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Abstract

This paper is on Fuzzy Stochastic Optimisation, an area that is quickly coming to the forefront of

mathematical programming under uncertainty. An even stronger motivating factor for the growing

interest in this area can be found in the ubiquitous nature of decision problems involving hybrid

undeterminacy. More precisely, we consider a range of situations in which random factors and fuzzy

information co-occur in an optimisation setting. Related hybrid optimisation models are discussed and

converted into deterministic terms through appropriate tools like probabilistic set, uncertain proba-

bility, and fuzzy random variable, making good use of uncertainty principles. We also discuss ways to

deal with the resulting problems. Numerical examples carried out using class optimisation software

demonstrate the efficiency of the proposed approaches. We shall end this article by pointing out some

of the challenges that currently occupy researchers in this emerging field.

Keywords: Fuzziness, randomness, optimisation, probability set, uncertain probability, fuzzy

random variable

1. Introduction

As a result of the development in computational resources and scientific computing techniques,

sophisticated optimisation models (Arnuautu et al., 2005; Pachter and Sturmfels, 2007; Zhou et al.,

1996) can now be solved efficiently. Yet many optimisation applications are affected by uncertainty in

input data or in model relationships.

In this connection the noted economist Shackle is quoted as saying (Shackle, 1961):

“In a predestinate world, decision would be illusory; in a world of perfect foreknowledge,

empty; in a world without order, powerless. Our intuitive attitude to life implies non-
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illusory, non-empty, non-powerless decision. . . Since decision in this sense excludes both

perfect foresight and anarchy in nature, it must be defined as choice in the face of bounded

uncertainty.”

Zadeh’s incompatibility principle (Dubois and Prade, 1980) also points to the importance of pondering

uncertainty quantification in complex systems.

Uncertainty can be described in several ways, depending on the information at hand. Among

mathematical tools for coping with uncertainty we mention worst case scenario analysis, evidence

theory, probability theory, fuzzy set theory, etc. Accessible accounts of these tools may be found in

Sakawa (1993), Shafer (1976), Shiryaer (1996), and in references therein.

While research has progressed at a steady pace in the fields of stochastic optimisation (Kall, 1976;

Kall and Wallace, 1994; Schultz and Tiedemann, 2006; Vajda, 1972; Wagner, 2008) and fuzzy math-

ematical programming (Bhaskar et al., 2009; Lai and Hwang, 1992; Luhandjula, 1989; Zimmerman,

1976), the past decade, in particular, has witnessed a developing interest in situations where fuzziness

and randomness are under one “roof” in an optimisation framework (Liu, 2001; Luhandjula, 2004;

Luhandjula and Gupta, 1996; Nanda et al., 2006; Van Hop, 2007a,b). This interest has been moti-

vated by the need for basing many human decisions on information which is both fuzzily imprecise

and probabilistically uncertain (Katagiri et al., 2005; Zmeškal, 2001).

The multidisciplinary research field (Luhandjula, 2006) that emerged as a result of this interest

lies at the boundary of stochastic optimisation and fuzzy mathematical programming. An interested

reader is referred to Luhandjula (2004, 2006), where the spectrum of research activities in this field

and the richness of ideas in development of theory, algorithms and applications in fuzzy stochastic

optimisation are described.

The objective of this paper is threefold. Firstly it aims to discuss some modelling issues in the area

of optimisation under hybrid uncertainty. Secondly it seeks to explore properties of probabilistic sets,

uncertain probabilities and fuzzy random variables in a way to convert hybrid uncertain optimisation

models into their deterministic counterparts. Finally, it gives some hints for procedures to solve the

resulting problems.

We focus on three chosen models in the rich array of situations where randomness and fuzziness

are under one roof in an optimisation setting. Namely, a flexible program under randomness (P1);

a mathematical program with random variables having fuzzy parameters (P2); and an optimisation

problem with fuzzy random variable coefficients (P3). The reason for this choice are as follows. Firstly,

many real-life problems may be cast into these forms. Secondly, these models have not received the

attention they deserve.

Model (P1) has been considered only for the discrete case (Luhandjula, 1983). Moreover, the
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problem solving approach used is questionable as it is based on the controversial notion of crisp

probability of a fuzzy event. Model (P2) is scarcely seen in the literature due to the fact that the

notion of uncertain probability has been introduced only recently (Buckley, 2004; Buckley and Eslami,

2003, 2004). Model (P3) has been approached through the use of measures like the fuzzy expected value

or the fuzzy variance that summarises some of the characteristics of involved fuzzy random variables.

These approaches have the inconvenience of not using exhaustively the information contained in these

fuzzy random variables.

The outline of the paper is as follows. Section 2 provides all the necessary “ingredients” that

are used in subsequent developments, including the formulation of uncertain optimisation problems.

Section 3 is devoted to methodological approaches for converting uncertain optimisation problems

under scrutiny into deterministic terms along with convincing arguments as to why the proposed

approaches are appropriate. Numerical examples are also supplied for the sake of illustration. We

shall end this paper with some concluding remarks, along with some challenges in the emerging field

of fuzzy stochastic optimisation.

2. Background and problem formulation

2.1. Mathematical tools for combining fuzziness and randomness

To deal mathematically with situations where fuzziness and randomness are part of the state of

affairs, finer webs of ideas from probability and fuzzy set theories have been pieced together, culminat-

ing in such notions as: probability of a fuzzy event (Zadeh, 1968), linguistic probabilities (Dubois and

Prade, 1980), random fuzzy variable (Liu, 2007), fuzzy random variable (Kwakernaak, 1978, 1979),

probabilistic set (Hirota, 1981) and uncertain probabilities (Buckley, 2004; Buckley and Eslami, 2003,

2004). In what follows, we shall briefly discuss the last three notions that are needed in the sequel. Be-

fore proceeding further we need to lay out the notion of a fuzzy number, which is central in subsequent

developments.

2.1.1. Fuzzy number

A fuzzy number is a normal and convex fuzzy set of R. A fuzzy number is well suited to represent

a vague datum (Dubois and Prade, 1980). For instance, the vague datum: “close to m” can be

represented by the fuzzy number whose membership function µ is given in Figure 1. In the case of

Figure 1, we have a triangular fuzzy number denoted by 〈m/m/m̄〉.

2.1.2. Probabilistic set

A helpful tool for quantifying and analysing situations where fuzziness and randomness are part of

the state of affairs is that of a probabilistic set (Dubois and Prade, 1980). Given a probability space
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Figure 1: Membership function of the vague datum: “close to m”

(Ω,F , P ), a probability set B on X is defined as a fuzzy set of X × Ω whose membership function

B(x, ·) is measurable.

The n-dimensional distribution function of a probabilistic set B for any elements x1, x2, . . . , xn of

X is given by:

FB(x1)B(x2)...B(xn)(z1, . . . , zn) = P (B(x1, ω) < z1, . . . , B(xn, ω) < zn) .

Set theoretic operations have been extended to probabilistic sets in a straightforward way. More-

over, a moment analysis can be performed on probabilistic sets (Hirota, 1981), which is extremely

advantageous for applications.

2.1.3. Uncertain probabilities

An uncertain probability (Buckley and Eslami, 2003, 2004) is a probability distribution in which

some parameters are not known with precision and are modelised by fuzzy numbers. Using fuzzy

arithmetic, basic laws of uncertain probabilities have been obtained (Buckley, 2004).

To put things in context, consider a continuous random variable X with probability density function

f(x, θ), where θ is a parameter describing the density function. If θ can be generated as a fuzzy number

θ̃, then X has density f(x, θ̃) and the probability of the event: “X is between c and d” is a fuzzy set

whose α-cut is defined as follows:

[
P̃ (c ≤ X ≤ d)

]α
=


d∫
c

f(x, θ)dx|θ ∈ θ̃α;

∞∫
−∞

f(x, θ)dx = 1


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The first two moments of X are defined through its α-cuts as follows:

m̃α
X(θ) =

{ ∞∫
−∞

xf(x, θ)dx|θ ∈ θ̃α;mX(θ) ∈ m̃α
X(θ);

∞∫
−∞

f(x, θ)dx = 1

}

σ̃2α
X (θ) =

{ ∞∫
−∞

(
x−mX(θ)

)2
f(x, θ)dx|θ ∈ θ̃α;mX(θ) ∈ m̃α

X(θ);σ2
X(θ) ∈ σ̃2α

X (θ);

∞∫
−∞

f(x, θ)dx = 1

}

Random variablesXi, i = 1, 2, . . . , n with fuzzy parameters and having joint density function f(x1, . . . , xn; θ̃)

and marginal density function f(xi, θ̃) are said to be independent if, for α ∈ (0, 1] and for all θ ∈ θ̃,

f(x1, x2, . . . , xn; θ) =

n∏
i=1

f(xi, θ).

An interested reader is advised to consult Buckley and Eslami (2003, 2004) and Buckley (2004) for

more details on discrete and continuous uncertain probabilities.

2.1.4. Fuzzy random variable

A fuzzy random variable (frv) on a probability space (Ω,F , P ) is a fuzzy-valued function:

X : Ω→ F0(R)

ω  Xω

such that for every Borel set AAA of R and for every α ∈ (0, 1], (Xα)
−1

(AAA) ∈ F . Here F0(R) and Xα

stand respectively for the set of fuzzy numbers and the set-valued function:

Xα : Ω→ 2R

ω  Xα
ω =

{
x ∈ R|Xω(x) ≥ d

}
.

As an example of frv, consider an opinion poll in which individuals are asked to characterise weather

in Europe for the following summer. To this end, categories such as “warm”, “almost cold”, “very

windy”, etc. might be used. There is some stochastic variation due to the difficulty in predicting, with

precision, the occurrence of the above mentioned categories of weather. Fuzziness comes into play

because the above categories are subjective and only partially quantifiable.

Zadeh’s decomposition principle (Dubois and Prade, 1980) extends canonically to frvs, i.e. if X is

an frv, then:

X =
⋃

α∈(0,1]

αXα
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A question that immediately arises is: what does Xα look like? A superb reply to this question is

given in (Colubi et al., 2001). It tells us that, for a frv X, Xα(α ∈ (0, 1]) are random intervals. Limit

theorems have also been obtained for frvs (Kruse and Meyer, 1987).

It is also worth mentioning that under mild assumptions, frvs possess the Radon-Nikodym property,

i.e. any P -continuous fuzzy measure of bounded variation has a Radon-Nikodym derivative which is

an integrably bounded frv (Bán, 1990).

A considerable body of literature has grown out of the concept of frv in a wide range of fields. An

interested reader may consult Colubi et al. (2001) and Kratschmer (2001) for details on these matters.

The following partial order has been defined on the set of fuzzy random variables (Colubi et al.,

2001). Given two fuzzy random variables X and Y on (Ω,F , P ), we have:

X ≤ Y ⇐⇒ Xα ≤ Y α ∀α ∈ (0, 1].

2.2. Problem formulation

The problem we address in this paper is how to let randomness and fuzziness be taken into account

in optimisation problems, along with ways in which a decision must be reached in such a mixed

environment. We shall focus on three hybrid problems mentioned in the Introduction. For a state

of the art in Fuzzy Stochastic Optimisation, the reader is referred to Mohan and Nguyen (1997) and

Luhandjula (2004, 2006).

We shall restrict ourselves to linear optimisation problems so that the main ideas are illustrated in

a simpler context. Our point of departure is the standard linear program:

(P )


min cx

Ax ≤ b

x ≥ 0

where A, b and c are respectively a m× n, a m× 1 and a 1× n matrix and x ∈ Rn.

A first extension of (P ) to be considered in this paper is obtained by assuming that the components

of A, b and c are no longer deterministic but random variables with known distribution. Moreover, the

objective and constraints are not strict imperatives. Some leeway may be accepted in their fulfilment.

This leads to the following linear program under hybrid uncertainty:

(P1)


m̃in cx

Āix . bi; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}
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where “∼” means flexible and “ ¯ ” means that the datum is random. This model has been addressed

in the literature (Luhandjula, 1983) for the case involving random variables with discrete distributions.

Here the model is extended to incorporate continuous random variables.

Another direction toward the generalisation of (P ) is that of supposing that input data in the ob-

jective function are random while those in the constraints are random variables with fuzzy parameters

(see § 2.1.3). The corresponding problem reads:

(P2)


min c̄x

A?i x ≤ b?i ; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}

where “?” means the datum is random with some fuzzy parameters. Model (P2) has many applications.

As a matter of fact, in many real-life problems that may be cast into an optimisation framework,

experts who provide data may feel more comfortable in coupling their vague perception with hard

statistical data. To this end, they may prefer to represent them in the form of random variables with

vague parameters. As an example, consider a portfolio selection problem where, due to stock experts’

judgements and investors’ different opinions, the security returns are modelled as random variables

with imprecise parameters.

This model has not received attention in the literature. This is due to the lack of tools for coping

with probability distributions involving fuzzy parameters. These tools appeared only recently (Buckley,

2004; Buckley and Eslami, 2003, 2004).

The third generalisation of (P ) that is also discussed in this paper has the form:

(P3)


min c??x

A??i x ≤ b??i ; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}

where components of the vectors A??i (i = 1, . . . ,m), c?? as well as b??i (i = 1, . . . ,m) are fuzzy random

variables on a probabilistic space (Ω,F , P ), and ‘≤ ’ means the inequality is between fuzzy random

variables. It is worth mentioning that (P3) includes purely stochastic and purely fuzzy linear programs

as special cases.

Existing approaches (Luhandjula, 2004; Van Hop, 2007a,b) consider some measures like the fuzzy

expected value, the fuzzy variance or some indices that summarise some of the characteristics of

the involved fuzzy random variables. These approaches have the drawback of not exploiting all the

information contained in these fuzzy random variables.
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3. Satisfying solutions to (P1)–(P3)

Mathematical programs (P1)–(P3) share the common feature of being tainted with twofold im-

precision. This turns out to be a source of substantive difficulties. As a matter of fact, for these

optimisation problems, both the notion of optimum optimorum and the pure rationality principle no

longer apply.

One has therefore to resort to Simon’s bounded rationality principle (Simon, 1945) and seek for a

satisfying solution (in some sense) instead of an optimal one. In what follows we provide for each of

the three optimisation problems:

• a possibilistic-probabilistic transformation that converts the problem into either a deterministic

or a purely stochastic or a purely fuzzy problem;

• an algorithmic approach for efficiently solving the resulting problem; and

• a numerical example for the sake of illustration.

3.1. Satisfying solution to (P1)

Here we opt for the symmetrical approach of considering objective and constraints as the same

concept. After having put the objective function of (P1) in the following constraint form:

cx . c0

where c0 is a threshold fixed by the decision-maker, the problem (P1) reads merely:

Find x ∈ X such that:

Āix . b̄i; i = 0, 1, 2, . . . ,m (1)

where Ā0 = c̄ and b̄0 = c0.

Each constraint i of system (1) is then represented as a probabilistic set on (Ω,F , P ) with mem-

bership function µi(x, ω). The interpretation that goes with this construction is to view µi(x, ω) as

the level to which the constraint:

Āi(ω)x ≤ b̄i(ω); (ω ∈ Ω)

is satisfied.

The following simple kind of piecewise linear function may be used for µi(x, ω):

µi(x, ω) =


1 if Āi(ω)x ≤ b̄i(ω)

1− Āi(x,ω)x−b̄i(ω)
di

if b̄i(ω) < Āi(ω)x ≤ b̄i(ω) + di

0 if Āi(ω)x > b̄i(ω) + di
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where di > 0 is a constant chosen by the decision-maker for a permitted violation of constraint i.

Other kinds of membership functions, more appropriate to the situation at hand, may be used instead

of the above piecewise linear functions.

According to Bellman-Zadeh’s confluence principle (Bellman and Zadeh, 1970), a decision in a fuzzy

environment is an option that is at the intersection of fuzzy goals and fuzzy constraints. Therefore, a

satisfying solution to (P1) should be a solution of the following stochastic optimisation problem:

(P1)′

max µD(x, ω)

x ∈ X ∩ Support µD

where

µD(x, ω) = min
i=0,1,...,m

µi(x, ω).

When we now perform the probabilistic transformation consisting of taking the expectation of µD(x, ω),

we get the following deterministic problem:

(P1)′′

maxEµD(x, ω)

x ∈ X ∩ Support µD

To handle (P1)′′, we need an analytical expression of the distribution of µD(x, ω) denoted by FµD(x,ω).

Such an expression is given below, depending on the operator chosen for the meaning of the connective:

“and”.

Theorem 1.

(a) If

µD(x, ω) = min
i=0,1,...,m

µi(x, ω)

then

FµD(x,ω)(z) =

m∑
i=0

Fµi(x,ω)(z)−
∑
j<k

Fµj(x,ω)µk(x,ω)(z, z) +
∑
i<j<k

Fµi(x,ω)µj(x,ω)µk(x,ω)(z, z, z)

+ . . . (−1)m+2Fµ0(x,ω)µ1(x,ω)...µm(x,ω)(z, . . . , z) (2)

(b) If

µD(x, ω) = γmin
i
µi(x, ω) + (1− γ) min

(
1,
∑
i

µi(x, ω)

)
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where γ stands for a coefficient of compensation ranging between 0 and 1, then

FµD(x,ω)(z) = L−1

(
g1(s).g2(s)

)
(3)

where

g1(s) =

∞∫
0

e−( sγ )zFmin
i
µi(x,ω)(z)dz

g2(s) =

∞∫
0

e−( s
1−γ )zF

min

(
1,
∑
i
µi(x,ω)

)(z)dz

and L−1 stands for the inverse of the Laplace transform.

The proof of this theorem is given in the Appendix.

3.1.1. Finding a satisfying solution of (P1)

The above result may be exploited to find a solution of (P1). To this end one may proceed as

follows.

Step 1: Put the objective function in the form of a flexible constraints.

Step 2: Consider the system (1) and define the membership function µi(x, ω) for each i.

Step 3: Find FµD(x,ω) analytically using Theorem 1. Alternatively, use a hybrid procedure integrating

a simulation technique and a neural network to approximate FµD(x,ω).

Step 4: Solve (P1)′′ using a genetic algorithm.

Step 5: Print the solution obtained in Step 4.

Step 6: Stop.

3.1.2. Numerical example

Consider the following flexible linear program with random coefficients.

(P1)′′′



m̃in − 3x1 − 1.5x2 − x3

subject to

8x1 + 6x2 + x3 . b̄1

4x1 + 2x2 + 1.5x3 . b̄2

2x1 + 1.5x2 + 0.5x3 . b̄3

xi ≥ 0; i = 1, 2, 3
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where b̄1, b̄2 and b̄3 are N(48, 5), N20, 3) and N(8, 1) random variables respectively. Solving the

corresponding expected value model with crisp objective function and crisp constraints relationships

yields, as optimal value of the objective function, -16.11. We then take b̄0 as a N(−16.11, 1) random

variable. It is worth noticing that the standard deviation of b̄0 has been taken as the minimum of

standard deviations of b̄1, b̄2 and b̄3. (P1)′′′ now merely reads:

Find x ∈ X = {x ∈ R3|x ≥ 0} such that:

A0(x) = −3x1 − 1.5x2 − x3 . b̄0

A1(x) = 8x1 + 6x2 + x3 . b̄1

A2(x) = 4x1 + 2x2 + 1.5x3 . b̄2

A3(x) = 2x1 + 1.5x2 + 0.5x3 . b̄3

Using piecewise linear functions defined in §3.1.1 to represent constraints

Ai(x) . b̄i(i = 0, 1, 2, 3) (with d0 = 5; d1 = 5; d2 = 3; d3 = 1) and discretising b̄i(i = 0, 1, 2, 3)

with 5 equidistant partitions as indicated in Table 1, produces the following counterpart of (P1)′′:

(P1)IV



max
∑
ri

( ∏
i∈{0,1,2,3}

pri

)
µr0,r1,r2,r3D (x, ω)

subject to

Aix ≤ b̄rii + di; i = 0, 1, 2, 3

xi ≥ 0; i = 1, 2, 3

where pri denotes the probability that the rth
i realisation of the right-hand side of constraint i is

evaluated, and µr0,r1,r2,r3D (x, ω) denotes the unique instance of µD(x, ω) when the rth
0 realization of b̄0,

the rth
1 realisation of b̄1, the rth

2 realisation of b̄2 and the rth
3 of b̄3 are concerned.

Implementing (P1)IV in GAMS as a mixed integer nonlinear problem and solving with BARON

version 8.1.4 solver produces the solution: x1 = 4.51, x2 = 0, x3 = 0.430 which is a satisfying solution

to (P1)′′′.

The approach described here departs strongly from the one described in Luhandjula (1983). As a

matter of fact, it is based on the Bellman-Zadeh confluence principle (Bellman and Zadeh, 1970) and

permits the integration of continuous random variables.

3.2. Satisfying solution to (P2)

3.2.1. Analysis

To convert (P2) in deterministic form, we use a fuzzified version of the well-known chance-constrained

programming approach (Kall, 1976). In this case, a deterministic counterpart of (P2) is obtained
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Table 1: Discrete approximations for right-hand side values, b̄i|i > 0

Realisation of ri

i 1 2 3 4 5

0
pr0 0.017 0.220 0.524 0.223 0.016
b̄r00 -18.987 -17.547 -16.107 -14.667 -13.227

1
pr1 0.013 0.201 0.536 0.235 0.015
b̄r11 33.105 40.477 47.849 55.222 62.594

2
pr2 0.014 0.252 0.566 0.163 0.005
b̄r22 10.900 15.721 20.542 25.363 30.184

3
pr3 0.005 0.121 0.495 0.343 0.036
b̄r31 4.674 6.135 7.597 9.058 10.519

through the following problem:

(P2)′



min cx

P̃

(
n∑
j=1

a?ijxj ≤ b?i

)
≥ δ̃i; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}

where P̃ stands for uncertain probability, δ̃i(i = 1, . . . ,m) are fuzzy numbers used as thresholds and

c = E (c̄). We shall consider three cases.

Case 1: b?i (i = 1, . . . ,m) are real numbers denoted merely by bi(i = 1, . . . ,m). This means that for

all i, b?i is regarded as a (one-valued) random variable having a set of parameters that consists of

a (crisp) singleton set. We further assume that, for all (i, j), a?ij is a normally distributed random

variable with fuzzy number mean m̃ij and fuzzy number variance σ̃2
ij . Then µ̃i =

n∑
j=1

a?ijxj is also

a random variable whose mean and variance are fuzzy numbers m̃µi and σ̃2
µi respectively (Buckley,

2004). As δ̃i, m̃µi and σ̃2
µi are fuzzy numbers, their α-cuts are real intervals. Let us denote them

as follows:

δ̃αi =
[
δαLi , δαUi

]
,

m̃α
µi =

[
mαL
µi ,m

αU
µi

]
, and

σ̃2α
µi =

[
σ2αL
µi , σ2αU

µi

]
.

The following result provides a deterministic counterpart of (P2)′.

Theorem 2.

Under the above assumptions on b?i and a?ij and if a?ij(i = 1, . . . , n) are independent, then (P2)′
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is equivalent to the following mathematical program:

(P2)′′


min cx

Φ

(
bi−mαUµi
σαUµi

)
≥ δαUi ∀α ∈ (0, 1] ; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}

where Φ is the cumulative distribution of the normal 0-1.

Proof

Let

∆1 =

{
(mµi , σµi)

∣∣∣∣mµi ∈ m̃α
µi , σ

2
µi ∈ σ̃

2α
µi and

1

σµi
√

2π

∫ ∞
−∞

e
−

(µi−mµi )
2

2σ2µi dµi = 1

}
We have: [

P̃ (µ̃i ≤ bi)
]α

=

{
1√
2π

∫ bi

−∞
e
−

(µi−mµi )
2

2σ2µi dµi

∣∣∣∣ (mµi , σµi) ∈ ∆1

}
.

By the change of variable:

z =
µi −mµi

σµi
,

we obtain [
P̃ (µ̃i ≤ bi)

]α
=

 1

σµi
√

2π

∫ bi−mµi
σµi

−∞
e−

z2

2 dz

∣∣∣∣ (mµi , σµi) ∈ ∆1


=

{
Φ

(
bi −mµi

σµi

) ∣∣∣∣mµi ∈ m̃α
µi , σ

2
µi ∈ σ

2α
µi

}
.

Since Φ is an increasing and continuous function, we have:[
P̃ (µ̃i ≤ bi)

]α
=

[
Φ

(
bi −mαU

µi

σαUµi

)
,Φ

(
bi −mαL

µi

σαLµi

)]
.

Making use of the facts that:

δ̃αi =
[
δαLi , δαUi

]
and for two fuzzy numbers Ã and B̃,

Ã ≤ B̃ ⇐⇒ Aα ≤ Bα ∀α ∈ (0, 1],

the constraints of (P2)′ read:

Φ

(
bi −mαU

µi

σαUµi

)
≥ δαUi ∀α ∈ (0, 1] ; i = 1, . . . ,m

x ∈XXX.

13
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Therefore (P2)′ and (P2)′′ are equivalent.

Case 2: a?ij(i = 1, . . . ,m; j = 1, . . . , n are real numbers).

We further assume that, for all i, b?i is a normally distributed random variable whose mean and

variance are m̃bi and σ̃2
bi

respectively. The α-cuts of m̃bi and σ̃2
bi

are, respectively,

m̃α
bi =

[
mαL
bi ,m

αU
bi

]
and

σ̃2α
bi =

[
σ2αL
bi , σ2αU

bi

]
.

The following result provides a crisp counterpart of (P2) through (P2)′.

Theorem 3. Under the above assumptions on a?ij and b?i and if in addition b?i (i = 1, . . . ,m) are

independent, then (P2)′ is equivalent to the following mathematical program:

(P2)′′′


min cx

Φ

(∑m
j=1 aijxj−m

αU
bi

σ2αU
bi

)
≤ 1− δαUi ∀α ∈ (0, 1] ; i = 1, . . . ,m

x ∈ X = {x ∈ Rn|x ≥ 0}

The proof of this theorem is similar to that of Theorem 2 and is omitted for the sake of space.

Case 3: General case

Here we assume that both a?ij and b?i are random variables with fuzzy parameters. Put

ξ?i (x) =

n∑
j=1

a?ijxj − b?i .

Then ξ?i (x) is also normally distributed with fuzzy means m̃ξi(x) and fuzzy variance σ̃2
ξi(x) (Buck-

ley, 2004). We are now in a position to state and prove the following result that gives a crisp

counterpart of (P2) (through (P2)′) for the general case.

Theorem 4.

If the above mentioned assumptions on a?ij and b?i are satisfied and if a?ij and b?i are independent

then (P2)′ is equivalent to the program:

(P2)IV


min cx

Φ

(
−mαUξi(x)
σαU
ξi(x)

)
≥ δαUi ∀α ∈ (0, 1] ; i = 1, . . . ,m)

x ∈XXX

14



Proof

We have that:[
P̃
(∑

a?ijxj ≤ b?i
)]α

=
[
P̃ (ξ?i (x) ≤ 0)

]α
=
{
P (ξi(x) ≤ 0)

∣∣mξi(x) ∈ m̃α
ξi(x);σ

2
ξi(x) ∈ σ̃

2α
ξi(x)

}
=

{
P

(
ξi(x)−mξi(x)

σξi(x)

)
≤
−mξi(x)

σξi(x)

∣∣∣∣mξi(x) ∈ m̃α
ξi(x);σ

2
ξi(x) ∈ σ̃

2α
ξi(x)

}
=

{
Φ

(−mξi(x)

σξi(x)

) ∣∣∣∣mξi(x) ∈ m̃α
ξi(x);σ

2
ξi(x) ∈ σ̃

2α
ξi(x)

}
=

[
Φ

(
−mαU

ξi(x)

σαUξi(x)

)
,Φ

(
−mαL

ξi(x)

σαLξi(x)

)]
.

So [
P̃
(∑

ãijxj ≤ b̃i
)]α
≥ δ̃αi

is equivalent to

Φ

(
−mαU

ξi(x)

σαUξi(x)

)
≥ δαUi .

�

This establishes equivalence between (P2)′ and (P2)IV .

It is worth mentioning that the results for the above three cases are consistent with those obtained for

corresponding stochastic programming models, when random variables with fuzzy parameters become

usual random variables (Kall and Wallace, 1994).

3.2.2. Algorithm for finding a satisfying solution to (P2)

The following procedure, which can be implemented effortlessly, can produce a satisfying solution

to (P2). The basic idea behind this procedure is to choose the appropriate deterministic counterpart

of (P2) (see Theorems 1, 2 and 3) and to apply a cutting-plane method described in Luhandjula et al.

(1992), called Cut-Algo, to find a solution to the resulting semi-infinite program. The steps of the

procedure are as follows:

Step 1: Read data of (P2).

Step 2: Check whether the assumptions of case 1 are met. If the above mentioned assumptions are

not met, go to Step 4.

Step 3: Solve (P2)′′ using Cut-Algo. Go to Step 8.

Step 4: Check whether the assumptions of case 2 are met. If not, go to Step 6.
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Step 5: Solve (P2)′′′ using Cut-Algo. Go to Step 8.

Step 6: Check whether the assumptions of case 3 are met. If not, go to Step 9

Step 7: Solve (P2)IV using Cut-Algo Go to Step 8.

Step 8: Print the solution obtained.

Step 9: Stop

3.2.3. Numerical example

Consider the linear program:

(P2)V



min 2x1 + 3x2

2x1 + 2x2 ≤ b̃

3x1 − x2 ≥ 4

x1, x2 ≥ 0

where b̃ is a normally distributed random variable with mean and variance triangular fuzzy numbers

m̃b = 〈5, 6, 7〉 and σ̃2
b = 〈3/4/5〉 respectively. If we take as threshold the triangular number 0̃.3 =

〈0.2/0.3/0.4〉, we have the following counterpart of (P2)V :

(P2)V I



min 2x1 + 3x2

P̃
(

2x1 + 2x2 ≤ b̃
)
≥ 0̃.3

3x− x2 ≥ 4

x1, x2 ≥ 0

After transformations, this program reads:

(P2)V II



min 2x1 + 3x2

2x1+2x2−5−α√
3+α

≥ Φ(0.4− 0.1α); ∀α ∈ (0, 1]

3x1 − x2 ≥ 4

x1, x2 ≥ 0

This is a semi-infinite mathematical program, that may be solved using Cut-Algo. For a fixed value

of α, say α = 0.4, we get the linear program:

(P2)V III



min 2x1 + 3x2

2x1 + 2x2 − 5.4 ≤
√

3.4(0.643)

3x1 − x2 ≥ 4

x1, x2 ≥ 0
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that yields, using again GAMS and solving with iLog ’s CPLEX version 11.0.1 solver, the solution

x1 = 1.333·, x2 = 0.

3.3. Satisfying solution to (P3)

3.3.1. Analysis

Consider (P3) and assume we have obtained the fuzzy expectation of c?? and we have defuzzified

this fuzzy expectation to obtain a deterministic vector, say d. Using the partial order defined in the

set of fuzzy random variables (See § 2.1.4), (P3) can be written as follows:

(P3)′


min dx
n∑
j=1

(
a??ij
)α
xj ≤ (b??i )

α ∀α ∈ (0, 1]

xj ≥ 0; i = 1, . . . ,m

Moreover, it is known (Kruse and Meyer, 1987) that:

(
a??ij
)α

(ω) =

[
aαLij (ω), aαUij (ω)

]
; ω ∈ Ω

(b??i )
α

(ω) =

[
bαLi (ω), bαUi (ω)

]
; ω ∈ Ω

where aαLij (ω), aαUij (ω), bαLi (ω) and bαUi (ω) are random variables. Therefore (P3)′ is equivalent to the

program:

(P3)′′


min cx
n∑
j=1

aαUij (ω)xj ≤ bαLi (ω) ∀α ∈ (0, 1] ; i = 1, . . . ,m

xj ≥ 0

(P3)′′ is a semi-infinite mathematical program with random data. This program may be solved using

the sample average approximation approach described in Luhandjula (2007).

3.3.2. Finding a satisfying solution to (P3)

Step 1: Read data of (P3).

Step 2: Compute α-level cuts of a??ij and b??i .

Step 3: Write the program (P3)′′.

Step 4: Solve (P3)′′ using SAA-cutAlgo.

Step 5: Print the solution.

Step 6: Stop.
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This method is effective in that the whole distributions of the involved fuzzy random variables are

considered instead of sticking on only a few values like fuzzy expectations, fuzzy variances or fuzzy

indices.

3.3.3. Numerical example

Consider the linear program:

(P5)



min
6∑
j=1

c??j xj

subject to
6∑
j=1

a??ij xj ≥ b??i

|xi| ≤ 10; i = 1, . . . , 6

where a??1j and b??1 are fuzzy random variables, the α-levels of which are:

aαL11 = α; aαL12 = ζ2α
2; aαL13 = ζ2

3α
3;

aαL14 = ζ3
4α

4; aαL15 = (1− ζ5); aαL16 = (1− ζ6)α;

bαU1 = 2eα;Vp(c
??
1 ) = 1;Vp(c

??
2 ) =

1

ζ2

Vp(c
??
3 ) =

1

2ζ3
;Vp(c

??
4 ) =

1

3ζ4
;Vp(c

??
5 ) =

1

4ζ5
;Vp(c

??
6 ) =

1

5ζ6

and ζ2, ζ3, . . . , ζ6 are random variables whose distributions are as follows:

ζ2  U(3, 4); ζ3  N(5, 1), ζ4  Exp(6);

ζ5  N(4, 1); ζ6  Exp(5).

where U(a, b) means a uniform distribution between a and b, N(c, d) means a normal distribution with

mean c and standard deviation d, Exp(e) means an exponential distribution with λ = e, and Vp(k
??)

is the most possible value of E(k??). Using the general procedure described in § 3.3.2 we obtain the

results indicated in Table 2. Since |ν9000 − ν13000| is too small, we stop the procedure and take as

Table 2: results for the numerical example (P5)

Optimal solution Optimal value of the

N x#
N objective function ν#

N

1000 (-9.89, -1.42, 6.47, 0.24, -5.30, 9.75) -41.38
5000 (-9.74, -7.54, -2.93, 0.71, 8.87, -9.17) -36.67
9000 (-9.95, -8.28, -1.31, 0.38, 1.66, -9.18) -22.00
13000 (-9.99, -8.28, -1.56, 0.58, 0.07, -9.84) -22.47

satisfying solution x#
13000 = (−9.99,−8.28,−1.56, 0.58, 0.07,−9.84).
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4. Concluding remarks

Today, managers have to take increasingly complex decisions in the face of uncertainty and con-

flicting information. Poor decision-making may have a significantly adverse impact on the viability

of an organisation. The hard modelling approaches of (hard) Operations Research rarely permit the

gain in generality and in insight that results in pondering different kinds of irreducible imprecision in

a decision-making process.

The topic of the present paper is a specific type of research in optimisation under hybrid uncertainty

that began in Luhandjula (1983) and Liu (2001), and continued in Luhandjula (2004, 2006), Luhandjula

and Gupta (1996), Nanda et al. (2006), and Van Hop (2007a,b). This line of inquiry has found many

applications in different disciplines, such as economics (Lai and Hwang, 1993; Zmeškal, 2005), industry,

marketing (Weber and Sun, 2000), and water resource management (Ben Abdelaziz et al., 2004), to

mention just a few.

In this paper, we have brought together modelling ideas and mathematical techniques, ranging from

simple optimisation methods to sample average approximation techniques via cutting plane methods,

in a way that captures fuzziness and randomness in an optimisation setting.

Our efforts were expressed in terms of fuzzy set theory and hybrid concepts such as probabilistic

sets, fuzzy random variables and uncertain probabilities. We showed that our optimisation models

under uncertainty can be stated more palatably. We also described powerful algorithms to solve them.

We have also provided arguments that show why the described uncertainty reduction approaches

are appropriate.

Counterparts of fuzzy stochastic optimisation problems discussed here share the common property

of having infinitely many constraints. This highlights the relationships between uncertainty and infinity

in an optimisation framework (Luhandjula et al., 1992). Moving between these two extremes is still a

subtle and poorly understood business that needs to be clarified.

This work departs from other research in fuzzy stochastic optimisation in several respects, including

the way in which randomness and fuzziness enter into the optimisation model, the nature of the

distribution of involved imprecise variables, and the epistemological and methodological choices in the

transformation process.

A comparative investigation between existing approaches would be of great benefit. From such

a comparative investigation, a Decision Support System (DSS) for helping capturing fuzziness and

randomness in an optimisation setting would emerge. The advantage of using the DSS paradigm in

this context lies in the fact that such an approach departs from the most frequently used reductionist

approach based on reliance on one technique when confronted with an ill-structured complex problem.

It would also be helpful to develop software for automating all computations in the procedures described
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in this paper.

To avoid difficulties unrelated to our subject, we have restricted ourselves to linear fuzzy stochastic

models. Nevertheless, ideas discussed here may be generalised to nonlinear optimisation models under

randomness and fuzziness.

The papers Liu and Liu (2003, 2005) are tremendous resources for someone who wants to embark

in the field of nonlinear fuzzy stochastic optimisation.

Another model that is of undeniable importance in practical applications is that of fuzzy random

multiobjective optimisation. It would be interesting if methods discussed in this paper could be tailored

to be suitable for the multiobjective case. The method thus obtained should then be compared with

those in the literature (Ammar, 2009; Hasuike and Ishii, 2009; Katagiri et al., 2008; Li et al., 2006;

Peña et al., 2009).
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Appendix: Proof of Theorem 1

(a) Let z ∈ R. Bearing in mind that:

P [max [µ0(x, ω), µ1(x, ω), . . . , µm(x, ω)] < z]

=P [(µ0(x, ω) < z) ∩ (µ1(x, ω) < z) ∩ . . . ∩ (µm(x, ω) < z)]

and making use of the fact that:

min [µ0(x, ω), µ1(x, ω), . . . , µm(x, ω)]

=−max [−µ0(x, ω),−µ1(x, ω), . . . ,−µm(x, ω)] ,

we may write:

P [min [µ0(x, ω), µ1(x, ω), . . . , µm(x, ω)] < z]

=P [−max [−µ0(x, ω),−µ1(x, ω), . . . ,−µm(x, ω)] < z]

=P [max [−µ0(x, ω),−µ1(x, ω), . . . ,−µm(x, ω)] > −z]

=1− P [(−µ0(x, ω) ≤ −z) ∩ (−µ1(x, ω) ≤ −z) ∩ . . . ∩ (−µm(x, ω) ≤ −z)]

=1− P [(µ0(x, ω) ≥ z) ∩ (µ1(x, ω) ≥ z) ∩ . . . ∩ (µm(x, ω) ≥ z)]

=P [(µ0(x, ω) < z) ∪ (µ1(x, ω) < z) ∪ . . . ∪ (µm(x, ω) < z)]
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=

m∑
i=0

P [µi(x, ω) < z]−
∑

0≤j<k

P [(µj(x, ω) < z) ∩ (µk(x, ω) < z)]

+ . . .+ (−1)m+2P [(µ0(x, ω) < z) ∩ (µ1(x, ω) < z) ∩ . . . ∩ (µm(x, ω) < z)] .

Hence the distribution function of µD(x, ω) = min
i=0,1,...,m

µi(x, ω) takes the form of (2) and we are

done.

(b) Let now

g1(s) =

∞∫
0

e−( sγ )tFµD(x,ω)(t)dt

and

g2(s) =

∞∫
0

e−( s
1−γ )tF

min

(
1,
m∑
i=0

µi(x,ω)

)(t)dt.

Then g1(s) and g2(s) are Laplace’s transforms of γmin
i
µi(x, ω) and (1− γ) min

(
1,

m∑
i=0

µi(x, ω)

)
respectively. Invoking the Convolution Theorem (Kreider et al., 1966), we have that:

L

[
Fγmin

i
µi(x,ω) ∗ F

(1−γ) min

(
1,
m∑
i=0

µi(x,ω)

)
]

= g1(s)g2(s).

That is,

L

[
Fγmin

i
µi(x,ω) ∗ F

(1−γ) min

(
1,
m∑
i=0

µi(x,ω)

)
]

= L −1

(
g1(x).g2(x)

)
.

Making use of the fact that the first member of this equality is equal to

F
γmin

i
µi(x,ω)+(1−γ) min

(
1,
m∑
i=0

µi(x,ω)

)

we are done. Note that ‘∗’ denotes the product of convolution and should not be confused with

the ‘?’ used in the paper to denote uncertain probabilities.
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