ON STOCHASTIC MODELS DESCRIBING THE MOTIONS OF
RANDOMLY FORCED LINEAR VISCOELASTIC FLUIDS

P.A. RAZAFIMANDIMBY

ABSTRACT. This paper is devoted to the analysis of a stochastic equation de-
scribing the motions of a large class of incompressible linear viscoelastic fluids in
two-dimensional subject to periodic boundary condition and driven by random
external forces. To do so we distinguish two cases, and for each case a global
existence result of probabilistic weak solution for is expounded in this paper. We
also prove that under suitable hypotheses on the external random forces the so-
lution turns out to be unique. As concrete examples, we consider the stochastic
equations for the Maxwell and Oldroyd fluids that are of great importance in the
investigation towards the understanding of the elastic turbulence.

1. INTRODUCTION

The study of turbulent flows has attracted many prominent researchers from dif-
ferent fields of contemporary sciences for ages. For indepth coverage of the deep and
fascinating investigations undertaken in this field, the abundant wealth of results
obtained and remarkable advances achieved we refer to the monographs [19, 32, 34]
and references therein. Recent study, see for instance [7], has showed that the non-
Newtonian elastic turbulence can be well understood on basis of known viscoelastic
models such as the Oldroyd fluids or the Maxwell fluids. Indeed, by computational
investigations of the two-dimensional periodic Oldroyd-B model the authors in [7]
found that there is a considerable agreement between their numerical results and
the experimental observations of elastic turbulence.

The irregular or random nature of all turbulent flows makes any deterministic
approach to turbulence problems impossible. For this reason the idea of introduc-
ing a noise term for modeling random influences acting on any evolutive fluid has
now become widely recognized. Such approach in the mathematical investigation
for the understanding of the Newtonian turbulence phenomenon was pioneered by
Bensoussan and Temam in [6] where they studied the Stochastic Navier-Stokes Equa-
tion(SNSE). Since then stochastic models of fluid dynamics have been the object
of intense investigations which have generated several important results. We refer
to [5], [10], [11] , [14], [18], [33], [49], just to cite a few. Similar investigations for
Non-Newtonian elastic fluids have almost not been undertaken except in very few
works; we refer for instance to [21],[23], [24], [30], [35], [48] for some example of the
computational studies of stochastic models of polymeric fluids and to [9], [22], [25],
[26] for their mathematical analysis. It should be noted that the study of stochastic
model for viscoelastic fluids is relevant not only for the analytical approach to tur-
bulent flows but also for practical needs related to the Physics of the corresponding
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fluids (see [32] for example). It is also very important for the study of the dynamical
behavior of the fluids (see for instance [35] for the case of polymeric fluids).

Motivated by the facts cited in the two preceding paragraphs we propose in the
present paper to analyze the following problem which is subject to the periodic
boundary condition:

du + (u.V)udt + VRdt = divodt + F(u, t)dt + G(u,t)dW,

divu = 0, (1)
[ u(z)dz =0,
Ujt=0 = U0,

t € [0,7], T € (0,00]. This system describes the motion of a large class of in-
compressible linear viscoelastic fluids driven by random external forces and filling
a periodic square D = [0, L]> C R?, L > 0. Here u, R, W represent respectively a
random periodic in space random velocity with period L in each direction, a random
scalar pressure and a R™ -valued standard Wiener process, m € {1,2,3....}. The
tensor o = (0;;) is the deviator of the stress tensor of the fluid, we assume through-
out that it is a traceless tensor (tro = 0). In this work we should distinguish the
case
o =KD, (2)

and

o =2vD + KD, (3)
where

D = (1/2)(Vu + V'u),

and the operator K is a continuous mapping satisfying some hypotheses (see (11)-
(13)). Note that the problem we consider here is physically meaningful and of great
importance for the applied sciences . Indeed thanks to the monographs [8], [35] and
the papers [3], [7], and [48] for instance, the system (1) can be taken as a relevant
model of turbulent polymeric fluid.

The mathematical works on some linear viscoelastic fluids undertaken by the
Soviet mathematician Oskolkov in [36, 37, 38] and by Ladyzhenskaya in [29] have
influenced the emergence of the paper [28] where a global solvability result of the
deterministic counterpart of the system {(1),(2)} (resp. {(1),(3)}) subject to the
periodic boundary condition (resp. nonslip boundary condition) was given. To the
best of our knowledge similar investigations for the two general stochastic models
{(1),(2)} and {(1),(3)} have not been undertaken yet. The purpose of this paper
is to prove that under suitable conditions on K, F' and G each of our stochastic
models is well-posed (see Theorems 3.3, 3.4, 4.2 and 4.3). In view of the technical
difficulties involved , we provide full details of the proof of our results. Due to
nontrivial difficulties that arise from the nature of the nonlinearities involved in (1)
other mathematical issues such as existence, uniqueness of the invariant measure
and its ergodicity are beyond of the scope of this work; we leave these questions for
future investigation.

The layout of this paper is as follows. In addition to the current introduction
this article consists of three other sections. In Section 2 we give some notations,
necessary backgrounds of probabilistic or analytical nature. Section 3 is devoted to
the detailed analysis of the problem {(1),(2)}. We prove the existence and pathwise
uniqueness of its probabilistic weak solution which yields the existence of a unique
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probabilistic strong solution. In the very same section we consider the stochastic
equations for randomly forced generalized Maxwell fluids as a concrete example.
In Section 4 we only state the main theorems related to {(1),(3)} and apply the
obtained results to the stochastic model for the generalized viscoelastic Oldroyd
fluids; we refer to the previous section for the details of the proofs.

2. PRELIMINARIES-INOTATIONS

This section is devoted to the presentation of notations and auxiliary results
needed in the work. Let O be an open bounded subset of R?, let 1 < p < oo and
let k£ be a nonnegative integer. We consider the well-known Lebesgue and Sobolev
spaces LP(O) and H*(O), respectively. We refer to [1] for detailed information on
Sobolev spaces. Let L be a nonnegative number and D = [0, L]? be a periodic box
of side length L. We denote by H*(D) the spaces consisting of those functions u
that are in Hf, .(R?) and that are periodic with period L:

u(z + Lry) = u(x), i =1,2,

where {r;,r,} represents the canonical basis of R?. Here the space HY (R?) is the
space of functions u such that u, is an element of the Sobolev space H*(O) for
every bounded set @ C R2. For functions v of zero space average , that is

/ vdr = 0,
D

the following Poincaré’s inequality holds
[v] < PlJv]| Yo € H'(D), (4)

where |.|s. denotes the L?>-norm, P > 0 is the Poincaré’s constant and ||.||s. denotes
the semi-norm generated by the scalar product

Ju Qv
dy —
(u,v) /Vqux Z/axlﬁml
V is the gradient operator. From now we denote by H}(D) the space
H(D) = {u:uEHl(D) and / udsz}. (5)

D
Thanks to (4), we can endow H{(D) with the norm [|.||s.. Besides Poincaré’s in-
equality we also have

clulm py < |curlu| < ¢fful], (6)

which holds for any divergence free fields. For 3 € R we can define the space H?(D)
via their expansion in Fourier series so that we also have the space

udx::O}. (7)

We refer to [47] (see also [12], [19]) for more details about these spaces.We proceed
with the definitions of additional spaces frequently used in this paper.
In what follows we set

HﬂD%:%MueHﬂDﬁmiA

XM - X x ... x X,
—_——
M times

and

X=X x X,
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for any Banach space X and any positive integer M. If |.|x is the norm on X, then

M
ulon = Y wilk-
i=1
We introduce the spaces

per

V= {u € [Cc2 (D)]®*: divu = 0 and / udr = O}
D

V = closure of V in HY(D)
H = closure of V in L?(D),

where C5¢,.(D) denotes the space of infinitely differentiable periodic function with
period L.

We denote by (-,-) and | - | the inner product and the norm induced by the inner
product and the norm in IL?(D) on H, respectively. Thanks to Poincaré’s inequality

(4), we can endow V with the norm |[|.||, which is defined by

2
llul =D il
i=1

From now on, we identify the space H with its dual space H* via the Riesz repre-
sentation, and we have the Gelfand triple

VCHCV, (8)

where each space is dense in the next one and the inclusions are continuous. It
follows that we can make the identification

(v,w) =< v,w >,

for any v € H and w € V. Here < .,. > denotes the duality product V* V.

Next we define some probabilistic evolution spaces necessary throughout the paper.
Let (2, F, (F)o<i<T, P) be a given stochastic basis; that is, (2, F, P) is complete
probability space and (F;)o<t<r is an increasing sub-o-algebras of F such that Fy
contains every P-null subset of 2. For any real Banach space (X, |.|x), for any
r,p > 1 we denote by LP(Q,F, P;L"(0,T; X)) the space of processes u = u(w,1)
with values in X defined on Q x [0, T] such that

(1) u is measurable with respect to (w,t) and for each t, w — u(w,t) is F'-
measurable.
(2) u(w,t) € X for almost all (w,t) and

T e >
|[ull Lo, 7P (0.1:x)) = <E </ ||U||Txdt> ) < 00
0

where E denotes the mathematical expectation with respect to the proba-
bility measure P.

When r = oo, we write

3=

|[ul| Lo .7, Py (0,1, )) = (E sup ||u||§() < 0.
0<t<T
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For p > 1, we also consider the space LP(0,7; X) of X-valued measurable functions
u defined on [0, 7] such that

. .
mewmz(/uwa@ < o0
0

Let W be a standard Wiener process defined on the stochastic basis (2, F, (F;)o<t<r, P)
and taking its values in R™. Given a measurable and F;-adapted X®™-valued pro-
cess f such that

T
E/)uummwu<a%
0

the process

t
100 = [ f6)aw(s), 0<e<T,
0
is well defined and is a continuous martingale. Moreover it satisfies

EI(f)(t)=0, 0<t<T, 9)
EWﬁ@&—@[U@@@»gtﬁf (10)

We refer to [20, 27](see also [13])for further reading on probability theory and sto-
chastic calculus.

Let X be a separable complete metric space and B(X) its Borel o-field. A family
I, of probability measures on (X, B(X)) is relatively compact if every sequence of
elements of Il contains a subsequence I, which converges weakly to a probability
measure II, that is, for any ¢ bounded and continuous function on §2,

/ ¢(s)dlly, — / o (s)dIL.

The family II} is said to be tight if for any € > 0, there exists a compact set K. C €2
such that P(K.) > 1 — ¢, for every P € Il.
We have the well-known result.

Theorem 2.1 (Prokhorov). Assume that X is a Polish space, then the family Iy
15 relatively compact if and only if it is tight.

We shall use the following useful theorem due to Skorokhod.

Theorem 2.2 (Skorokhod). For any sequence of probability measures I1;, on 2 which
converges to a probability measure 11, there exists a probability space (U, F', P') and
random variables Xy, X with values in Q such that the probability law of Xy (resp.
X) is Hg(resp. 11) and limg_, o X = X P'-a.s.

We refer to [13] for the proofs of the two last results.
The following result is very important in Section 3.2 Part 2 where we prove a
probabilistic compactness result, its proof can be found in [44].

Theorem 2.3. Let X, B,Y three Banach spaces such that the following embedding
are continuous

XcBcCY.
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Moreover, assume that the embedding X C B is compact, then the set § consisting
of functions v € L1(0,T; ByN L} (0,T; X), 1 < ¢ < co such that

loc

to
sup / lv(t +h) —v(t)|ydt — 0, ash — 0,

o<n<1 Jy
for any 0 < t; <ty < T is compact in LP(0,T;B) for any p < q.

Throughout the symbol o : ¢’ denotes the summation

2
o:0 =tr(oo) = E Oik Ol
ik=1

We assume that K is a symmetric tensor valued continuous mapping which satisfies
the following

e K is bounded, that is

T T
E/ IKD|?dt < CE/ ID|2dt. (11)
0 0
e For any D; and Dy we have
[0,T]xD
and
Dx[0,T]

Remark 2.4. The hypotheses (12) seem to be artificial but in accordance to Chap-
ters 2-3 of [2] it has physical meanings. Indeed we have that

—(diva,u):/J:Vu:/a:D,
D D

and this means that the dissipation of energy is positive. This remark was already
stated in Section 1 (Introduction) of [28]. The assumption (13) is a mathematical
assumption which allows as to prove the well-posedness of the models we treat. They
are satisfied at least for general viscoelastic flows generated by the linear rheological
equations of the type

o= /OtK(t — 7)D(z, 7)dr.

We refer to Chapter 5, Section 5.2 of [8] for some examples of these linear viscoelastic
fluids. We also notice that when K is linear then the hypotheses (13) and (12) are
equivalent.

3. ANALYSIS OF THE STOCHASTIC EQUATION OF THE TYPE {(1),(2)}

In this section we investigate the stochastic equations {(1),(2)}. The first section
is devoted to the statement of the main results which is going to be proved in the
second subsection.
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3.1. Hypotheses and statement of the main results. For this section we sup-
pose that

(HYP 1) the mapping F' induces a nonlinear operator from H x [0, 7] into V which
is assumed to be measurable (resp. continuous) with respect to its second
(resp. first) variable. We require that there exists constant C'r > 0 such that
for almost all ¢ € [0,7] and for each u € H
|| F(u, )] < Cp(1 + [ul), (14)
(HYP 2) the V¥"-valued function G defined on H x [0,T] is measurable (resp. con-
tinuous) with respect to its second (resp. first) argument, and it verifies
|G (u, t)|vem < Ca(1+ Jul), (15)

for almost everywhere ¢ € [0, 7] and for any v € H.
HYP 3) We assume as well that there exist two positive constants C. and Cf, such
F G
that

[1F(u,t) = F(v,8)]| < Cplu— v, (16)
|G(u,t) = G(v,t)lyem < Clu—vl, (17)
for any u,v € H.
(HYP 4) In addition to (11)-(13) we assume furthermore that
0 < —(curldiv(KD), curl u). (18)
Remark 3.1. For a vector u € R?, the operator curl is defined by
curlu = % — %
0ry Oxy
The divergence of a tensor field D is defined using the recursive relation
div(D).c = div(c.D), dive = tr(Vv)

where c is an arbitrary constant vector, v is a vector field, and tr(D) denotes the
trace of D .

Karazeeva remarked in Section 5.2 of [28] that when K and 0d\Ozy, k = 1,2,
commute then (18) is a consequence of (12). The condition (18) is met when K is
given by the second equation in Remark 2.4.

We introduce the concept of the solution of the problem {(1),(2)}.

Definition 3.2. By a probabilistic weak solution of the problem {(1),(2)}, we mean
a system

(Q,F, P, F", W, u),
where

(1

) (Q,F, P) is a complete probability space, F* is a filtration on (2, F, P),
(2) W(t) is an m-dimensional F* standard Wiener process,
(3) u € LP(Q, F, P; L®(0,T; V)) N LP(Q, F, P; L=(0, T; H)),
(4) For almost all ¢, u(t) is .7-'1 measurable,
(5) P-a.s the followmg integral equation of Ito type holds
(u(t) — u(0), 6) + / / (KD : Vé)drds — / (w.V), u)ds
o Jp 0

= [Pt 9.0+ [ (Gt s).0am
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for any ¢ € [0, 7] and ¢ € V.
We have

Theorem 3.3. If uy € V and if the hypotheses (HYP 1),(HYP 2) and (HYP /)
hold then the problem {(1),(2)} has a solution in the sense of the above definition.
Moreover, almost surely the paths of the solution are V (resp. H )-valued weakly (resp.
strongly) continuous.

Theorem 3.4. Assume that (HYP 1)-(HYP /) hold and let uy and ug be two prob-
abilistic weak solutions of {(1),(2)} starting with the same initial condition and
defined on the same stochastic basis (Q, F,F*, P) with the same Winer process W.
If we set v = uy — uy, then we have v =0 almost surely.

3.2. Proof of Theorems 3.3 and 3.4. This subsection is devoted to the proof of
the existence and uniqueness results stated in the preceding subsection. We split the
proof into parts. The proof of the existence theorem is inspired by the works [28],
[5] (see also [18]). Throughout this subsection C' will designate a positive constant
which depends only on the data (ug, T, Cr, Cg).

Part 1. The Approximate solution and some a priori estimates

In this part we derive crucial a priori estimates from the Galerkin approximation.
They will serve as a toolkit for the proof of the Theorem 3.3.
The operator —A is a self-adjoint and positive definite on H, and its inverse is
completely continuous. Therefore H has a complete orthonormal basis consisting
of the eigenfunctions (¢;);>1 € [C®(D)]*? of —A. The family (¢;);>1 € [C™(D)]*?
forms an orthogonal basis in V. We now introduce the Galerkin approximation for
the problem (1)-(2). We consider the subset Hy = Span(ey,...,exy) C H and we
look for a finite-dimensional approximation of a solution of our problem as a vector
u™ € Hy that can be written as:

N

u®(t) = Z ein(t)ei(z). (20)

i=1
We set
DY = (1/2)(Vu™ + V).

Let us consider a complete probabilistic system (Q, A, P, F*, W) such that the filtra-
tion {}"t} satisfies the usual condition and W is an m-dimensional standard Wiener
process taking values in R™. We require u” to satisfy the following system

d(u®,e;) + (/D(KDN ; Vei)dx) dt — (. V)eg, u™)dt = (F(u,t), e;)dt

+(G(uN7 t), ei)dW>

(21)

i € {1,...,N}. Here v} is the orthogonal projection of ug onto the space Hy ,

uév — ug strongly in H
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as N — oo. The sequence of continuous functions u” exists at least on a short

(possibly random) interval (0,Ty). Indeed the coefficients C;y satisfies

0 Oe;
dClN + Z <Z/ 8—26k821> CkN ]N dt+ Z CkNVek )dt

k,j=1

= (F(u™, 1), ei)dt + (G(u, 1), e;)dW,

which is a system of stochastic ordinary differential equations with continuous co-
efficients. Thanks to the existence theorem stated in page 59 of [45] (see also [27]
Theorem 4.22, page 323) we infer the existence of continuous functions Cin on
(0, Ty). Global existence will follow from a priori estimates for u™. We denote by
E the mathematical expectation with respect to P.

Lemma 3.5. We have
E sup [uN(t)]F < C, (22)
0<t<T
forany2 <p<ooandl < N < oo.

Proof. Thanks to Ito’s formula we derive from (21) that

dlu™|? + 2 (/D(KDN DN)dx> dt = 2((F(t,u™),u™))dt + Z(G(t,uN), e;)%dt

+2(G(t,u™), u™N)dW,
(23)

where we have used the fact that ((u.V)v,w) = —((u.Vw),v) for any u,v,w € V.
Thanks to (12) we get

du™|? < 2|(F(u™,t) ||uN|dt+Z e;)2dt + 2(G(t,u™), u™M)dW.  (24)
More generally we have
dlu™ " < p|(F(u™, 8)|Ju™[P~1dt + (1/2)(p(p — 1)) Z\u PGt u™), e)dt

+p]uN]p 2(G(t,u™), uM)aw,
for all 2 < p < co. For any integer M > 1 we introduce the stopping time

~Jinf{t > 0; [uN ()| > M}
M (>0 WV ()] > M) =0.

Owing to Schwarz’s inequality and the assumptions (14)-(15) we have that

tATM
sup  [u” (s)[” S!uév|p+pCF/ (L + [ D]u™(s) P ds
0

+ (1200~ 1) Z / WG ), s (26)

sup
0<s<t/\7’]y[
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Since
N

> (Gt u), e)? < |G, ) ffon,
i=1
we derive from (26) and (15) that

tATM

tATM
sup |V (s) < pC / N (s)Pds + Cplp — 1) / P21 4 [ P)ds
0

OSSSt/\T]W

+Hu)' [P +p  sup

0<s<tAT)p

/|uN|p2 s,u),u dW'—I—C’T

Using Holder’s inequality and taking the mathematical expectation in both sides of
this estimates yield

_ _ tATM
E sup |uN(s)\p §E|uév|p+C'E/ lu N( )|Pds

0<s<tAT)N

(27)
+pE  sup / |u™ PG (s, u™), u dW' + pClp,
0<s<tATpr
Let us set
AN = sup / [N P2 (G (s, u™), uN)dW’
0<s<t/\T1\/[
By Burkholder-Davis-Gundy’s inequality we obtain
B tATm 1/2
p <k ([T G i) (28)
0

_ tATM p/2
P <pCE s P ([ G ) s )
0<s<tATr 0
which with the assumption (15) implies that
B _ tATM
N < (1/2)E sup  |uV|P + (1/2)05/ [N P21+ [u?|)?ds (29)
0<s<tATN 0

Out of this and (27) we infer that

— _ _ t/\TM

E sup [uN(s)]P < E|uév|p + C(p,Cr, Cg)E/ lu™ |Pds.

0<s<tATM 0

This estimate implies that

t
h(t) < E|uévlp+/ h(s)ds,
0
where h(t) = E supg<,<inyr,, [t~ (s)|P. Now, Gronwall’s Lemma implies that

E sup |uM(s)]” < C(p,uo,Cp,Cq,T), t € (0,T) (30)

0<s<tATN

It remains to prove that Ty = T', to do so we must prove that 75, /" T almost surely
as M — oo. This is classic but we prefer to give the details. From the continuity of
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u™ we infer that u™(7y;) > M. For any t € (0,T), E(1,,,«) =
have that

(T < t). We also

P
] o
E s [u¥(s)] 2E< sup (Ju( mm)

0<s<tAT\ 0<s<7pn
2M2P(TM<t) (OT

We infer from this, (30) and the monotonicity of 7); that 7py " T a.s. as was
required. Since the constant C' in (30) is independent of N and M, Fatou’s Theorem
complete the proof of the lemma. O

The estimate of Lemma 3.5 is not sufficient to pass to the limit in the nonlinear
term. We still need to derive some additional crucial but nontrivial inequalities.

Lemma 3.6. We have B
E sup [lu™(t)||” < C, (31)

0<t<T
forany2<p<ooandl < N < oo.

Proof. Let PN be the orthogonal projection of V* onto the span {e1, ...,ey} that is

N
PYh = Z(h, €;)€;
j=1

Because PYuY = u”, we can rewrite the equation (21) in the following form which
should be understood as the equality between random variables with values in V*

du™ — PN (div(KD™))dt + PN (u . Vu)dt = PYF(u?, t)dt+ PNG(u™, t)dW. (32)
Applying the operator curl (= VA) to both sides of this equation implies
d¢N — VA (PY(div(KDM))dt + V A (PN (uN.Vu))dt = V A (PYF (U, t))dt
+V A (PYG ™ t))dW,

where (¥ = V AuY. Thanks to the regularity of the e;-s, the function (¥ is periodic
at the boundary of the square D. Ito’s formula for the function |[¢(V]? implies that

d|cN]? = 2(V A (PY(div(KDY))), ¢(MYdt — 2(V A (PYF(N 1)), ¢N)dt
= |V A (PYG@WN,t)2dt +2(V A (PG (WY, 1)), ¢YV)aw .
where we have used the fact that
2 < VA(PYuN.Vu)), ¥ >=0
in the periodic boundary condition setting. More generally
d|¢M P = pl VPV A (PN (div(KD™Y))), ¢M)dt — p|¢Y PV A (PYF(u™, 1)), ¢V)dt
— (1/2)p(p — DICY P2V A (PYGW™, )2t + plcV P2V A (PG, 1)), ¢V,

for 2 < p < oco. We use the divergence freeness of vV, the periodicity of (¥ and the
identities

curl(curlv) = —Av 4+ V(div ),

(curlv, ¢) = (v, curl ¢) +/ (v x n)¢dz,
oD
PNAUN = A(PYuY) = Au®

Y
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to reach
(V A (PY(div(KDY))), ) = (div(KD"Y), V A ¢M).

By utilizing Schwarz’s inequality and (18), we derive from the last estimate that
t
OP <1+ 120 - 1) [ 1P AP 0)Pds
0

| [ 1029 A pr G ), cNMW]
0

t
4 [PV A PYFY, 0)lds
0
Thanks to the estimates (6), (14) and (15) we deduce from the above estimate that

E sup [¢V(s)" < pE sup
0<s<t 0<s<t

[ 1vp e n (e ), cNW\
0 . (33)
+EIGP +pE [ |¥Plds +OT
0
Let us set

'V = pE sup

0<s<t

/0 AT A (PYGWN, 1)), ¢

By using Burkholder-Davis-Gundy’s inequlity and Schwarz’s inequality we obtain

s 1/2
pry §E< / r<N|2p4|w<PNG<uN,t>>\2|<NPds) .
0

We derive from this, the estimates (6) (this is allowed since PYG(u,t))Hy ) and
(15) that

t
PO < (1/2)E sup |V + CE / N pds
0<s<t 0

From this, (33) and Gronwall’s lemma we deduce that

E sup |CN(S)|p < C.

0<s<t
Owing to (6) the proof of the lemma is finished. O

The following result is central in the proof of the forthcoming tightness property
of the Galerkin solution.

Lemma 3.7. For any 0 < < 1 we have

-5
Esup/ [u™ (s 4+ 0) — u™(s)
16]<é Jo

T < C6. (34)

Proof. We can rewrite the equation (21) in an integral form as the equality between
random variables with values in V*

t t t
uN—/ PN(div(KDN))ds+/ PN(uN.VuN)ds:uéV+/ PYF(u™, t)ds
0 0 0
v (35)
+/ PNG N, t)dW.
0
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By using the triangle inequlity for the norm |.|y«, we deduce from (35) that

[ (t +0) — u™ (t) 2.ds

2

t+60 t+6
3. <CH / | div(KD™)|3.ds + C# / |(u . Vul)
t t

t+6 t+6 B
—i—C’@/ |F(u?, s)|*ds + C / PNG N, 5)dW
¢ ¢

Y

for any 0 < # < 4. This estimate, the continuity of div as linear operator along with
(11), (14), Lemmas 3.5 and 3.6 implies that

_T=5 pths
%;*dtSC'(SvLC'(SE/ / |(u™ . Vul)
0 ¢

T-5
+C’/ E sup
0

0<0<6

2. dsdt

T-6
E sup / ™ (t 4+ 0) — u™(t)
0

0<6<6
2

dt.
(36)

t+6 B
/ PNGuN, s)dW
t

By making use of Martingale inequality, (15) and Lemma 3.5 we have that

pT—6 s
2 dt < CSF /0 / (N V)
t

+Co + C5°.

Tedsdt

E sup / : [ (t 4 0) — u™ (t)

0<6<6 Jo

By the well-known inequality
(@ Vu") [ < Cplu™?||u™]?, (37)

which holds in the 2-dimensional case, we obtain that

Sedt < C6.

B T-5
E sup / ™ (t +0) — u™(t)
0

0<0<6

To complete the proof we use the same argument for negative values of 6. OJ

Part 2. Tightness Property and Application of Prokhorov’s and
Skorohod’s Theorems

We denote by 3 the following subset of L*(0, T; H):

T—pm
3= {zEL”(O,T;V); sup / |2(t +0) — 2(t)|3- SC’VM},
0

6] <par

for any sequences vy, pps such that vy, pupyr — 0 as M — oo and ZMzo pns /v <
oo. The following result is a particular case of Theorem 2.3 (see also Proposition
3.1 in page 45 of [4] for a similar result).

Lemma 3.8. The set 3 is compact in L*(0,T;H).

Next we consider the space & = C(0, T;R™) x L?(0, T; H) endowed with its Borel
o-algebra B(6) and the family of probability measures IIV on &, which is the
probability measure induced by the following mapping:

b rw i (W(w, ), u(w,.).

That is, for any A € B(&), IIV(A) = P(¢~(A)).
We have the following theorem.
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Lemma 3.9. The family (1Y) n>1 is tight in .

Proof. For any € > 0 and M > 1, we claim that there exists a compact subset K. of
G such that ITV(K.) > 1 — . To back our claim we define the sets

W.={W: sup 2%5|W(t)—W(s)| <., VM
t,s€[0,T
|t—s|< 31

and

3= {z swp P <K, sup [|2(0)|P < L.,
0<t<T 0<t<T

T—pm
sup / |2(t +0) — 2(t)|3.dt < REVM}
0

10| <pnr

where J,, K., L., R, are positive constants to be fixed in the course of the proof. The
sequences vy, and s are chosen so that they are independent of €, vas, s — 0
as M — oo and ), P < oco. It is clear by Ascoli-Arzela’s Theorem that 20,
is a compact subset of C'(0,7;R™), and by Lemma 3.8 3. is a compact subset of
L?(0, T;H). We have to show that P. =TIV ((W,u”) ¢ 2. x 3.) < e. Indeed, we
have

oo 2M
p-<P|JU (Sup W (t) — W(s)| > Ji) +P ( sup | (1) > K)
M=1j=1

t,s€l; 2% 0<t<T
B T—pn
+ P U sup / | (t + 0) — u™ (t)[3dt > Rovy
M |6|<par 4O
#2101 > 2.,
0<t<T

where {I; : 1 < j < 2M} is a family of intervals of length 55 which forms a partition
of the interval [0, 7. It is well known that for any Wiener process B

E|B(t) — B(s)]*™ = Cp|t — s|™ for any m > 1,

where (), is a constant depending only on m. From this and the Markov’s Inequality
_ 1 -
Plw: ¢(w) 2 a) £ —B(((w)

where ((w) is a random variable on (€, F, P) and positive numbers k and «, we
obtain

[e.9]

2m 1 T\™ 1 - 1 =
<330 ()" 5 () + sl OF + 1 sup [0

i 1<T L. o<i<r

1 _ T—pnm N N
-I—Z E sup /0 [u™ (t+6) —u(t)
M

2
- 2 dt.
VM |0|<pm
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Owing to the lemmas 3.5, 3.7 and by choosing m = 2, we have

o

CyT? i 1 1 1
Po< oS 2y O b S
JE K. L. R.“wy
CQTZ 1 1 1 MUar

< 1++2 — =Y B,
< ( +\/_)+C(KE+L€+RE%:VM>

A convenient choice of J., K., L., R. completes the proof of the claim, and hence
the proof of the lemma. O

Now it follows by Prokhorov’s Theorem that the family (IIV)ys; is relatively
compact in the set of probability measures on & equipped with the weak convergence
topology. Then, we can extract a subsequence I+ that weakly converges to a
probability measure II. By Skorohod’s Theorem, there exists a probability space
(2, F, P) and random variables (W™« «™+) and (W,u) on (2, F, P) with values in
G such that

W — W in C(0,T;R™) P — a.s,
™ — win L*(0,T;H) P — a.s.
Moreover, the probability law of (W« uMNe) is TIV* and that of (W, u) is II.
For the filtration F*, it is enough to choose o(W(s),u(s) : 0 < s < t).
By the same argument as in [4] (Section 3.3 page 49) we can prove that the limit pro-
cess W is a standard m-dimensional Wiener process defined on (Q, F, {F*}o<i<r, P).

Theorem 3.10. The pair u™Ne, W satisfies the equation

(e (1), &) + /Ot /D(KD : Ve;)dxds + /Ot((UN“-vei)’uNM)dS (38)

; t
= @)+ ()8 eds + [ (Gl ). 5)edi
0 0
for almost all w € Q, for any t € [0,T] and 1 <i < N,,.

Proof. The proof follows the same lines as in [5] (Section 4.3.4 page 282) , so we
omit it. U

Part 3. Passage to the limit

To back our goal we need to pass to the limit in the terms of the estimate (38).
From the tightness property we have

™ — win L*(0,T; H) P-a.s, (39)

as N, — oo. Since u™r agrees with (38), then it verifies the same estimates as u”.

In particular the estimate

P
E sup ‘uN“‘ <C,
0<t<T

for p > 2 implies that the norm [u™* |27 is uniformly integrable with respect to
the probability measure. Therefore, we can deduce from Vitali’s Theorem that

u™Ne — w in L*(Q, F, P, L*(0, T; H)), (40)
as N, — oo. It is readily seen that
(UNNJ €i>V - (u7 ei)V Wea‘kly in L2(Q7f7 P7 L2(07 T))



STOCHASTIC MODELS FOR GENERALIZED VISCOELASTIC FLUIDS 16

Thanks to the convergence (40) and the continuity of K we see that
/ (KD : Ve;)dr — / KDVe;dx strongly in L*(Q2, F, P; L*(0,T)),
D D

as N, — oo. Let x be an element of L>°(Q2 x [0,T],dP ® dt). Thanks to (40) we
can prove by arguing as in [31] that

E/o (e Ve;), u™w)xdt — E/o ((u.Ve;),u)xdt, (41)

as N, — oo. The dense injection
L>®(Q x [0,T),dP ® dt) € L*(Q x [0,T],dP ® dt),
together with the relation (41) show that
(M. V)es, u™) = ((u.V)e;, u) weakly in L*(Q, F, P; L*(0,T)), (42)

as IV, — oo0.
It follows from the continuity of F'; (40) and Vitali’s Theorem that

PNeF(ue(,),.) — F(u(.),.) strongly in L*(Q, F, P; L*(0,T;V)), (43)
as IV, — oo. This implies in particular that
(F(u™(,)..),e1) = ((F(u(.), ), ;) strongly in L*(Q, F, P; L*(0,T)),

as N, — 0o. We can use the argument in Section 4.3.5 of [5] (see also [41])to prove
that

t ¢
/ (G(uM*)5), e;)dW e — / (G(u, s), e;)dW weakly in L*(Q, F, P; L*(0,T)),
0 0

(44)
for any ¢ € (0,7)and as N, — oo.

Combining all these results and passing to the limit in (38), we see that u satisfies
the equation (19) which holds for almost all w € Q, for all ¢ € [0,7]. This proves
the first part of Theorem 3.3. By arguing as in [39] (Chapter 2, Lemma 1.2) we get
the continuity result stated in Theorem 3.3.

Part 4. Proof of the uniqueness of the solution

Let u; and us be two probabilistic weak solutions of {(1),(2)} starting with the
same initial condition and defined on the same stochastic basis (Q, F, F*, P) with
the same Wiener process W. Set v = u; — uy and

D, = (1/2)(Vv + V'),
It can be shown that the process v satisfies the equation

dv(t) — ]P)le(KDl — KDg)dt + P((U1V)U1 — (UQV)Ug)dt
= (F(wi(t),t) — Flus(t),t))dt + G(uy (), t) — Gus(t), t)dW,
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where P is the projector from L?(D) onto H. Thanks to Ito’s formula for |v|? we
have

()] + 2/(:/D(KD1 — KD, : D,)dzdt + Q/Ot((v.V)ul,v)ds
= /Ot (2(F(ur(s),s) = Flua(s), 5),v(s)) + |G (ui(s), 5) — G(ua(s), s)|*) ds
+2 [ (Gn(5)9) = Glua(s). )05
Setting o(t) = exp( [ —n|[u1(s)||*ds), ¥n > 0, we have that
()2 +2/0ta(s)/D(KD1 _KD, : Dv)dxdt+Z/Oto(s)((v.V)ul,v)ds
= /OtO'(S) (2(F(ur(s),s) = Flua(s), s),v(s)) + |G (ui(s), ) — G(ua(s), s)*) ds
+2 /OtU(S)(G(Ul(S% s) — G(uz(s), s),v(s))dW
[P s
By the assumptions on K, F, G and (37) we have
Eo(t)o(t)|* < 2CpE /OtU(S)\U(S)\zHul(S)HdS +20%E /OtU(S)\U(S)\ZdS

+03E/0 0(8)Iv($)|2d8—77E/0 o (s)l[us ()|[*v(s)[*ds,

which implies

t

Eo(t)o(t) < C3E / o()[o(s) s (5)][?ds + CE / o(s)[o(s)Pds

t
=182 [ a(s) s (9)|Ffo(s) P
By choosing 7 = C% and by making use of Gronwall’s lemma we have
Eo(t)u(t)|* =0, (45)

for any ¢ > 0. Since 0 < o(t) < oo, then this completes the proof of the Theorem
3.4.

3.3. Example: The stochastic equation for the Maxwell fluids. The motion
of a randomly forced Maxwell fluids is given by the system {(1)-(2)}. The tensor o
for the Maxwell fluids is given by

L al L—1 B al
LY N Jo=2u (14> k' | DL L=28. (46)
=1 =1
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where A\; > 0 and k; > 0 represent the relaxation and retardation times, respectively.
Considering the polynomials
L

Po(p) = p+ ) (ki —vA)p,

i=1
L

Qp) =1+ \p.
-1

It is shown in [28] that the operator K for the Maxwell fluids is given by

L t
KD =) / BMem 0D (2, 7)dr, (47)
1=1 70

where

B = Pu(-a)[Q (-]
is assumed to be positive. Here the numbers —a; designates the roots of the poly-
nomial (). The result in [28] shows that K satisfies (11)-(13) and (18). Hence the
results in Theorems 3.3, 3.4 applied to the stochastic equations {(1)- (2), (47)} for
the Maxwell fluids provided that the assumptions (HYP 1)-(HYP 4) hold.

4. STOCHASTIC EQUATION OF TYPE {(1),(3)}

This section is devoted to the investigation of {(1),(3)}. We omit all the details of
the proofs since they can be derived from similar idea used in the previous section.
We state our main results in the first subsection and we give a concrete example in
the second subsection. For this section we suppose that

(AF) the mapping F' induces a nonlinear operator from H x [0, 7] into H which
is assumed to be measurable (resp. continuous) with respect to its second
(resp. first) variable. We require that for almost all ¢ € [0, 7] and for each u

[F(u, )] < Cp(1+ Jul). (48)

(AG) The H®*™-valued function G defined on H x [0, T is measurable (resp. con-
tinuous) with respect to its second (resp. first) argument, and it verifies

|G (u, t)[mem < Ca(l + |ul), (49)

for all t € [0, 7] and for any u € H.
(ASFG) We assume as well that

|F(u,t) — F(v,t)| < Cplu — ), (50)
Gl t) = Gv, ) o < Clfu =], (51)
for any u,v € H.

4.1. Statement of the main results. We introduce the concept of the solution
of the problem {(1),(3)}.

Definition 4.1. By a probabilistic weak solution of the problem {(1),(3)}, we mean
a system
(Q,F, P, F',W,u),
where
(1) (Q,F, P) is a complete probability space, F' is a filtration on (Q, F, P),
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(2) W(t) is an m-dimensional F* standard Wiener process,

(3) w € LP(Q, F, P; L2(0,T;V)) N LP(Q, F, P; L=(0, T; H)) ¥ 2 < p < oo,
(4) For almost all ¢, u(t) is F'-measurable,

(5) P-a.s the followmg integral equation of Ito type holds

(u(t)—u(O),qf))—Fy/Ot((u,qb))ds—i—/o /DKDv(pdde/ot((u.w),u)ds

- / (F(u(s), ), &)ds + / (Gluls), 5), 6)dWV (s)
for any ¢ € [0, 7] and ¢ € V.
We have

Theorem 4.2. If uyp € H and if the hypotheses (AF)-(AG) hold then the problem
{(1),(3)} has a solution in the sense of the above definition. Moreover u is strongly
(resp. weakly) continuous in H (resp. V) with probability one.

Proof. The proof follows from the Galerkin method and the compactness method,
the procedure is very similar to the proof of Theorem 3.3 and it is even easier. We
just formally derive the crucial estimates.

The application of Ito’s formula for |u|? yields

t t t t
]u|2+2u/ Hu||2ds—|—2/ /(KD:D)d:cdt§2/ (F(u,t),u)ds—i—/ G, ) 2ds
0 0 D 0 0

t
+ug|? +2/ (G(u,t),u)dW.
0
(53)
More generally

t t t
|u|p—|—pu/ |u\P—2||uH2ds+p/ |u|p‘2/(KD ; D)dxdt—p/ 2P (u, £), u)ds
0 0 D 0

< (1/2)p(p - 1) / PG us, £) s + Juol? + p / ulP2(G (u, 1), )W,

for any 2 < p < oo. Thanks to the assumptions on K, F', G we obtain that

t
g [l 2l < Juol? + ©

0 0

Standard arguments of Martingale inequality and Gronwall’s inequality yields

E sup |u(t)]P < C. (54)

0<t<T

t

t
s+ p [ a6, ), )W,
0

Coming back to (53) we can show that

2

ay ) ||u<s>||2ds)p/ . (55)

U

We also have the uniqueness result whose proof follows from similar arguments
used in Theorem 3.4.
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Theorem 4.3. Assume that (AF)-(ASFG) hold and let uy and ug be two probabilistic
weak solutions of {(1),(3)} starting with the same initial condition and defined on
the same stochastic basis (Q, F,F', P). If we set v = uy — ug, then we have v = 0
almost surely.

4.2. Application to the Oldroyd fluids. The tensor ¢ for the Oldroyd fluids is
given by

L L
1+Z>\il o=2pu |1+ k 29 ) p L=,23 (56)
latl =zl 1 825’ ) Ty Ly Deenny
=1 =1

where \; > 0 and k; > 0 represent the relaxation and retardation times, respectively.
Let

L
P,(p)=p—v+ Z(kl — )P,
i=1

and

37 = Po(—an)|@ (—a)] "
The latter quantity is assumed to be positive. It is shown in [28] that the operator
K for the Oldroyd fluids is given by

L t
KD =Y [ A% D(s,r)dr
1=1 70

and that K satisfies the assumption (11)-(13). Therefore the Theorems 4.2, 4.3 hold
for the Oldroyd fluid provided that the assumptions on F' and G (see (AF)-(ASFG))
are valid.

Remark 4.4. The Theorem (4.2) (resp. (3.3)) holds true for those viscoelastic
fluids which do not satisfy the assumption (ASFG) (resp. (HYP 3)). One example
we can consider is the third order fluids whose tensor is given by

o =2vD + uD?.
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