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Abstract

The number of independent and interdependent freight actors (firms), the complex supply chain struc-
tures among them, and the sensitivity of shipment data are but a few reasons why modeling freight
traffic is lagging its public and private transit counterparts. In this paper we used an agent-based ap-
proach to reconstruct commercial activity chains, and simulated them—along with private vehicles—
for a large-scale scenario in Gauteng, South Africa. The simulated activities are compared to the
actual observed activities of 5196 vehicles that were inferred from GPS logs covering approximately
six months. The results show that the activity chains reconstructed are both spatially and temporally
accurate, especially in areas of high activity density. With freight vehicles being a major contributor to
traffic congestion and emissions, our contribution is significant in bridging the gap between the person
and commercial transport modeling state-of-the-art.

Keywords: MATSim, transport demand planning, agent-based transport simulation, commercial,
traffic simulation

1. Introduction

Although freight plays an important role in economic development, freight demand modeling has
received much less research attention than its passenger counterpart (Ortuzar and Willumsen, 2001).
Possible explanations include the many actors (firms) involved; the complex supply chain structures
that result in in- and interdependent logistic networks among the firms (Hesse and Rodrigue, 2004);
the numerous (and variety) of commodities concerned; and the confidentiality and reliability issues
with regards to data gathering.

Rodrigue (2006) notes that freight and passengers have very different spatial dynamics. Yet, they
share the same road space. The number of freight vehicles in urban areas may be comparatively small
to total vehicular traffic, but each vehicle has a disproportionate contribution to certain emissions and
traffic congestion.

Decision-making about freight is usually viewed in literature from the firm perspective (Crainic
and Laporte, 1997): the emphasis is on achieving optimal or near-optimal performance with regards
to its economic efficiency and service quality. At a strategic level, for example, decisions are made
regarding the location of main facilities (production or distribution) and the procurement of resources
such as trucks and rolling stock. Tactical decisions may include the design of the service network
through route choice and geographic customer segmentation. Operational decisions are typically highly
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dynamic and involves decisions such as the scheduling of drivers and crews, and the dispatching of
vehicles. Companies most often make these decisions within constrained environments.

Transport planning for central decision-making stakeholders, such as government, takes on a differ-
ent and aggregated perspective. Their decisions need to reflect the simultaneous actions of very many
transport players. Friedrich et al. (2007) identify senders (consignors), freight forwarders, carriers,
drivers and receivers at the different decision-making levels in freight transport. They discuss the
diverse process steps and decisions that are taken at the various levels, and show how chocie sets differ
for nong-haul and regional freight transport.

The problem the authors attempt to address in this paper is simulating disaggregate commercial
vehicle chains effectively in both space and time. In Joubert and Axhausen (2009) we laid the foun-
dation for understanding commercial vehicle movement and activities. In this paper we build on that
foundation, generating intra-provincial commercial vehicle chains for vehicles performing at least 90%
of their activities within the study region in Gauteng, South Africa. Spear et al. (2008) refer to these
chains as internal distribution trips and distinguish them from through trips and internal-external trips.
We simulate the chains in a Multi-Agent Transport Simulator (MATSim) toolkit along with private
vehicle traffic obtained from Fourie and Joubert (2009). In the process we accounted for the majority
of road users, with the exception being the multitude of small paratransit vehicles and through traffic.

To evaluate the time and space accuracy of the simulated activities, we performed an hour-by-hour
comparison with the actual observed activity densities for each of the 457 mesozones as described by
the Geospatial Analysis Platform (GAP) developed by CSIR Built Environment (2009).

We show that our approach to generate commercial vehicle activity chains produces very accurate
results, especially in areas of high activity density. This paper is significant in a number of respects.
From a commercial vehicle perspective we accurately model the detailed movements of commercial
vehicles without having to model the complex and interdependent relationships among commercial
actors such as production facilities (shippers), carriers and receivers. From a wider transport modeling
perspective we have shown significant improvement to the private car models with the introduction of
commercial vehicles.

The paper is structured as follows: a brief review of transport modeling and related research in
the field is provided in Section 2, along with an introduction to MATSim. Initial demand generation,
the first step in the simulation process, is discussed in Section 3. The results, presented in Section 4,
are discussed mainly from the commercial vehicle point of view. Finally, we end the paper with a
conclusion and a brief research agenda.

2. Freight transport modeling

The majority of freight transport models are derived from the classical four-step model originally
developed for passenger transport. A detailed review of freight transport models, all derived from the
classical approach, can be found in De Jong et al. (2004).

We cast our work against the framework proposed by Tavasszy (2008). The framework is illustrated
in Figure 1 and extends the four-step modeling approach to account for decisons and issues relevant
to freight modeling.

Production and consumption volumes (in tons) are generated for each location, typically a zone,
using land-use and transport interaction; trip generation; facility location; and various freight-economy
coupling approaches. Tapio (2005) warns that traditional coupling of freight traffic volumes and
Gross Domestic Product (GDP) should be considered with caution. Trade values are converted to
volume to establish commodity flows, linking locations. Logistics involve choices regarding inventory
location and supply chain management. Transportation is challenged with modal choice, intermodal
and transshipment decisions. Discrete choice techniques and trip conversion factors are often employed.
At this stage, tons are often converted to ton-kilometers, or even to the individual consignment level.
Kveiborg and Fosgerau (2007) suggest a distinction between freight traffic, when vehicle-kilometer is
the unit of measure, and freight transport for ton-kilometer. The most disaggregate level, network
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Figure 1: Conceptual framework of freight transport modeling (Adapted from Tavasszy, 2008).



and routing, often seeks decision support regarding congestion, tour planning, and city access. Here,
chosen techniques include network assignment models and simulation.

Although fairly sophisticated models can be used throughout, many of the approaches only handle
flows at an aggregate level (zones) and the detail movement of the freight carriers are not consid-
ered (Ferndndez et al., 2003). Urban tours, where vehicles make multiple stops, are usually completely
ignored. Friedrich et al. (2007) report on recent models where activity chain generation is addressed but
non of the models, unfortunately, models the behavior at the individual carrier level. Wisetjindawat
et al. (2006) consider commodity flow following a top-down approach that explains commodity move-
ment through the interaction among several freight agents in the supply chain. The spatial discrete
choice model distinguishes between shippers, receivers and the relationships among them. Their model
addresses the commodity movement (generation and distribution), shipment sizing, carrier choice, and
the routing and traffic assignment of the carrier vehicles. Hunt and Stefan (2007) present a tour-based
microsimulation model of urban commercial movements using data from an extensive survey of 37 000
activity chains in Calgary, Canada.

Agent-based modeling techniques, as opposed to four-step variants, allow one to incorporate and
embed the decision-making across the trade, logistics, transportation, and network levels of the frame-
work. Instead of a top-down approach, the individual stakeholders (vehicles, firms, commodities, or
industries) have its own autonomous decision-making mandate. All agents are simulated simultane-
ously, and their interactions with one another and with the environment allows for emergent phenomena
that is otherwise lost if a top-down system description approach was followed. Liedtke (2009) notes
three advantages that agent-based simulation models present in the freight context: 1) through statis-
tical modeling one is able to represent the heterogeneous nature of freight transport actors and objects;
2) normative optimization engines can be incorporated into the indivual agents’ behavioral models,
allowing observation of agent reactions to policy measures on different time-horizons; and 3) micro
model results can be aggregated ex-post as desired to support decisions of various nature.

Liedtke (2009) argues in his agent-based approach that shippers are generally more influential in
decision-making than the carriers. Whereas the movement pattern of a person (participating in home,
work, education and leasure activities) closely resembles the movement pattern of a (private) vehicle,
the situation in freight transportation is more complex. Shippers and recipients make decisions about
production, warehousing and ordering. Once orders are placed, carriers (either in-house or outsourced)
deal with the tour-planning decisions. Other actors, such as freight forwarders, may also get involved
to build transport chains, especially in a multi-national context.

Liedtke’s INTERLOG model prototype simulates the auction of transport contracts among inde-
pendent carriers. A simulated population of actors are generated using economic activity, number of
employees and location from national statistical descriptors. Shippers and customers are then matched
and exchange of goods is set, expressed at microscopic level in metric tons per year. The market inter-
action module maps how shippers derive shipments and how these shipments are allocated to carriers.
Through an experience-based learning process, actors follow behavior-related models to pursue cost
minimization, allowing the simulation to settle into a dynamic equilibrium.

Although the autonomous decision-making and learning aspects of Liedtke (2009) is attractive, it
requires extensive information that is frequently not available such as detailed sectoral data about
companies; inter-sectoral commodity exchanges for different transport markets; and the sensitivity of
the transport market to price and distance. Also, the INTERLOG model addresses the behavior of
only a very small portion—fixed contracts—of total commercial traffic.

Another agent-based approach with experienced-based learning that has until now only been applied
to private vehicles, is the Multi-Agent Transport Simulator (MATSim) toolkit (MATSim development
team, 2009). The toolkit has been applied successfully in Gauteng, South Africa, where access to
information is limited (Fourie and Joubert, 2009). Since this paper aims to extend the existing agent-
based simulation capability of the MATSim toolkit to include freight, and extend the existing South
African implementation, a brief description of MATSim is provided here.
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Figure 2: The Multi-Agent Transport Simulator (MATSim) controler (Source: MATSim development
team, 2009)

2.1. Multi-agent transport simulation

The MATSim toolkit allows for the agent-based simulation of large-scale transport scenarios. Fig-
ure 2 illustrates the controlling procedure of the toolkit. The model is initialized with a synthesized
population of agents, each having at least one possible plan. A plan consists of a set of sequential
activities, each with a location that is associated with a given network. Sequential activities in the
plan are connected with a travel leg, described as a route through the network and an intended mode
of transport.

When the model is executed, each agent selects a single plan from its set of plans, and all agents
execute their chosen plans simultaneously in a mobility simulation. Simulation information is recorded
in the form of discrete events such as the start and end of an activity, entering and leaving a link in
the network, or waiting to access a link. Simulation events are then interpreted to derive a score for
each agent’s selected plan (Charypar and Nagel, 2005). During the replanning step agent plans can be
adapted by changing the start time/location of the activities, or the mode/routing of the travel legs.
Adapted plans are added to the database of plans, and poor performing plans are discarded. Each
agent selects a plan, and the simultaneous execution of plans are repeated (Raney and Nagel, 2006).

After a specified number of iterations, the simulation terminates and presents statistics such as
count comparisons with actual observed counting station data. The higher the number of iterations,
the more stable the set of selected plans become.

3. Demand generation

For the purpose of this paper, both the private vehicle plans and the network description was taken
from Fourie and Joubert (2009). Private persons’ activity chains are limited to home-work-home to
account for the majority of trips during peak periods of the day. In this section we describe the
procedure followed to generate an initial demand for commercial vehicles.

From the original 31041 vehicles used by Joubert and Axhausen (2009) to describe the activity
chains of commercial vehicles, we were only interested in those that spend 90% or more of their
activities within the province of Gauteng. For those 5196 vehicles, activities and activity chains were
extracted. Activities were classified as either major, lasting in excess of 5 hours, or minor, lasting less
than 5 hours. Major activities can be thought of as depots, or home locations for commercial vehicles.
Minor activities include any (and all) activities where vehicles are switched off for periods less than
five hours. Once the vehicle is switched on again the activity is considered finished. In the activity
extraction, false starts are eliminated, and all consecutive activities at the same location are merged.
Examples of minor activities include vehicle refuelling; stopping to perform a service; or loading and
offloading, to name but a few. Figures 3b and 3c present the kernel density estimation of the major
and minor activities in Gauteng respectively. Conceptually, kernel density estimation fits a smooth
surface over the observed acitivites. For the estimations in Figure 3 a grid size of 500 x 500 meters and
search radius of 5000 meters were used. This was achieved using the ESRI ArcGIS implementation of
a quadratic kernel function: popularized by Silverman (1986).

With the rich activity set, we were able to build conditional probabilities for four chain parameters:
the start location, denoted by M!; start time, M*; chain duration, M%; and the number of activities,
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Figure 3: Demarcation and activity densities for Gauteng, province of South Africa

M™. To create a plan for a commercial vehicle i, we create the first (major) activity and assign it
a location sampled from the kernel density estimation of Figure 3b, M}. Although it is known from
Joubert and Axhausen (2009) that, albeit the minority, commercial vehicles may start and end their
chains at different locations, we assumed in this paper that chains start and end at the same location.
We sampled the chain start time given Mil, and we denote the conditional sampling with Mf|Mll7 the
number of activities, M| (M}, M}); and the chain duration, MZ| (M}, M{, M?").

To fill chain 4, we sampled M minor activities from the kernel density estimation shown in Fig-
ure 3c, sequenced them randomly, and spaced their start times equally between M} and M} + MZ.
The chain was completed by adding another major activity with the same location as M}, but with a
start time of M} + Mg,

Since, from Joubert and Axhausen (2009), nearly 50% of commercial vehicle activity chains ob-
served has duration in excess of 24 hours, our generated chains had to be adapted to fit within the
24-hour simulation time window imposed on the simulation scenario. Figure 4 depicts the process fol-
lowed in this paper. The procedure can handle any time window denoted by [t™; #™2X] as is required
by other of our projects. For this paper, the time window is specified in seconds for a complete 24-hour
day as [0; 86400].

Consider the activity chain in Figure 4a starting with a major activity, M7, within the first 24-hour
window. The activity chain contains n minor activities, denoted by m; ... m,. The activity chain is
completed with major activity Ms.

Say, for the purpose of this example, the 24-hour window ends somewhere between minor activities
me and mey1. We split the activity chain between minor activities m, and m¢; with the introduction
of a dummy major activity denoted by d (Figure 4b). The dummy shares its activity type with the
first activity, M. The location of d is the same as the location of m.y;. The major activity is added
at the end of the first segment of the chain as d with start time 24:00:00 (or 86400 seconds). This has
the result that the traveling from activity m, to activity m., is forced to occur at the end of the first
segment of the chain. We assume that the impact of whether the traveling occur as the last leg of the
first portion, or the first leg of the second portion, is negligible.

Once the dummy major activity is added, all the activity start times following the dummy activity
is adjusted by simply subtracting 24 hours, resulting in the two independent chains illustrated in
Figure 4c, with the starred version of the activities denoting the activities with adjusted start and end
times. Each of the resulting chains are treated as an independent agent without weighing the chains.



M O On O On il

(a) The original activity chain exceeding the specified time window.

activity type location & start time

n¥oyornferonm

(b) Introduction of a dummy major activity at the end of the time window. The dummy
shares the activity type of the first portion of the chain; and ending time and location
with the first activity of the subsequent portion.

M OOl
Ol

(c) The resulting two activity chains depicting two artifi-
cial, and independent, commercial vehicles.

Figure 4: Procedure to artifically wrap an activity chain around a given time window, resulting in
independent chains, each starting and finishing within the time window.
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(a) Actual observed activities. (b) Simulated activities. (c) Difference.

Figure 5: A comparison of the actual vs. simulated activities for the 9*" hour. Subfigure (a) shows
the actual observed activity densities, normalized to the highest actual activity count over the whole
24-hour period; (b) shows the simulated activity densities, normalized to the highest simulated activ-
ity count; and (c) shows the absolute difference between the normalized actual and the normalized
simulated activity counts.

Should the remaining portion of the chain still exceed the time window, t™#*, the procedure is repeated
on the remainder.

4. Simulation results

To account for the variation as a result of the random sampling of activities from the kernel density
estimation, we generated 6 populations of freight agents, each with a different random seed. Each
population was added to the same population of private car agents to derive 6 unique scenarios. The
different scenarios were each simulated for 100 iterations, and in the remainder of the section we report
on the simulated results as the average over the six scenarios—they were not significantly different.
To measure the repeatability of the six scenarios we compared the trip durations for all agents across
thirteen 5-minute intervals for each scenario, calculating the standard deviation during each interval.
The average standard deviation across all intervals was then calculated as o = 1.52%.

The private and commercial vehicle plans were combined, and simulated for 100 iterations. To
evaluate the activity location and timing of the commercial activities, we analysed the discrete events
produced during the 100" iteration. We were interested in activity start times and the location of all
minor activities.

To determine if the simulated commercial activities occur at the right geographic location at the
right time of day, activities were geographically aggregated to the GAP mesozone level (Figure 3a) so
as to be able to compare it with the observed activities reported by Joubert and Axhausen (2009).
Temporally, the events were aggregated to the hour of the day in which it occurred. Figure 5 shows, as
an example, a geographic comparison of the actual versus simulated activity counts for all activities in
the 9*" hour, i.e. between 08h00m00 and 08h59m59. The actual observed activities span approximately
180 days, so both the actual and the simulated activity densities were normalized to the highest activity
count found in the respective sets. As an example, consider the process of normalizing the simulated
data set. The reference is the highest activity count found in any zone at any time of the day. This was
found to be 1167 for zone 4917 in the 10" hour. If then, 245 activities were simulated to start in zone
4570 in the 9*" hour, the normalized density for zone 4570 in the 9" hour would be (245/1167) ~ 21%.
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Figure 6: The comparison of simulated vs. actual activity densities for all hours accross all GAP zones.
From top to bottom, the linear bands represent a 2:1, 1.5:1, 1:1, 1:1.5, and 1:2 ratio of simulated to
observed normalized activity densities.

We believe this is a valid approach since GAP zone 4917 had the highest activity counts in both
the observed and all the simulated scenarios. Hence, densities were normalized to the same zone.

If geographic location is less important, the simulated results may also be presented as we’ve done
in Figure 6. Each point represents a unique zone-hour combination. The error seems to be greatest in
low-activity zones.

Next we considered the accuracy of the simulated activities for different hours of the day. Figure 7
shows box-and-whisker plots for the normalized difference between the simulated number of activity
starts during each hour and the observed number of activity starts. Positive values indicate instances
where simulated activity counts were higher than the actual observed activity counts, and negative
values where they were lower. All mesozones are accounted for in Figures 7a and 7c and we hence refer
to the comparisons as unbiased. Many of the mesozones, however, had no activity starts observed and
also non simulated. In itself this is arguably good, but the large number of zero-observed-zero-simulated
mesozones obscures the results somewhat. Removing all the zero-observed-zero-simulated mesozones
yields a result that is biased towards simulation differences, which we present in Figures 7b and 7d.

For both the unbiased and biased cases the box widths, the interquartile ranges (IQRs) are very
tight, so in Figures 7c and 7d we’ve zoomed in on the range [—2, 2].

In both plots the whiskers ends indicate the lowest datum still within 1.5 times the IQR of the
lower quartile, and the highest datum within 1.5 times the IQR of the upper quartile. With all the
medians located at (or very near) the zero datum and the very narrow box widths, we argue that
the commercial activities are accurately simulated, at least at a time-space granularity of hours and
mesozones. Our model over-predicts commercial activities during the period 08:00-12:00, while under-
predicting from 15:00 until 00:00. Possible assignable causes for over-estimating include that only
home-work-home trips are modeled for private vehicle users, essentially freeing up a large portion of
the road capacity during the off-peak hours. Also, the effective road network considered by commercial
vehicles is probably more limited that the complete network currently made available to all road users,
allowing for more accessibility than what is actually realistic.

But we were also interested to understand what impact the inclusion of commercial vehicles had
on the private cars that were modeled in the simulation. To do that, we followed two approaches.
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Figure 7: Box-and-whisker plot showing the normalized difference between simulated and actual num-

ber of activity starts for different hours of the day. A positive normalized difference indicates simulated
values higher than actual observed values. Whiskers ends indicate the lowest datum still within 1.5

times the interquatile range (IQR) of the lower quartile, and the highest datum within 1.5 times the

IQR of the upper quartile. Circles outside the whisker extents are considered outliers.
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Figure 8: A comparison of the average speed, and speed difference for private vehicles aggregated to
mesozone level. Speeds are for the 9" hour.

First, we associated each road link with a mesozone, and calculated the average speed of a mesozone
as the average speed of private vehicles across all links associated with that mesozone. If no activity
occured during a specific hour on the link, the link’s free speed was used. Only when no network
link was associated with the mesozone was no average speed calculated. In the second approach we
measured the total trip time of each private vehicle agent, and calculated the average over all agents.
We performed a comparison of these measures when only private vehicles are modeled, against our
model where commercial vehicles were included.

The overall impact accross the study area is shown in Figure 8. With slower traffic expected
in the economically dense areas, the two economic centra (Tshwane in the North, and the larger
Johannesburg-Ekurhuleni in the South) are distinguishable with its lighter shades, while the introduc-
tion of commercial vehicles shows only a slight decrease in average speeds. The slight change may be
attributable to the fact that commercial vehicles, in absolute numbers, only represent about 5% of the
total traffic volume.

An hour-by-hour comparison for a single mesozone (zone 4917) is shown in Figure 9a. The impact
that commercial vehicles have on the average speed of private vehicles is again not very significant.
Except between 13:00 and 14:00, slower average speeds are reported for all hours.

A different view of the same analysis is reported in Figure 9b where the overall trip times did
not change dramatically either. There are fewer short trips and more trips exceeding 20 minutes.
Since only internal distribution trips were simulated, which accounted for only an estimated 35% of
Gauteng commercial traffic (Joubert and Axhausen, 2009), we argue that the impact will become
higher once through-traffic is incorporated too. Still, the inclusion of commercial vehicles in the agent-
based simulation model do have the desired (expected) effect: slowing of traffic, and thus increased
travel time.

5. Conclusion

The activity chains generated and simulated in this paper were shown to be a geographically and
temporally accurate representation of observed vehicle chains. A number of future extentions to this
paper is proposed.

Our likely next step is to generate through traffic and trips for which less than 90% of the activities
occur in the study area. Once these trips are accounted for, it will be appropriate to compare the
simulated commercial traffic against actual traffic counts. Our contribution shows that we were able
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Figure 9: Comparisons of the speed and travel time of private vehicles when only private vehicles are
modeled versus when commercial traffic is combined with private vehicles.

to model commercial vehicle behavior in terms of replanning their route and activity schedules. The
impact on policy evaluation should be clear: a base case can be established by modeling the status quo
and validating it using actual vehicle counts. If we want to evaluate how commercial vehicle movement
change as a result of say a road pricing or lane reservation policy, we can include those policy measures
on the network, resimulate the scenario, and compare the vehicle movement (activity densities, activity
timing, average link speed, etc) against that of the base case. The simulated commercial vehicles will
autonomously replan their routes and activity schedules so as to maximize their expected utilization.
In doing so, the simulated agents are giving us a reasonable indication of what we can expect from
real autonomous decision-making commercial vehicles in maximizing their utility.

In accordance with Tavasszy (2008), this paper suffers from the empirical challenge of disentangling
light goods vehicles from heavier ones. We acknowledge that vehicle size plays a role in congestion
impact. Activity chains generated in this paper do not distinguish between vehicle sizes or activity
types (commercial freight vs commercial services).

The freight trip chains in this paper were based on and sampled from observed trip chains. New
chain structures can hence not emerge from the current model. Our approach in this paper to randomly
draw attribute values characterizing the commercial chains can be extended. One extension is to replace
the random draw with a decision engine capable of simulating and predicting the attribute values based
on underlying factors, such as commodity type and the land use of activities. This would require that
the underlying factors are adequately described by available data sources.

In the absence of any additional information to the GPS logs, one may be tempted to consider
supply chain network structures intractable. Yet, with the inferred knowledge of where major and
minor activity locations are, one may be able to analyse the activity chains based on the underlying
land use data, and infer the network structures. Contributions such as those made by de Jong and
Ben-Akiva (2007), Liedtke (2009) and Wisetjindawat et al. (2006) may prove very useful inputs to
infer network and supply chain structures.

It is known that the GPS logs used to infer activities include both service and freight vehicles.
We can hence argue that since we sample from all commercial trip chains observed, the model re-
sults do account for empty trips, something very often omitted in other modeling approaches. Also,
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activities may include collections from production locations, deliveries to receivers, and also activi-
ties at hub locations. The latter has been noted by Friedrich et al. (2007) as lacking from network
models for freight. Empty trips and hub activities, although accounted for, will unfortunately not be
distinguishable within our results.
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