and field
densities are shown in Figure 4. The accumulation of permanent strain at field density is
faster than at design density due to the lower density of the former. The resistance against
permanent deformation of the BRASO was significantly lower than that for any of the other
mix type tested in the SAPDM project (see Figure 5). The results indicate that the mix type
may not be suitable for situations with slow moving heavy vehicles such as inclines and
intersections. This finding is in line with international guidelines on the use of BR mixes.
Under the SAPDM project, the data of the RSST-CH will be used for the development of
permanent deformation models for BRASO.
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3.3 Beam fatigue testing

Fatigue is a phenomenon in which a road pavement is subjected to repeated stress levels
until failure. Fatigue life obtained from the third-point loading fatigue test recommended by
(NCHRP 1-37A, 2004; SANRAL, 2007) is a key input parameter for flexible pavement
design to predict cracking in hot-mix asphalt. The fatigue testing was conducted using an
IPC standalone third-point loading bending beam device. The tests were performed
according to CSIR test protocol for determining beam fatigue characteristics of asphalt
mixes in South Africa (Anochie-Boateng et al., 2010).

The experimental testing program was designed to conduct the fatigue tests at four strain
amplitude levels of 200, 400, 600 and 800 microstrains, and at 3 test temperatures of 5, 10
and 20°C. However, tests were conducted at higher strain levels ranging from 400 to 1400
microstrain to reduce extremely long durations of testing on the BRASO samples. Tests
were conducted on the prepared prismatic beam specimens of 400 x 63 x 50 mm. A
continuous sinusoidal load was applied on the specimens at a frequency of 10 Hz.

The fatigue test was conducted under controlled-strain loading conditions. The loading
was extended to reach a final stiffness reduction of 70% of the initial stiffness to collect
additional data for analysis. Thus, fatigue life of the BRASO mix was defined as the
number of cycles corresponding to 70% reduction in the initial flexural stiffness. Initial
stiffness modulus is defined as the modulus measured at the 50th load cycle similar to the
standard AASHTO T 321 (AASHTO, 2009) test procedure for HMA samples.
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3.3.1 Beam fatigue test results and analyses

The beam fatigue on the BRASO mix was conducted at two levels of air void contents, i.e.
at design and field voids. As indicated earlier, the design voids for the mix was 5.6%, and
target field voids content was 7%. The results presented in this paper are for design air
voids.

Figure 6 represents applied strain versus fatigue life of the BRASO sample at the three
test temperatures. It can be seen that high fatigue life was obtained at low strain level and
high test temperature for the BRASO mix. On the other hand, low fatigue life was obtained
at high strain level and low test temperature. These trends follow the fatigue behaviour
obtained from conventional asphalt mixes (e.g., medium continuously graded mix with
60/70 penetration grade binder) tested under the SAPDM testing programme.

Figure 7 compares fatigue life of BRASO with the four conventional asphalt mixes tested
for the SAPDM project. The BRASO mix indicates longer fatigue life than the other mixes.
Thus, for new road pavement construction and overlaid pavement sections, longer fatigue
life predictions would be obtained for the BRASO mix than the conventional asphalt mixes.

Figure 8 shows the plot of fatigue life as a function of dissipated energy for the BRASO
sample using the combined test results at temperatures of 5, 10 and 20°C, and strain
levels between 400 to 1400 microstrains. The rate of change in dissipated energy appears
to be constant for the BRASO sample. Thus, a clear relationship exists between fatigue life
and dissipated energy. The regression analysis performed on the test data showed a
reasonable high R? — value (0.82), which indicates strong correlation between dissipated
energy and fatigue life.
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4 CONCLUSIONS
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This paper presented test results of a laboratory testing program conducted on bitumen
rubber semi-open graded asphalt (BRASO). Although limited tests have been conducted
thus far to provide a valid conclusion on the BRASO mix tested, the results presented from
the different test procedures provide fundamental material properties of the BRASO

sample tested.
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The data obtained from the test programme described in the paper are sufficient to
develop damage and resilient response models for the SAPDM. This process is currently
underway. Models to predict the moduli of BRASO at different temperatures and loading
speeds, permanent deformation, and fatigue will become available to industry in 2012.
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