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To meet the escalating demand of energy more coal ash and brines are inevitably produced as by-
products. Large volumes of these wastes and increasing environmental awareness necessitate the devel-
opment of more sustainable methods to mitigate the environmental footprint. Paste backfill is one of the
potential solutions to keep the energy industry sustainable. The behaviour of pastes was investigated by
strategically varying brine composition mixed with the two types of fly ash. The results showed that fly
ash plays a more prominent role in the behaviour of pastes than brines. It is therefore imperative to con-
sider both fly ash and brine characteristics i.e. constituents of paste for the development of an environ-
mentally sound paste backfill practice. Technically there are numerous benefits in pursuing the proposed
solution.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The ever-increasing energy demands necessitate combustion of
more coal, which is the reliable source of energy worldwide. It is a
fact that combustion of low-grade coal generates vast quantities of
fly ash of which the global average utilisation is approximately 16%
(Ahmaruzzaman, 2010). This leaves the remaining 420 million tons
of fly ash requiring measures for disposal annually.

The scarcity of potable water as well as high water consumption
during mineral and coal processing leads to the inevitable saline
brine production. The management of industrial brines resulting
from water recovery processes presents an environmental
concern especially inland (Nassar et al., 2008; Souilah et al.,
2004; Vedavyasan, 2001), where the option of oceanic disposal is
often uneconomical (Ahmed et al., 2003; Nassar et al., 2008;
Korngold et al., 2009). The variability of brines as well as failure
to meet legal environmental requirements restricts their potential
utilisation in applications such as crystallisation of marketable
salts, and mixing water in concrete. Literature focuses on the det-
rimental impact of chlorides in reinforced concrete (Balonis et al.,
2010; Neithalath and Jain, 2010; Arya et al., 1990; Barberon
et al., 2005) and sulphates to explain concrete deterioration
(Medvešček et al., 2006; Collepardi, 2003; Borsoi et al., 2009).
These anions give rise to durability problems if they come from
ll rights reserved.
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the external environment such as the interaction of seawater with
concrete.

The study to utilise seawater as mixing water in concrete pro-
duced stronger concrete than a control prepared with potable
water (Akinkurolere et al., 2007; Taylor and Kuwairi, 1978).
Mahlaba and Pretorius (2006) and Mahlaba (2007) indicated that,
compared to water, brines have an advantageous effect on the
workability of fly ash pastes. The major components in seawater
are chloride, sodium, calcium and sulphate (Alahmad, 2010) which
most saline brines have been reported to emulate (Ahmed et al.,
2003; Ravizky and Nadav, 2007; Mooketsi et al., 2007; Koch,
2002). Furthermore, the use of Cl-bearing compounds to accelerate
strength development and improve mechanical properties is com-
mon practice in concrete production (Akinkurolere et al., 2007;
Taylor and Kuwairi, 1978; Shi, 1996). Na2SO4 is used to accelerate
pozzolanic reactions whereas gypsum (CaSO4�2H2O) addition con-
trols the setting of concrete (Shi, 1996; Odler, 2004).

Therefore management of both fly ash and brines pose a major
environmental risk to surface water and land availability if not
properly dealt with. However, the pozzolanic properties of fly ash
make it suitable for utilisation in agriculture, waste treatment
and cement extension (Shehata, 2001; Muriithi et al., 2011; Kruger
and Surridge, 2009; Fester et al., 2008; Vadapalli et al., 2008).

Existing literature focuses on mine backfill with thickened tail-
ings (Jewell and Fourie, 2006; Potvin et al., 2005; Benzaazoua et al.,
1999) and rarely on water-based fly ash pastes (Steward and
Slatter, 2009; Stropnik and Južnič, 1988; Naik et al., 2009). It was
therefore scientifically justifiable to investigate the behaviour of
ristics on the behaviour of pastes prepared under varied brine conditions.
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Table 2
Elemental and mineralogical composition of fly ashes A and B (%).

Component Fly ash A Fly ash B

Elemental composition (%)
SiO2 49.7 59.5
Al2O3 26.2 28.5
Fe2O3 2.7 5.9
CaO 10.5 2.3
MgO 2.1 0.4
SO3 0.5 0.4
Na2O 0.7 –
K2O 0.9 1.0
TiO2 1.5 1.3
Loss on ignition (LOI) 4.1 –
Other 0.9 0.7
Total 99.8 100.0

Mineralogical phase (%)
Mullite (Al6Si2O13) 20.53 28.98
Quartz (a-SiO2) 10.24 11.86
Hematite (Fe2O3) 0.68 1.43
Lime (CaO) 2.22 0.37
Glassy phase 66.33 57.36
Total 100.0 100.0

Fly ash B Fly ash A

Fig. 1. Picture showing colour difference between fly ash A and B.
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pastes prepared with brines and fly ash; initial results indicated
that contaminants are stabilised in paste (Ilgner, 2006; Mahlaba
and Pretorius, 2006; Muntingh et al., 2009; Mahlaba et al., 2008).
The current authors investigated the influence of industrial brines
on the characteristics of fly ash pastes where it was demonstrated
that brine chemistry dominates paste behaviour with a given fly
ash type (Mahlaba et al., 2011). These findings suggest that co-
disposal of these wastes as a paste backfill material will provide
an innovative solution which is environmentally less harmful than
their individual disposal.

Paste properties (especially its rheology) are influenced by
numerous factors of the materials used (Jewell and Fourie, 2006;
Verburg, 2001). The present study sheds light on the influence of
fly ash characteristics on the brine-based paste behaviour due to
site specificity reported in literature (Jewell and Fourie, 2006;
Verburg, 2001). Improved understanding of paste behaviour as a
function of both fly ash and brine characteristics will potentially
lead to the development of a sound backfill solution as well as geo-
technical utilisation opportunities. This manuscript makes a signif-
icant contribution towards ensuring the sustainability of the coal
processing industry.

2. Materials

2.1. Brines

Brines A and B originate from ion-exchange demineralisation
(including regeneration chemicals) and thermal evaporation of
water at a South African petrochemical plant, respectively. These
industrial brines represent the worst case scenarios of brines from
most desalination facilities in terms of chemical composition and
salinity, and to a certain degree simulate seawater. The chemical
composition of these brines and seawater is shown in Table 1.

2.2. Fly ash

Different fly ashes were collected from two South African power
stations combusting different coal types to generate electricity
using coal-fired boilers. The elemental and mineralogical composi-
tion of these fly ashes, namely, fly ashes A and B is provided in
Table 2.

2.3. Examination of physical properties

It is well documented in literature that fly ash characteristics
principally depend on coal type and combustion method. Finer
ash particles are richer in the glassy phase and are more reactive
while coarser fractions are richer in carbon (Ward and French,
2006; Nochaiya et al., 2009; Chancey et al., 2010). Spherical fly
ash particles reduce friction between particles and improve work-
ability at lower water demands in a paste (Campbell, 1999;
Chindaprasirt et al., 2005). Moreover reduced water demand re-
Table 1
Chemical composition of brines A, B and seawater.

Component Unit Brine A Brine B Seawater

pH – 7.4 8.8 8.2–10.0
EC lS/cm 70,400 124,000 –
Ca2+ mg/l 341 2100 500
Mg2+ mg/l 238 1550 1550
Na+ mg/l 19,227 21,000 12,000
Cl� mg/l 14,668 34,300 22,000
SO¼4 mg/l 5931 15,200 3000
TDS mg/l 44,400 108,000 39,806–45,000

#TDS = total dissolved solids.
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sults in a more cohesive paste with minimal bleed formation and
low hydraulic conductivity; the cornerstones of good paste (Pagé
and Spiratos, 2000; Chindaprasirt et al., 2005; Joshi et al., 1994).

It was considered necessary to discuss physical characteristics
of fly ash in addition to chemical properties to enable better inter-
pretation of paste behaviour. The fundamental physical character-
istics of fly ash examined are colour, particle size distribution, and
particle morphology.
2.3.1. Colour
There is a significant colour difference between the two fly

ashes where fly ash A is greyish like ordinary cement and fly ash
B is brownish1 as depicted in Fig. 1. Such a difference can be
assigned to an appreciably higher concentration of iron in fly ash B
(Table 2) i.e. chemical composition.
2.3.2. Particle morphology
It is illustrated in Fig. 2 that the majority of particles in fly ash A

has a spherical morphology while that of fly ash B is rather irregu-
lar as depicted in Fig. 3. Therefore pastes prepared with fly ash A
1 For interpretation of colour in Fig. 1, the reader is referred to the web version of
this article.

ristics on the behaviour of pastes prepared under varied brine conditions.
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Fig. 2. Typical morphology of fly ash A particles.

Fig. 3. Characteristic morphology of fly ash B particles.
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are expected to be more workable and stronger than those contain-
ing fly ash B (Pagé and Spiratos, 2000; Chindaprasirt et al., 2005).

2.3.3. Particle size distribution
Particle size distribution (PSD) profiles of the two fly ashes were

determined to indicate basic differences. From Fig. 4 the abun-
dance of particles <20 lm in fly ash can be deduced, which, as a
rule of thumb, must exceed 15% for a stable paste formation (Jewell
Please cite this article in press as: Mahlaba, J.S., et al. Effect of fly ash characte
Miner. Eng. (2011), doi:10.1016/j.mineng.2011.04.009
and Fourie, 2006). It is evident that fly ash A has over 40% while fly
ash B has approximately 20% of particles below the threshold par-
ticle size, giving the former an advantage to form a better paste.

The PSD data were further classified into different size fractions
according to ASTM D 422-63 as shown in Fig. 5. The abundance of
clay-sized particles in fly ash A is almost twice that of fly ash B
while that of silt-sized particles is 17% higher in the former. As ex-
pected the sand-sized particles are significantly higher in fly ash B.
ristics on the behaviour of pastes prepared under varied brine conditions.
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Fig. 4. Particle size distributions of the two fly ashes.
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Fig. 5. Particle size distributions of the two fly ashes.
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Thus fly ash B is coarser than fly ash A and according to literature
finer particles are more reactive than coarser particles which are
generally rich in unburned carbon (Chancey et al., 2010; Campbell,
1999; Mahlaba and Pretorius, 2006).

3. Experimental

The role of fly ash as a function of brine variability was studied
where workability and compressive strength of paste were used as
indicators of the effect. These parameters are essential to deter-
mine the suitability of cementitious materials for engineering
applications. Naik et al. (2009) emphasise that quick settling of
fly ash slurries induces workability challenges substantiated
through rheology measurements in the study. Mahlaba and
Pretorius (2006) previously reported that brine chemistry can be
used to control the hardening of paste during its transportation
and save on plasticisers.

3.1. Yield stress

Yield stress of fresh paste was measured after 15 min of matu-
ration using an Anton Paar rheometer set at low vane speeds
(Boger et al., 2008) to achieve reproducible data. Material proper-
Please cite this article in press as: Mahlaba, J.S., et al. Effect of fly ash characte
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ties including those discussed in Section 2.3 affect rheological
behaviour and maturation time of paste. For instance Naik et al.
(2009) used a maturation time of 60 min in fly ash slurries they
investigated.

3.2. Unconfined compressive strength

The paste specimens were cured for 28 days before determining
the unconfined compressive strength (UCS). A pre-load of 10 N was
first applied before data collection commenced at a compression
rate of 2.5 mm/min to failure (ASTM C109), using a Z050 Zwick
Roell compression machine with 50 kN capacity.

3.3. Effect of fly ash properties

The effect of fly ash properties on the paste behaviour was eval-
uated by subjecting two types of fly ash to varying brine condi-
tions. Fly ashes were mixed with various amounts of brines A, B,
and deionised water to make a series of pastes containing between
62% and 70% fly ash content by mass.

Brine salinity was previously identified as one of the important
determinants of paste rheology and strength development
(Mahlaba et al., 2011). The response of pastes containing these
ristics on the behaviour of pastes prepared under varied brine conditions.
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fly ashes to increasing salinity will reveal their influence on the
resultant paste properties. Brine B was selected to study the effect
of salinity on pastes containing the two fly ashes. The dilution of
brine B was performed with deionised water to cover a wide range
of salinity. The total dissolved solids (TDS) of these solutions were
determined at 200 �C. Yield stress and UCS were determined on
pastes containing these solutions and 68% fly ash (Mahlaba et al.,
2008).

4. Results and discussion

The aim of using fly ash with different chemical properties was
to verify whether ash chemistry influences the paste behaviour and
test the applicability of results obtained here to similar operations.
This section presents the results obtained for pastes containing the
two fly ashes as a function of brine variance. The emphasis was
placed on both the rheological and mechanical characteristics of
the resultant pastes.

4.1. Rheological behaviour

The rheological results presented in Fig. 6 demonstrate that the
workability of pastes prepared with fly ash B is not influenced by
variability in brine composition. All pastes with fly ash B gave a
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yield stress of approximately 40 Pa. On the contrary, pastes derived
from fly ash A with brine A and deionised water gave a yield stress
of approximately 80 Pa which is twice that of pastes bearing fly ash
B. A substantially higher yield stress of 210 Pa was achieved by
paste containing fly ash A and brine B. Mahlaba et al. (2011) dis-
covered that a salinity of brine must not exceed 60,000 mg/l for
pastes prepared with fly ash A to remain pumpable with centrifu-
gal pumps.

Fig. 7 also shows a negligible response of fly ash B bearing
pastes to changes in brine salinity. In contrast, fly ash A pastes
demonstrated an exponential increase in the yield stress when
TDS in brine exceeded 40,000 mg/l. The increase in the yield stress
as a function of brine salinity for pastes derived from fly ash A indi-
cates the occurrence of early hardening reactions (Campbell, 1999).
This behaviour was not exhibited by pastes bearing fly ash B which
is indicative of poor reactivity and thus less strength development
is anticipated for pastes containing fly ash B.

4.2. Unconfined compressive strength

The UCS results of pastes containing different fly ash types ex-
posed to varying brines are depicted in Fig. 8. It is illustrated that
fly ash A responded to different brines whereas fly ash B was less
reactive within 28 days. The UCS of fly ash B pastes was below
Brine Brine A

escription

 A Fly ash B

erties on workability.

60 80 100 120
f brine (g/l)

s Fly ash B pastes

tes to salinity per fly ash type.

ristics on the behaviour of pastes prepared under varied brine conditions.
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200 kPa whereas pastes containing fly ash A reached 1840 kPa and
1650 kPa with brine A and brine B, respectively. The results ob-
tained with fly ash A bearing pastes suggest that brine chemistry
affects the mechanical properties of paste, not necessarily accord-
ing to salinity (Mahlaba et al., 2011). Pastes prepared with brines
and fly ash A significantly exceeded a minimum UCS of 200 kPa
suggested by Potvin et al. (2005) for mine backfill. Mahlaba
(2007) showed that the pH of paste remained high even when
acidic brines were used due to high alkalinity of fly ash which
agrees with its use of neutralising acid mine drainage (Vadapalli
et al., 2008; Gitari et al., 2006; Shang and Wang, 2005; Benzaazoua
et al., 2002; Fester et al., 2008).

The distinction exhibited by two fly ashes was attributed to the
mineralogical differences especially lime deficiency and lower con-
tent of the amorphous phase in fly ash B (Ward and French, 2006;
Donahoe, 2004). Furthermore, higher degree of fineness and sphe-
ricity in fly ash A contributes to its superior performance on de-
sired paste characteristics. Nevertheless, the use of additives such
as lime and cement can ameliorate the reactivity of fly ash B for
paste backfill systems (Giergiczny, 2004; Shi, 1996).

This study has clearly shown the benefits of utilising brine in-
stead of water in fly ash paste backfill applications. The ultimate
goal and benefit to stakeholders is ensuring water conservation
and sustainable energy generation from coal.

5. Conclusions and recommendations

The important findings of this study reveal that:

� Paste backfill of brines with fly ash is possible if suitable mate-
rials are used.
� The paste properties are site-specific and generalisation may be

too risky and inaccurate.
� Paste behaviour is better explained by considering chemical,

mineralogical and physical properties of the fly ash in addition
to brine chemistry of the mixing water.
� Fly ash characteristics seem to play a more important role than

brine chemistry because fly ash is the major component and
provides stabilisation of contaminants in the paste disposal
application.

This manuscript was extracted from the PhD thesis of the lead
author. Future research will have to investigate ways of ameliorat-
Please cite this article in press as: Mahlaba, J.S., et al. Effect of fly ash characte
Miner. Eng. (2011), doi:10.1016/j.mineng.2011.04.009
ing the characteristics of fly ash B to achieve similar paste proper-
ties as fly ash A. The leachability of resultant pastes will be a
critical factor in determining the environmental impact of this
promising application.
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