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In this paper, we propose a stochastic programming model, which considers a ratio of two
nonlinear functions and probabilistic constraints. In the former, only expected model has been
proposed without caring variability in the model. On the other hand, in the variance model,
the variability played a vital role without concerning its counterpart, namely, the expected
model. Further, the expected model optimizes the ratio of two linear cost functions where as
variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in
the denominator and numerator and considering expectation and variability as well leads to a
non-linear fractional program. In this paper, a transportation model with stochastic fractional
programming (SFP) problem approach is proposed, which strikes the balance between previous
models available in the literature.

1. Introduction

The transportation engineering problem is one of the most primitive applications of
linear programming problems. The basic transportation problem was initially developed
by Hitchcock [1] and has grown to the stage wherein supply chain management uses it
significantly. Even one can say that supply chain’s success is closely linked to the appropriate
use of transportation. Linear fractional transportation problemwas first discussed by Swarup
[2] and since then it did not receive much attention. This paper deals with a fractional
transportation model in which parameters involved in the model are probabilistic in nature.
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When the market demands for a commodity are stochastic in nature, the problem
of scheduling shipments to a number of demand points from several supply points is a
stochastic transportation problem [3]. Jörnsten et al. [4, 5] studied stochastic transportation
model for petroleum transport and proposed a cross-decomposition algorithm to solve
the said problem. The stochastic transportation problem can be formulated as a convex
transportation problem with nonlinear objective function and linear constraints. Holmberg
[6] compared different methods based on decomposition techniques and linearization
techniques for this problem; Holmberg tried to find the most efficient method or combination
of methods. Holmberg also discussed and tested a separable programming approach, the
Frank-Wolfe method with and without modifications, the new technique of mean value
cross-decomposition, and the more well-known Lagrangian relaxation with subgradient
optimization, as well as combinations of these approaches.

Ratio optimization problems are commonly called fractional programs. One of the
earliest fractional programs is an equilibrium model for an expanding economy introduced
by Von Neumann in 1937, at a time when linear programming hardly existed. The linear and
nonlinear models of fractional programming problems have been studied by Charnes and
Cooper [7] and Dinkelbach [8]. The fractional programming problems have been studied
extensively by many researchers. Mjelde [9] maximized the ratio of the return and the cost
in resource allocation problems; Kydland [10], on the other hand, maximized the profit per
unit time in a cargo-loading problem. Arora and Ahuja [11] discussed a fractional bulk
transportation problem in which the numerator is quadratic in nature and the denominator
is linear.

Stochastic fractional programming (SFP) offers a way to deal with planning in
situations where the problem data is not known with certainty. Such situations arise where
technological aspects of the system under study may be highly complicated or incapable of
being observed completely. Stochastic Programming and Fractional Programming constitute
two of the more vibrant areas of research in optimization. Both areas have blossomed
into fields that have solid mathematical foundations, reliable algorithms and software,
and a plethora of applications that continue to challenge current state-of-art computing
resources. For various reasons, these areas havematured independently. Many of the existing
procedures that are of practical importance for solving stochastic programming and fractional
programming problems rely mostly on simplified assumptions. Wide range of applications
of stochastic and fractional programming can be seen in [12–17].

A constrained linear stochastic fractional programming (LSFP) problem involves
optimizing the ratio of two linear functions subject to some constraints in which at least one
of the problem data is random in nature with nonnegative constraints on the variables. In
addition, some of the constraints may be deterministic.

The LSFP framework attempts to model uncertainty in the data by assuming
that the input or a part thereof is specified by a probability distribution, rather than
being deterministic. Gupta [18] described a model on capacitated stochastic transportation
problem, which maximizes profitability. LSFP has been extensively studied by Gupta et al.
[19, 20] and Charles et al. [14–17, 21–31], the concepts of LSFP are available in [21, 22],
various algorithms to solve LSFP have been discussed in [23, 26, 28, 29], financial derivative
applications of nonlinear SFP are studied in [25, 27], and multiobjective LSFP problems are
discussed in [24, 30]. Charles and Dutta [30] discusses an application to assembled printed
circuit board of multi-objective LSFP, and an algorithm to identify redundant fractional
objective function in multi-objective SFP is clearly discussed in [31, 32].
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In this paper, a special class of transportation problems has been considered
wherein the stochastic fractional programming (SFP) is the handy technique to opti-
mize the transportation problem. The said special class of uncapacitated transporta-
tion problems has two distinct cost matrices in which costs involved in the prob-
lem are random in nature and are assumed to follow normal distribution, and the
demand vector under study is also random wherein the demand vector is assumed
to follow probability distributions like normal and uniform. The proposed mean-
variance model attempts to optimize the profit over shipping cost under uncer-
tain environment, subject to regular supply constraints along with stochastic demand
constraints.

The organization of this paper is as follows. Section 2 discusses the uncapacitated
transportation problem of SFP along with some basic assumptions. A deterministic equiv-
alent of probabilistic demand constraints are described in Section 3 along with explanation
for some of the preliminary properties of transportation problem of SFP and expectation,
and also variance and mean-variance models for the uncapacitated transportation problem
of SFP are established. In this Section 4 provides an algorithm to solve this problem.
Discussion on this paper with a summary and recommendations for future research is in
Section 5.

2. The UnCapacitated Transportation Problem of LSFP

This section deals with the uncapacitated TP of LSFP for the distribution of a single
homogenous commodity from m sources to n destinations, where the demand for the
commodity at each of the n destinations is a random variable. An uncapacitated TP of LSFP
in a criterion space is defined as follows:

maximizeR(X) =
N(X) + α

D(X) + β
=

∑m
i=1

∑n
j=1 pijxij + α

∑m
i=1

∑n
j=1 cijxij + β

, (2.1)

subject to

n∑

j=1

xij ≤ ai, i = 1, 2, . . . , m, (2.2)

m∑

i=1

xij = rj, j = 1, 2, . . . , n, (2.3)

where 0 ≤ Xm×n = ‖xij‖ ∈ Rm×n is a feasible set, S = {X | (2.2)-(2.3), X ≥ 0, X ∈ Rm×n} is
nonempty, convex, and compact set in Rm×n, xij is an unknown quantity of the good shipped
from supply point i to demand point j, profit matrixNm×n = ‖pij‖which determines the profit
pij ∼ N(upij , s

2
pij
) gained from shipment from i to j, cost matrixDm×n = ‖cij‖which determines

the cost cij ∼ N(ucij , s
2
cij
) per unit of shipment from i to j, the denominator function D(X) + β

is assumed to be positive throughout the constraint set, scalars α, β, which determines some
constant profit and cost, respectively, supply point i must have ai units available, stochastic
demand point j must obtain 1− lj level of rj units, and 1− lj (0 < lj < 1) is the least probability
with which jth stochastic demand constraint is satisfied.
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Stochastic equation (2.3) can be rewritten as follows:

Pr

[
m∑

i=1

xij ≥ rj

]

≥ 1 − lj , j = 1, 2, . . . , n, (2.4)

Pr

[
m∑

i=1

xij ≤ rj

]

≥ 1 − lj , j = 1, 2, . . . , n. (2.5)

Assumption 2.1. (a) The values of every point of supply and demand are positive.
(b) Total supply is not less than total demand.
(c) Noninteger solutions are acceptable.

3. Deterministic Equivalents of Probabilistic Demand
Constraints and E-Model

Let rj be a random variable in constraint (2.4) that follows N(urj , s
2
rj ), j = 1, 2, . . . , n, where

urj is the jth mean and s2rj is the jth variance. The jth deterministic demand constraint (2.4)
is obtained from Charles and Dutta [21] and is given as follows:

Pr

[
m∑

i=1

xij ≥ rj

]

≥ 1 − lj (or) Pr

[

rj ≤
m∑

i=1

xij

]

≥ 1 − lj (or) Pr
(
Zj ≤ zj

) ≥ 1 − lj , (3.1)

where Zj = (rj − urj )/srj follows standard normal distribution and zj = (
∑m

i=1 xij − urj )/srj .
Thus, φ(zj) ≥ φ(K1−lj ), where 1 − lj = φ(K1−lj ), is the cumulative distribution function of
standard normal distribution. Clearly, φ(·) is a nondecreasing continuous function, hence
zj ≥ K1−lj . The jth deterministic demand constraint (2.4) is as follows:

m∑

i=1

xij ≥ urj +K1−lj srj . (3.2)

Similar to constraint (3.2), one can obtain the constraint given below from (2.5):

m∑

i=1

xij ≤ urj +Klj srj . (3.3)

Inequalities (3.2) and (3.3) can be combined as follows:

urj +K1−lj srj ≤
m∑

i=1

xij ≤ urj +Kljsrj . (3.4)

Let rj be the uniform random variablewhich ranges from ulow
j to uup

j , that is, rj ∼ U(ulow
j , u

up
j ),

the probabilistic demand constraint in system (2.1) is equivalent to
∑m

i=1 xij ≥ τj , where
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l′j = 1 − lj , and
∫uup

j

τj (dx/(uup
j − ulow

j )) = l′j , that is, τj = lju
up
j + l′ju

low
j . Hence, the deterministic

equivalent of the jth probabilistic demand constraint (2.4) is

m∑

i=1

xij ≥ lju
up
j + l′ju

low
j . (3.5)

Similar to (3.5) one can obtain the constraint given below from (2.5):

m∑

i=1

xij ≤ lju
low
j + l′ju

up
j . (3.6)

Constraints (3.5) and (3.6) can be combined as follows:

lju
up
j + l′ju

low
j ≤

m∑

i=1

xij ≤ lju
low
j + l′ju

up
j . (3.7)

Definition 3.1. If the total supply lies in the interval of total deterministic demand, the
transportation problem of SFP has feasible solutions.

Case 1. The normally distributed demand is
∑n

j=1(urj +K1−lj srj ) ≤
∑m

i=1 ai ≤
∑n

j=1(urj +Klj srj ).

Case 2. Uniformly distributed demand the
∑n

j=1(lju
up
j + l′ju

low
j ) ≤ ∑m

i=1 ai ≤
∑n

j=1(lju
low
j + l′ju

up
j ).

Lemma 3.2. The transportation problem of SFP always has a feasible solution, that is, feasible set S
is nonempty.

Lemma 3.3. The set of feasible solutions is bounded.

Lemma 3.4. The transportation problem of SFP is solvable.

The proof of the above said properties when demand follows normal distribution are
as follows: Let x∗

ij be defined as

ai

(
urj +K1−lj srj

)

T1
≤ x∗

ij ≤
ai

(
urj +Kljsrj

)

T2
, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (3.8)

where T1 =
∑n

j=1 (urj
+K1−lj srj ), T2 =

∑n
j=1 (urj

+Kljsrj ) are positive.
Substituting x∗

ij for the supply and demand constraints, that is, from constraints (2.2)
and (2.4), the following can be obtained:

n∑

j=1

x∗
ij ≤

n∑

j=1

ai

(
urj +K1−lj srj

)

T1
=

ai

T1

n∑

j=1

(
urj +K1−lj srj

)
= ai, i = 1, 2, . . . , m,

n∑

j=1

x∗
ij ≥

n∑

j=1

ai

(
urj +Kljsrj

)

T2
=

ai

T2

n∑

j=1

(
urj +Kljsrj

)
= ai, i = 1, 2, . . . , m,

(3.9)
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and hence
∑n

j=1 x
∗
ij= ai. From (3.8), one can obtain

m∑

i=1

ai

(
urj +K1−lj srj

)

T1
≤

m∑

i=1

x∗
ij ≤

m∑

i=1

ai

(
urj +Kljsrj

)

T2
,

(
urj +K1−lj srj

)

T1

m∑

i=1

ai ≤
m∑

i=1

x∗
ij ≤

(
urj +Kljsrj

)

T2

m∑

i=1

ai,

urj +K1−lj srj ≤

(
urj +K1−lj srj

)

T1

m∑

i=1

ai ≤
m∑

i=1

x∗
ij ≤

(
urj +Klj srj

)

T2

m∑

i=1

ai ≤ urj +Klj srj ,

urj +K1−lj srj ≤
m∑

i=1

x∗
ij ≤ urj +Klj srj , j = 1, 2, . . . , m.

(3.10)

Hence, constraints (2.2) and (2.4) are satisfied by x∗
ij . Since from Assumption 2.1(a)-

(b) the constraint (3.2) it follows that x∗
ij > 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, it becomes obvious

that x∗ = (x∗
ij) is a feasible solution of the transportation problem of stochastic fractional

programming. Thus it has been clearly shown that the feasible set S is not empty.
Further, from (2.2), (3.4), and (3.7) along with nonnegativity constraints, it is clear that

0 ≤ x∗
ij ≤ ai, i = 1, 2, . . . , m; j = 1, 2, . . . , n.
Expectation and variance of the profit and cost function of the probabilistic fractional

objective function are defined as follows:

E(N(X)) =
m∑

i=1

n∑

j=1

E
(
pij

)
xij + α =

m∑

i=1

n∑

j=1

upijxij + α,

E(D(X)) =
m∑

i=1

n∑

j=1

E
(
cij

)
xij + β =

m∑

i=1

n∑

j=1

ucijxij + β,

V (N(X)) =
m∑

i=1

n∑

j=1

V
(
pij

)
xij =

m∑

i=1

n∑

j=1

S2
pijx

2
ij ,

V (D(X)) =
m∑

i=1

n∑

j=1

V
(
cij

)
xij =

m∑

i=1

n∑

j=1

S2
cijx

2
ij .

(3.11)

Hence the deterministic fractional objective function is as follows:

REV (X) =
w1

(∑m
i=1

∑n
j=1 upijxij + α

)
+w2

√∑m
i=1

∑n
j=1 S

2
pijx

2
ij

w1

(∑m
i=1

∑n
j=1 ucijxij + β

)
+w2

√∑m
i=1

∑n
j=1 S

2
cijx

2
ij

, (3.12)

wherew1 andw2 are preselected nonnegative numbers indicating the relative importance for
optimization of the mean and the square root of the variance covariance matrix. The special
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cases corresponding to w2 = 0 and w1 = 0 are, respectively, known as the E-model and the
V -model. The objective function (3.12) is very a well-known mean-variance model.

Since the numerator and denominator functions of the fractional objective function
(3.12) are in Kataoka’s [32] form and the denominator is assumed to be positive over the
bounded feasible set S, it means that fractional objective function REV (X) is also bounded
over the same feasible set S, and hence it can be concluded that transportation problem of
SFP is solvable.

The E-model for the uncapacitated TP of LSFP when demand follows normal
distribution is as follows:

maximize RE(X) =

∑m
i=1

∑n
j=1 upijxij + α

∑m
i=1

∑n
j=1 ucijxij + β

,

subject to
n∑

j=1

xij ≤ ai, i = 1, 2, . . . , m,

urj +K1−lj srj ≤
m∑

i=1

xij ≤ urj +Klj srj , j = 1, 2, . . . , n,

(3.13)

where 0 ≤ Xm×n = ‖xij‖ ∈ Rm×n is a feasible set, S = {X | (2.2) and (3.4), X ≥ 0, X ∈ Rm×n} is
nonempty, convex and compact set in Rm×n, xij is an unknown quantity of the good shipped
from supply point i to demand point j, RE(X) is the fractional objective function defined as
ratio of the profit function over the cost function, the profit and cost function is assumed to be
positive throughout the constraint set, supply point imust have atmost ai units, deterministic
demand point j must obtain at least urj +K1−lj srj units and at most urj +Klj srj units. Similarly
one can define E-model of system (2.1), when demand follows uniform distribution or/and
normal distribution.

Lemma 3.5. This lemma is proposed with theRE(·) being defined in the earlier section as the fractional
objective function:

(1.1) RE(λ) is a convex function for λ ∈ R.

(1.2) RE(λ) is strictly decreasing function on R.

(1.3) RE(λ) is continuous function on R.

(1.4) The equation RE(λ) = 0 has unique solution, say λ∗.

(1.5) RE(λ) ≥ 0 for all x ∈ S.

Theorem 3.6. A necessary and sufficient condition for

λ∗ =

∑m
i=1

∑n
j=1 upijx

∗
ij + α

∑m
i=1

∑n
j=1 ucijx

∗
ij + β

= maximize
x∈S

∑m
i=1

∑n
j=1 upijxij + α

∑m
i=1

∑n
j=1 ucijxij + β

(3.14)

is

RE (λ∗) = RE (
x∗, λ∗

)
= maximize

x∈S

⎡

⎣
m∑

i=1

n∑

j=1

upijxij + α − λ∗

⎛

⎝
m∑

i=1

n∑

j=1

ucijxij + β

⎞

⎠

⎤

⎦ = 0. (3.15)
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Note. It may be noted that optimal solution x∗may not be unique for the extremes (i.e.,
max/min). The V -model for the uncapacitated TP of SFP when demand follows normal
distribution is as follows:

maximize RV(X) =

√∑m
i=1

∑n
j=1 S

2
pijx

2
ij

√∑m
i=1

∑n
j=1 S

2
cijx

2
ij

(3.16)

subject to
∑n

j=1 xij ≤ ai, i = 1, 2, . . . , m, urj + K1−lj srj ≤ ∑m
i=1 xij ≤ urj + Klj srj j = 1, 2, . . . , n,

where 0 ≤ Xm×n = ||xij || ∈ Rm×n is a feasible set, S = {X | (2.2) and (3.4), X ≥ 0, X ∈
Rm×n} is nonempty, convex, and compact set in Rm×n, xij is an unknown quantity of the good
shipped from supply point i to demand point j, RV (X) is the fractional objective function
defined as ratio of standard deviation of the profit function over standard deviation of the
cost function, the profit and cost function is assumed to be positive throughout the constraint
set, supply point i must have at most ai units, deterministic demand point j must obtain at
least urj + K1−lj srj units and at most urj + Klj srj units. Similarly one can define V -model of
system (2.1) when demand follows uniform distribution or/and normal distribution.

Lemma 3.7. The following results are true.

(2.1) RV 2(λ) is a convex function for λ ∈ R.

(2.2) RV 2(λ) is strictly decreasing function on R.

(2.3) RV 2(λ) is continuous function on R.

(2.4) The equation RV 2(λ) = 0 has unique solution, say λ∗.

(2.5) RV 2(λ) ≥ 0 for all x ∈ S.

Theorem 3.8. A necessary and sufficient condition for

λ∗ =

∑m
i=1

∑n
j=1 S

2
pijx

2∗
ij

∑m
i=1

∑n
j=1 S

2
cijx

2∗
ij

= maximize
x∈S

∑m
i=1

∑n
j=1 S

2
pijx

2
ij

∑m
i=1

∑n
j=1 S

2
cijx

2
ij

(3.17)

is

RV2(λ∗) = RV2(x∗, λ∗) = optimize
x∈S

⎡

⎣
m∑

i=1

n∑

j=1

S2
pijx

2
ij − λ∗

m∑

i=1

n∑

j=1

S2
cijx

2
ij

⎤

⎦ = 0. (3.18)

Note. It may be noted that optimal solution x∗ may not be unique for the extremes (i.e.,
max/min). The mean-variancemodel for the uncapacitated TP of SFP when demand follows
normal distribution is as follows:

maximize REV(X) =
w1

(∑m
i=1

∑n
j=1 upijxij + ff

)
+w2

√∑m
i=1

∑n
j=1 S

2
pijx

2
ij

w1

(∑m
i=1

∑n
j=1 ucijxij + fi

)
+w2

√∑m
i=1

∑n
j=1 S

2
cijx

2
ij

, (3.19)
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subject to
∑n

j=1 xij ≤ ai, i = 1, 2, . . . , m, urj + K1−lj srj ≤
∑m

j=1 xij ≤ urj + Klj srj , j = 1, 2, . . . , n,
where 0 ≤ Xm×n = ‖xij‖ ∈ Rm×n is a feasible set, S = {X | (2.2) and (3.4), X ≥ 0, X ∈
Rm×n} is nonempty, convex, and compact set in Rm×n, and xij is an unknown quantity of
the good shipped from supply point i to demand point j. Similarly one can define mean-
variance model of system (2.1) when demand follows uniform distribution or/and normal
distribution.

Theorem 3.9. A necessary and sufficient condition for

λ∗ =
w1

(∑m
i=1

∑n
j=1 upijx

∗
ij + α

)
+w2

√∑m
i=1

∑n
j=1 S

2
pijx

2∗
ij

w1

(∑m
i=1

∑n
j=1 ucijx

∗
ij + β

)
+w2

√∑m
i=1

∑n
j=1 S

2
cijx

2∗
ij

= maximize
x∈S

w1

(∑m
i=1

∑n
j=1 upijxij + α

)
+w2

√∑m
i=1

∑n
j=1 S

2
pijx

2
ij

w1

(∑m
i=1

∑n
j=1 ucijxij + β

)
+w2

√∑m
i=1

∑n
j=1 S

2
cijx

2
ij

(3.20)

is

REV(λ∗) = REV(x∗, λ∗)

= maximize
x∈S

⎡

⎣w1

⎛

⎝
m∑

i=1

n∑

j=1

upijxij + α

⎞

⎠ +w2

√
√
√
√

m∑

i=1

n∑

j=1

S2
pijx

2
ij

− λ∗

⎛

⎝w1

⎛

⎝
m∑

i=1

n∑

j=1

ucijxij + β

⎞

⎠ +w2

√
√
√
√

m∑

i=1

n∑

j=1

S2
cijx

2
ij

⎞

⎠

⎤

⎦ = 0.

(3.21)

4. Algorithm: Sequential Linear Programming for TP of SFP

(1) Start with an initial point X(0) and set the iteration number t = 0
(there are many ways to get the initial guess X(0), one among is to solve
maximizex∈S

∑m
i=1

∑n
j=1 upijxij).

(2) Decide the importance of mean and variance by means of assigning values to w1

and w2.

(3) Obtain

λ(0) =
w1

(∑m
i=1

∑n
j=1 upijxij + α

)
+w2

√∑m
i=1

∑n
j=1 S

2
pijx

2
ij

w1

(∑m
i=1

∑n
j=1 ucijxij + β

)
+w2

√∑m
i=1

∑n
j=1 S

2
cijx

2
ij

. (4.1)

(4) Linearize the constraint form of objective function about the points (X(t), λ(t)) as
REV (X, λ) ≈ REV (X(t), λ(t)) +∇REV (X(t), λ(t))

T
(X −X(t), λ − λ(t))

T
.
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(5) Formulate the approximate TP of LSFP as

maximize
x∈S

λ subject to REV
(
X(t), λ(t)

)
+∇REV

(
X(t), λ(t)

)T(
X −X(t), λ − λ(t)

)T
= 0. (4.2)

(6) Solve the approximating TP of SFP to obtain the solution vector X(t+1) and scalar
λ(t+1).

(7) Find REV (X(t+1), λ(t+1)).

(8) If |REV (X(t+1), λ(t+1))| ≤ ε, where ε is a prescribed small positive tolerance, all the
demand and supply constraints can be assumed to have been satisfied. Hence
stop the procedure by considering optimal X is approximately equal to X(t+1), that
is, Xopt = X(t+1).

(9) Else, once again linearize the constraint form of objective function about the
points (X(t+1), λ(t+1)) as REV (X, λ) ≈ REV (X(t+1), λ(t+1)) + ∇REV (X(t+1), λ(t+1))T

(X −X(t+1), λ − λ(t+1))
T
and add this as an additional constraint to TP of SFP defined

in step (4).

(10) Increment the iteration number by 1 and go to step (4).

5. Discussion and Future Research

A transportation model with stochastic programming approach is considered, and an
algorithm to this effect has been presented. The reason to use SFP was to deal with planning
in situations where the problem data is known only in the stochastic environment. Such
situations arise in high technological complex systems. This proposed model would provide
useful solution under those circumstances when the company likes to optimize the ratio of
profit over the cost per unit of shipment in a way to meet the stochastic demands with a clear
account for variation. This paper can be extended to an integer solution using branch and
bound technique. Mixedmodel for TP of SFP and stochastic fractional recourse programming
may be the interest of future research.
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