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ABSTRACT 
 

Any measurement has an error associated with it. The parameter that quantifies the 
boundaries of the error of that measurement is known as the uncertainty of measurement. 
Without determining the uncertainty of measurement, any measurement lacks merit. 
 
An assessment of uncertainty of measurement is carried out for the standard test method 
for penetration of bituminous materials as prescribed by ASTM D5. The assessment of 
uncertainty of measurement is performed using the principles stated in the ISO Guide to 
the Expression of Uncertainty in Measurement (ISO GUM). 
 
A model was formulated for the purposes of determining the uncertainty of measurement, 
incorporating the equipment (based in the advanced testing laboratories at the CSIR), 
environment and test procedure. Sources of measurement variation were identified and 
isolated within the model. Furthermore, these sources were classified as either random or 
systematic, as well as whether they were subject to type A or type B analyses.  
 
Experimental processes quantified the various sources of uncertainty and an overall 
uncertainty of measurement was calculated for the test method. 
 
This paper illustrates how ISO GUM may be applied to determine the accuracy of the 
penetration test method. The results can be used to refine the penetration test procedure 
and tighten up on equipment specifications in order to reduce the level of test uncertainty. 
In addition, this paper may serve as an example of how to extend ISO GUM to other 
laboratory test methods. 
 
1 INTRODUCTION 
 
Any measurement has an error associated with it. The parameter that quantifies the 
boundaries of the error of that measurement is known as the uncertainty of measurement. 
Without determining the uncertainty of measurement, any measurement lacks worth. 
 
An assessment of uncertainty of measurement is carried out for the standard test method 
ASTM1 D5 (2006) “Test Method for Penetration of Bituminous Materials” as supplied by 
ASTM International and as amended by SANS2 307 (2005) 
 
The amendment according to SANS 307 (2005), Paragraph 6.2 requires that the 
penetration needle be pre-treated with oleic acid. This is in reference to ASTM D5 (1986), 
Note 4, where it is stated that international experience has shown that the use of 1% Oleic 
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acid in toluene improves the repeatability of results obtained on bitumen samples derived 
from some crude oils.  
 
The assessment of uncertainty is limited to the CSIR Built Environment pavement 
materials laboratory for intra-laboratory single-operator determinations. 
 
The assessment of uncertainty of measurement is performed using the principles stated in 
the ISO Guide to the Expression of Uncertainty in Measurement (ISO GUM). The steps 
can be summarized as follows (Drongo’s guide, 2006; Cook, 2002): 
 

• Develop a model of the measurement process, including all steps pertaining to 
sample procurement (sampling) and preparation (heating and agitation) 

• Determine all the uncertainty components based on the model  
• Calculate the sensitivity coefficients 
• Calculate the component uncertainties.  
• Calculate the associated degrees of freedom if required.  
• Convert all uncertainties into uncertainties of the same unit as the measurand.  
• Combine all the uncertainties. 

 
Sources of uncertainty can be classified as either random or systematic: 

• Random Errors (wikipedia, physics.umd.edu): Random errors are errors in 
measurement that lead to measurable values being inconsistent when 
repeated measures of a constant attribute or quantity are taken. Random 
error is always present in a measurement and is caused by unknown and 
unpredictable changes in the measuring instrument and/or in the 
environmental conditions (eg electronic noise, ambient temperature, etc). 
Random errors often have a Gaussian normal distribution promoting the use 
of statistical methods to analyze the data.  
 

• Systematic Errors (Wikipedia): Systematic errors are predictable, and 
typically constant or proportional to the true value. If the cause of the 
systematic error can be identified, then it can usually be eliminated or a 
correction factor can be applied. Systematic errors always affect the results 
of an experiment in a predictable direction. Examples include imperfect 
calibration of measurement instruments, imperfect methods of observation or 
interference of the environment with the measurement process. 

 
Another form of error affecting experimental results is known as blunders. Blunders cannot 
be easily quantified and are not addressed in this paper. Examples of blunders include: 

• Improper deviation from the standard test method 
• Incorrect sampling / sample preparation procedures 
• Computational errors 

 
2 THE MODEL 
 
The development of a model of the measuring process is a crucial first step in order to 
accurately identify all the sources of uncertainty. The accuracy of the combined uncertainty 
derived at the end of the process is dependent on the realism attained in the initial model. 
 
The penetration test, ASTM D5 (2006), is used to determine the consistency of bituminous 
(asphaltic) materials expressed as the distance in tenths of a millimetre (dmm) that a 
standard needle vertically penetrates a sample of the material under known conditions of 
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loading, time, and temperature. The most common conditions are 100 g penetrating for 
5 seconds at a temperature of 25°C. (Higher values of penetration indicate a softer 
consistency of the bituminous material.)  
 
The model is summarized in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
Figure 1: Model for the presentation of penetration of bituminous materials 
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 3 QUANTIFICATION OF UNCERTAINTY COMPONENTS 
 
The evaluation of uncertainty components can be classified as either Type A or Type B 
(Cook, 2002). Type A evaluation uses statistical calculations for the determination of 
uncertainties and is most often associated with random errors that can be presented by a 
normal or Gaussian distribution. Type B evaluation uses means other than standard 
statistical methods to determine an uncertainty component. Examples include using data 
provided in a calibration certificate or reference books or an estimate by an experienced 
expert in the field based on sound principles (stated in the evaluation). 
 
3.1 The uncertainty component due to sample preparation ( prepu ): Type A 

 
ASTM D5 (2006) states that sample preparation entails heating the sample until it 
becomes sufficiently fluid to pour. The temperature of the sample may not be raised to 
more than 90˚C above the expected softening point of the sample. The time required to 
fluidize a sample would be dependent on the sample size, the oven temperature and the 
binder stiffness. As a rule of thumb, the procedure followed for a 1l sample container at the 
CSIR is as follows (Protocol): 

• The container is placed in an oven maintained at a temperature of approximately 
160˚C and the sample is stirred periodically.  

• After one hour, when the sample is sufficiently fluid for thorough mixing, the 
sample container is removed from the oven and an appropriate volume of 
sample is taken for testing. 

• Upon being taken out of the oven, the approximate sample temperature is 
≤110ºC (maximum 60˚C above the expected softening point) 

 
ASTM D5 (2006) does not place a limit on the time for which the sample is heated or 
specify a maximum oven temperature. Due to possible ageing of the binder during this 
heating time, a variation in heating time may result in a variation of the penetration 
measured for the sample. In order to determine the effect of heating time, identical binder 
samples were tested; one after 45 minutes of heating and another after 90 minutes of 
heating. Results are presented Table 1.   
 
Table 1: Variation in Penetration Measurements with Preparation Time 
Heating 
Condition 

Reading 1 
(dmm) 

Reading 2 
(dmm) 

Reading 3 
(dmm) x  σ  

45 minutes 50 50 50 50 0 
90 minutes 50 50 50 50 0 
 
The results indicate that the variation arising from 45 minutes of additional heating is 
negligible under the standard method, ie  ( prepu ) = 0 
 
3.2 Standard uncertainty ( su ): Type A 
 
The standard uncertainty represents the inherent variability within the sample itself; and 
can be calculated from the Experimental Standard Deviation of the Mean (ESDM), where 

n
σ

=ESDM                      (1) 

σ  is standard deviation, and 
n  is number of readings 
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Using the results for the 3 hour conditioning time from Table 2, we have  

12
43.0ESDM =  

 
  Or su 12.0= dmm 

 
3.3 The uncertainty component due to sample conditioning ( conu ): Type A 
ASTM D5 (2006) requires sample conditioning at 25˚C prior to testing. The conditioning 
period is 1 to 1.5 hours in air and 1 to 1.5 hours in water, allowing for a full one hour’s 
difference between the minimum and maximum allowable times. Bituminous binder is 
known to re-align its molecular structure after cooling to room temperature, thereby 
influencing the consistency of the binder. This influence was investigated using the 
minimum and maximum allowable conditioning periods for identical samples of binder. 
 
Table 2: Variation in Penetration Measurements with Conditioning Time 

 

Reading 1 
(dmm) 

Reading 2 
(dmm) 

Reading 3 
(dmm) 

Average 
per 

specimen 

Sample 
Conditioning 

3 hrs 

68 67 68 68 
68 68 68 68 
68 68 68 68 
69 68 68 68 

  x  = 3hr 68 

  σ  = 3hr 0.43 

Sample 
Conditioning 

2 hrs 

70 70 69 70 
68 69 69 69 
70 70 70 70 
69 69 70 69 

  x  = 2hr 69 

  σ  = 2hr 0.67 
 
 
 

Total Sample Average and Standard deviation 
 
 

x  69 

σ  0.90 

 
From equation 2 the component uncertainty (ui ) can be determined. 

n
ui

σ
=        (2) 

 

conu
24
90.0

=    

 
 or conu 18.0= dmm  
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3.4 The uncertainty component due to sample temperature variation ( Tu ): Type B 
This Type B evaluation calls for an informed judgement regarding the variation within the 
sample temperature, considering that extensive records of such temperature variation are 
not available. A limited measurement of sample temperature variations, using a calibrated 
thermometer with known uncertainty, indicates that the maximum temperature variation is 
± 0.2 ˚C. In order to convert this uncertainty into one that has the same unit as penetration, 
we need to calculate the sensitivity coefficient. This was done by measuring the average 
penetration for identical samples over a temperature range (23 – 27˚C). The results are 
presented in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Effect of temperature on penetration measurements 
 
 
 
The gradient of the trend line represents the temperature coefficient to relate penetration 
measurements with temperature. Using the temperature coefficient we then calculate the 
error arising from the temperature as follows: 
 

5.7 dmm / ºC X ± 0.2ºC = ± 1.14 dmm 
 
Assuming a rectangular distribution, then the semi-range, a, is 1.12 dmm. According to the 
law of uncertainties for rectangular distributions, 
 

Tu
3

a
=      (3) 

 

Tu
3
14.1

=       

 
or Tu =   0.66 dmm 
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y = 0.9837x - 53.019
R² = 0.5272
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3.5 The uncertainty component due to load variation ( loadu ): Type B 
ASTM D5 (2006) allows for a needle load variation of 100 ± 0.10 g. In order to convert this 
uncertainty into one that has the same unit as penetration, we need to calculate the 
sensitivity coefficient. This was done by measuring the average penetration for identical 
samples over a load range of approximate one gram. The results are presented in Figure 
3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Effect of needle load on penetration measurements 
 
The gradient of the trend line represents the load coefficient to relate penetration 
measurement with load. Since the maximum permissible load variation is 0.10 g, the load 
coefficient allows us to calculate the error as follows: 
 

0.98 dmm /g X ± 0.10 g = ± 0.10 dmm 
 
Assuming a rectangular distribution, then the semi-range a is 0.10 dmm. Therefore, 
according to the law of uncertainties (eqn 3) for rectangular distributions, 
 

loadu
3
10.0

=       

 
or loadu =   0.06 dmm 

 
3.6 The uncertainty component due to loading time ( tu ): Type B 
The loaded needle is applied to the sample for a period of 5.0 s. ASTM D5 (2006) requires 
timing accuracy of 0.1 s. The automated timer is verified using a calibrated stopwatch and 
the test method limit appears to be complied with. As the automated timer cannot be 
adjusted, a different approach is required to estimate a timing coefficient to correlate time, 
s, with penetration, dmm. 

 
Assuming a proportional relationship between time and penetration over this short time 
period, 0.1 s would represent 0.1/5.0 (or 2 %) of 65 for a typical 60/70 penetration-grade 
bitumen. Assuming a value of a = 1.30, then: 
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tu
3
30.1

=       

 
or tu =   0.75 dmm 

 
3.7 The uncertainty component due to needle geometry ( ngu ): Type B 

Variations in penetration due to variations in needle geometry are monitored by verification 
of all needles against a standard calibrated needle. Verification records indicate that the 
maximum difference obtained between the standard needle and the average from a set of 
3 working needles is 0.67 dmm. Assuming the value of a = 0.67, then: 

ngu
3
67.0

=       

 
or ngu =   0.39 dmm 

 
3.8 The uncertainty component due to resolution of the reading gauge ( resu ): Type B 
Due to error of parallax it is assumed that the reading could be in error by approximately 
half a unit, which is ± 0.5 dmm. Assuming the value of a = 0.50, then: 

resu
3
50.0

=       

 
or resu =   0.29 dmm 

 
3.9 The uncertainty component due to resolution of the reading gauge ( measu ): Type B 
Another possible source of systematic error could be during the translation process 
whereby the penetration depth is converted to a gauge reading. This translation is verified 
by measuring the depth of 50.00 dmm depth within a stainless steel block. The block has 
been calibrated and the calibration certificate states an uncertainty of ± 0.01 dmm. This is 
small enough to be ignored for the purposes of our determination. The measurements on 
the block indicate that no correction is necessary for the dial at a reading of 50.00 dmm. 
 
4 Combined Uncertainty ( cu ) 
The combined uncertainty can be determined using Equation 4. Logically, the standard 
uncertainty value can be ignored as it is already quantified when determining the 
uncertainty component for conditioning time. 
 

∑
=

=
N

i
ic uu

1

2        (4) 

 
2 2 2 2 2 2 2 2

c prep s con T load t ng res
u u u u u u u u u= + + + + + + +  

 

cu 29.039.075.006.066.018.000 222222 +++++++=  
 

cu = 1.13 dmm 
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The expanded uncertainty is then (using a coverage factor of 2) equal to U = 2.24 dmm. 
Since the penetration is reported in whole units, this uncertainty will be rounded to the 
closest whole unit. 
 
The uncertainty of the penetration is ± 2 dmm with a confidence level of 
approximately 95%. This would be applicable to a 40/50 or 60/70 penetration-grade 
bitumen 
 
5 CONCLUSIONS AND RECOMMENDATIONS 
 
This paper illustrates how ISO GUM may be applied to determine the accuracy and 
uncertainty of the penetration test method. The model and uncertainty determination have 
provided a means with which to analyse the method in detail. This enables the researcher 
to propose modifications to the test method to improve uncertainty level for the method. 
 
For example, paragraph 7.3 of the test method requires conditioning periods of between 1 
and 1½ hours in air and between 1 and 1½ hours in water. This permissible variation is 
shown to affect the repeatability of the results. At the CSIR Built Environment road 
materials testing laboratories an amendment to the test method has been implemented, 
whereby the sample undergoes temperature conditioning for exactly 1½ hours in air and 
1½ hours in water. This amendment results in a change in the combined uncertainty from 

cu = 1.13 dmm to cu = 1.11 dmm. The difference is not big enough to have an effect on the 
expanded uncertainty, but it is a move in the right direction. 
 
A larger difference will be evident if the timer can be calibrated/verified as having an 
uncertainty of ± 0.03 s. The effect would be to reduce the combined uncertainty from cu = 
1.11 dmm to cu = 0.85 dmm. 
 
This paper may serve as an example of how to extend ISO GUM to other laboratory test 
methods. 
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