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Summary: The Weibullized generalized gamma distribution, which is a
very �exible distribution due to it richness in parameter structure, is derived by
introducing the Weibullizing constant to the generalized gamma distribution.
In this paper we �rst investigate the properties of the Weibullized generalized
gamma distribution and then derive densities of composite Weibullized
generalized gamma variables.

1. Introduction
If one wants to model a phenomena that takes on positive values, such as

income and lifetime, the exponential distribution (with only one parameter) is

one of the simplest distributions, followed by the gamma distribution (with two

parameters). The generalized gamma (GG) distribution is another positively

skew distribution and more general with four parameters. We will �rst look at

the generalized gamma distribution and its shape analysis, since this will guide

us towards theWeibullized generalized gamma (WGG) distribution.

A random variable X is said to have the generalized gamma distribution,

denoted by GG(�; a; b;m) ; if its probability density is given by
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f (x) = Cx��1ebx (a+ x)
�m

; x � 0 (1.1)

where C�1 = a��m� (�) (�; ��m+ 1; ab) (1.2)

with  the con�uent hypergeometric function of the second kind (see e.g.

Gradshteyn and Ryzhik, 2000) given by

 (�; 
; z) =
1

� (�)

1Z
0

e�ztt��1 (1 + t)

���1

dt; Re� > 0; Rez > 0:

The distribution given by (1.1) has been known at least since 1983 when

Arnold and Press derived it as the marginal density of the shape parameter

of the classical Pareto distribution. It is also worth noting that the generalized

gamma distribution �ts into the extension of the Pearson system. Since those

early days, this distribution has received considerable attention in the literature.

From a literature review, it seems as if this distribution (and alternative

forms thereof) was derived either as a result, or by generalization of existing

probability distributions. It is usually in the Bayesian context that (1.1) appears

as a result, see Singh, et al. (1995); Pandey et al. (1996); Armero and Bayarri

(1997); Mostert (2000). Also appearing as a result, but not in the Bayesian

context, Bekker (1990) derived (1.1) in a characterization result with two

conditional gamma distributions. On the other hand, researchers derived the

generalized gamma distribution as a generalization of existing distributions and

referred to it by different names. See Roux and Bekker (1990); Ng and Kotz

(1993); Agarwal and Kalla (1996); Ghitany (1998); Gordy (1998); Agarwal

and Al-Saleh (2001); Kalla et al. (2001); Al-Saleh and Agarwal (2002);

Nadarajah and Gupta (2007); Al-Saleh and Agarwal (2007).
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In Section 2 we will make use of a new approach, the kernel approach,

to derive the generalized gamma distribution and also investigate the different

shape types of this distribution. In Section 3 we introduce the Weibullized

generalized gamma distribution, do a shape analysis for the WGG distribution

based on the different shape types of the generalized gamma distribution

and study the properties of the WGG distribution. Densities of composite

Weibullized generalized gamma variables are derived and graphed in Section

4. The huge variation in composite Weibullized generalized gamma densities

is illustrated in this section. When �tting a model to data, one usually has an

idea of the behaviour of the data, either through experience or by graphing

empirical data. This section aims at assisting the researcher in deciding

whether the Weibullized generalized gamma distribution is an appropriate

model to describe the data. The article is concluded with a discussion in

Section 5.

2. The generalized gamma distribution

2.1 The Kernel Approach
Having discussed in the introduction the methods by which the generalized

gamma distribution was derived in past research, we would like to introduce a

new approach in deriving this density function. With this approach, referred to

as the kernel approach, a density function is considered a function created from

the product of two or more kernel functions. The domain of the new function is

given by the intersection of the separate domains of the component functions.

The newly created function is multiplied by a normalization constant and thus

a density function is de�ned.

Figure 2.1 illustrates how the generalized gamma distribution is de�ned by

making use of the kernel approach.
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Figure 2.1 (a) considers the case wherem � 0 and Figure 2.1 (b) considers
the case wherem < 0.

(a)

(b)

Figure 2.1. Density function (1.1) for (a)m � 0 and (b)m < 0
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These two diagrams illustrate the position of the generalized gamma

distribution as a parent distribution to some of the well-known positive skew

distributions.

2.2 Shape analysis
Ng and Kotz (1995) called the speci�c form of the generalized gamma function

where a = 1 the Kummer-gamma distribution and investigated the modality of

this function. This method is useful, since it illustrates the different �shape

types� of the density.

In order to study the modality of the function, the following derivatives

were derived:
@

@x
ln f (x) =

�� 1
x

� b+ �m
1 + x

and
@2

@x2
ln f (x) =

1� �
x2

+
m

(1 + x)
2 :

and the roots of the equation
@

@x
ln f (x) = 0

x = (2b)
�1
(�m+ �� 1� b)�

q
(�m+ �� 1� b)2 � 4b (1� �)

Ng and Kotz derived results for all cases where a � 1. These results

are summarized in (1)� (4) below and can be veri�ed by investigating the

derivatives and roots of ln f(x). However, Ng and Kotz did not give the results

for the cases where � > 1. These cases are investigated in (5).

1. If � � 1 and m � 0 the pdf is decreasing and convex with f(0+) = 1
and f(1) = 0.

2. If � = 1 and 0 < �m � b then the pdf has the same form as in (1).

3. If � = 1 and �m > b > 0 there is only one positive root implying a single

mode. The pdf rises from zero, reaches the single mode at x =
�m� b

b
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and decreases to zero as x �!1.

4. If � < 1 and �m > 0 a necessary and suf�cient condition for the
two roots to be positive and distinct is: (�m+ �� 1� b) > 0 and
(�m+ �� 1� b)2 � 4b (1� �) > 0, thus implying two turning points.
For this case the pdf decreases from1 at x = 0, reaches the antimode at
the smaller of the two roots, then increases until the larger of the two roots
and �nally decreases to zero as x �!1.

5. For the case where � > 1, it will always hold thatq
(�m+ �� 1� b)2 � 4b (1� �) > (�m+ �� 1� b) therefore there

will always be only one positive root. Let a = (�m+ �� 1� b) and
c = �4b (1� �) > 0

(i) If � > 1 and m < 0 then a > 0 if (�m+ �� 1) > b and
a�

p
a2 + c, implies one positive root and one negative root.

(ii) If � > 1 andm < 0 then a < 0 if (�m+��1) < b and a�
p
a2 + c,

implies one positive root and one negative root.
(iii) If � > 1 andm > 0 then a > 0 if (�� 1) < (b+m) and a�

p
a2 + c,

implies one positive root and one negative root.
(iv) If � > 1 and m > 0 then a < 0 if (�� 1) > (b+m) and

a�
p
a2 + c, implies one positive root and one negative root.

These �ve cases are illustrated in Figure 2.2. For case 5, option (iii) is

illustrated. The parameters chosen for the different cases are summarized

below.

Parameters chosen for Figure 2.2

� a b m
Case 1 0:5 1 2 2
Case 2 1 1 2 �1
Case 3 1 1 2 �3
Case 4 0:1 1 4 �10
Case 5(iii) 3 1 2 3
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0.00.51.01.52.02.50.51.01.52.0

Case 1

Case 3
Case 2

Case 5
Case 4

Figure 2.2 Different �shape types� of density (1.1) for speci�c values of the
parameters

The �ve shape types for the generalized gamma distribution will be used

as the basis for investigating the shape types of the Weibullized generalized

gamma distribution and also the distributions of composite WGG variables.

3. The Weibullized Generalized Gamma
Distribution

3.1 Introducing aWeibullizing parameter to the Generalized
Gamma Distribution

The powers of positive variables (such as the exponential and gamma) are

sometimes encountered, resulting in the so-called Weibullized distributions

(see e.g. Gupta and Nadarajah (2004, p. 118); Malik (1967); McDonald and

Xu (1995); Bekker et al. (2000, 2009)).
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By de�ning Y = Xc with c positive, the generalized gamma density can

be extended with density

f (y) = C�y
�
c �1e�by

1
c

�
a+ y

1
c

��m
; y � 0 (3.1)

where C��1 = ca��m� (�) (�; ��m+ 1; ab)

This density will from now on be referred to as theWeibullized generalized

gamma distribution and will be denoted byWGG (�; a; b;m; c).

We use the �ve shape types of the generalized gamma distribution to

illustrate the in�uence of the parameter c. In Figure 3.1 (a)�(e) the WGG

distribution is graphed for c = 0:3; 0:5; 1; 5; and 10. Note that for c = 1,

we have the GG distribution. The effect is what one would expect from the

Weibullizing parameter: The larger c, the more it �pushes� the density function

towards the vertical axis. For c less than one, we get a long tail density, the

smaller c, the smaller the variance.

3.2 Properties of the Weibullized Generalized Gamma
Distribution

In this section we will investigate the properties of the WGG distribution,

starting with the distribution function in Theorem 1. In Theorem 2 we derive

the moment-generating function and use it to �nd the rth moment of the WGG

distribution. Making use of the distribution function in Theorem 1, we derive

the hazard rate function in Theorem 3 and also investigate the in�uence of the

Weibullizing constant c on the hazard rate function.
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Theorem 1

Let Y �WGG(�; a; b;m; c), then the distribution function of Y is given by

F (y) = C�a�mb��c
1X
r=0

� (m+ r)

� (m) r!

�
�1
ab

�r



�
�+ r; by

1
c

�
(3.2)

with C��1 = ca��m� (�) (�; ��m+ 1; ab) where 
 (�;x) is the

incomplete gamma function given by 
 (�; x) =
Z x

0

e�tt��1dt; Re(�) > 0.

Proof

By de�nition the distribution function of Y is given by

F (y) = C�
yZ
0

t
�
c �1e�bt

1
c

�
a+ t

1
c

��m
dt:

By setting w = bt
1
c ; expanding the term

�
1 +

w

ab

��m
as an in�nite series and

using the incomplete gamma function, proves the theorem.

Theorem 2

Let Y � WGG(�; a; b;m; c), then the moment-generating function of Y is

given by

M (t) =
1X
r=0

tr

r!

�
acr (�)cr

 (�+ cr; �+ cr �m+ 1; ab)
 (�; ��m+ 1; ab)

�

where (a)n = a (a+ 1) ::: (a+ n� 1) = � (a+ n)

� (a)
is the Pochhammer

symbol.
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Proof

By de�nition the moment-generating function of Y is given by

M (t) = C�
1Z
0

etyy
�
c �1e�by

1
c

�
a+ y

1
c

��m
dy:

Expanding the term ety and setting z =
y
1
c

a
proves the theorem.

Figure 3.1 The in�uence of the Weibullizing parameter c
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Remark

Using the moment-generating function in Theorem 2 above, the rth moment is

given by

E (Y r) = acr (�)cr
 (�+ cr; �+ cr �m+ 1; ab)

 (�; ��m+ 1; ab)

Theorem 3

Let Y �WGG (�; a; b;m; c), then the hazard rate function of Y is given by

h (y) =

amb�y
�
c �1e�by

1
c

�
a+ y

1
c

��m
c

�
a�b�� (�) (�; ��m+1; ab)�

X1

r=0

� (m+ r)

� (m) r!

�
�1
ab

�r



�
�+r; by

1
c

��

Proof

Using (3.1) and (3.2) in the de�nition of the hazard rate function of

Y; h (y) =
f (y)

1� F (y) , proves the theorem.

The in�uence of c on the hazard function is illustrated in Figures 3.2 (a)

and (b). Since h(y) is an increasing function for increasing values of Y ,

the Weibullized generalized gamma density seems plausible as lifetime model

in most situations. In Figure 3.2 (a) the �rst four parameters were �xed at

� = 1; a = 1; b = 2 and m = �1 and c varied from 0.3, 0.5, 1, 5 and 10. In
Figure 3.2( b)m was changed to �3.
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(a) (b)
� = 1; a = 1; b = 2; m = �1; � = 1; a = 1; b = 2; m = �3;
c = 0:3; 0:5; 1; 5; 10 from c = 0:3; 0:5; 1; 5; 10 from
bottom to top bottom to top

Figure 3.2 In�uence of c on the hazard function

4. Densities of composite Weibullized Generalized
Gamma Variables

4.1 Derivation of Densities of Composite Weibullized
Generalized Gamma Variables

In this paragraph we derive densities of the compositesU = Y1= (Y1 + Y2) and

V = Y1=Y2, where Y1 and Y2 are independent Weibullized generalized gamma

variables. In Theorem 4(a) we derive the density of U = Y1= (Y1 + Y2) when

c1 6= c2 for the special case where m = �1 and in Theorem 4(b) we assume
that the Weibullizing constant c for both Y1 and Y2 are the same.



COMPOSITE WEIBULLIZED GENERALIZED GAMMA VARIABLES 29

Theorem 4

Let Yi �WGG (�i; ai; b;mi; ci) i = 1; 2 be independent random variables,

the density of U =
Y1

Y1 + Y2
is as follows:

(a) for c1 6= c2 andm = �1;

f (u) = A+B

A = C��a2c1u
��2c2 �1 (1� u)

�2
c2
�1

�

266664
1P
r=0

(�b)r

r!
u
�r
c2 (1� u)

r
c2 �

�
�1 +

c1
c2
(�2 + r)

�
�

b
��1�

c1
c2
(�2+r)

�
a1 +

�
�1 +

c1
c2
(�2 + r)

�
b

�
377775

B = C��c1u
��2c2 �

1
c1
�1
(1� u)

�2
c2
+
1
c1
�1

�

2666664
1P
r=0

(�b)r

r!
u
� r
c2 (1� u)

r
c2 �

�
�1 +

c1
c2
(�2 + r + 1)

�
�

b
��1�

c1
c2
(�2+r+1)�1

�
a1 +

�
�1 +

c1
c2
(�2 + r + 1)

�
b

�
3777775

with

C���1 = c1c2a
�1+1
1 a�2+12 � (�1) � (�2) (�1; �1 + 2; a1b)

� (�2; �2 + 2; a2b) (4.1)
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(b) for c1 = c2 = c > 0;

f (u) =

a�21 a��22 c�1u�(�2=c+1) (1� u)�2=c�1

� (�1) � (�2) � (m1+m2) (�1; �1�m1+1; a1b) (�2; �2�m2+1; a2b)

�
1X
r=0

"
�a1b

 
1 +

�
1

u
� 1
�1=c!#r

r!

�� (�1 + �2 + r) � (m1 +m2 � �1 � �2 � r) �

� 2F1

 
m2; �1 + �2 + r;m1 +m2; 1�

a1
a2

�
1� u
u

�1=c!
;

0 < u < 1
m1 +m2 > �1 + �2 + r (4.2)

with 2F1 (�; �; 
; z) =
1

B (�; 
 � �)

Z 1

0

t��1 (1� t)
���1 (1� tz)�� dt
the Gauss hypergeometric function.

Proof

(a) De�ning U =
Y1

Y1 + Y2
andW = Y1 + Y2 gives the joint pdf of U andW

as follows:

f (u;w) = C� (w) (uw)
�1
c1
�1
(w (1� u))

�2
c2
�1
e�b(uw)

1
c1 e�b(w(1�u))

1
c2

�
�
a1 + (uw)

1
c1

��
a2 + (w (1� u))

1
c2

�
To obtain the density of U , we integrate f(u;w) over w.

Making the transformation (uw)
1
c1 = z in the integral expression and

expanding the term e�b(w(1�u))
1
c2 proves part (a).

(b) The proof is similar to part (a).
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Remark

1. By using theorem 4(b), the density of V =
Y1
Y2
=

�
U

1� U

�
can be derived

as

f (v) =
a�21 a��22

c� (�1) � (�2) � (m1+m2) (�1; �1�m1+1; a1b) (�2; �2�m2+1; a2b)

�
X1

r=0

(�b)r

r!
ar1v

�(�2+r+c)=c
�
1 + v

1
c

�r
�� (�1 + �2 + r) � (m1 +m2 � �1 � �2 � r)

� 2F1

0@m2; �1 + �2 + r;m1 +m2; 1�
a1
a2
v
�
1

c

1A ;

v > 0
m1 +m2 > �1 + �2 + r

(4.3)

2. Nadarajah and Kotz (2004) derived the density of U =
Xc
1

Xc
1 +X

c
2

with

c > 0 for X1 and X2 independent gamma variables. More recently (2009),

Bekker et al. derived the density of U for X1 and X2 independent generalized

beta-prime variables. Since the gamma distribution and the generalized beta-

prime distribution are both incorporated by the generalized gamma distribution

given by (1.1), the results in these two papers are special cases of (4.2).

4.2 Shape Analysis of Composite Weibullized Generalized
Gamma Distributions

In order to make graphing of (4.2) possible for the case where c = 1, one can

write the density function of U in the form
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f (u) = C��
1Z
0

(a1 + uw)
�m1 (a2 + w (1� u))�m2

� � (�1 + �2)
� (�1) � (�2)

u�1�1 (1� u)�2�1 b�1+�2

� (�1 + �2)

�w�1+�2�1e�bwdw

= C��
1Z
0

(a1 + uw)
�m1 (a2 + w (1� u))�m2

�g (u) � h (w) dw (4.4)

where

(C��)
�1

= a�1�m1
1 a�2�m2

2 b�(�1+�2) (�1; �1 �m1 + 1; a1b)

� (�2; �2 �m2 + 1; a2b)

where g (u) is the density function of a beta type I variable with parameters �1
and �2 and h(w) is the density function of a gamma variable with parameters

b�1 and �1+�2:Using numerical integration, (4.4) is graphed in Figure 4.1 for

the �ve different �shape types� given in Figure 2.2. The choice of parameters

for Figure 4.1 is the same as for Figure 2.2.

It is evident from Figure 4.1 that the density of U =
Y1

Y1 + Y2
with

c = 1 can take a wide variety of shapes including U-shapes, unimodal and

bimodal curves. It is also interesting to note that the �matrix� in Figure 4.1 is

symmetrical, since
Y1

Y1 + Y2
= 1 � Y2

Y1 + Y2
: Thus, if one wishes to get the

mirror image of a density one only needs to switch the role of Y1 with that of

Y2 and vice versa. This implies that for every positive skew distribution there

is a sibling negative skew distribution. This is quite surprising, since none of
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Figure 4.1 Summary of shapes for the pdf of U =
Y1

Y1 + Y2
; c = 1 with row

legend Y2 = X1
2 and column legend Y1 = X1

1
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the 5 �shape types� were originally negative skew. The symmetry of Figure

4.1 also implies that neither the distribution of Y1, nor the distribution of Y2
dominates the shape of the distribution of U .

The density function of V =
Y1
Y2
given in (4.3) can be graphed in a similar

way by �rst writing the density as

f (v) = C��
1Z
0

�
a1 +

uv

1 + v

��m1
�
a2 +

u

1 + v

��m2

� � (�1 + �2)
� (�1) � (�2)

v�1�1 (1 + v)
��1��2

� b�1+�2

� (�1 + �2)
u�1+�2�1e�budu

= C��
1Z
0

�
a1 +

uv

1 + v

��m1
�
a2 +

u

1 + v

��m2

�g (v) � h (u) du (4.5)

where

(C��)
�1
=a�1�m1

1 a�2�m2
2 b�(�1+�2) (�1; �1�m1+1; a1b) (�2;�2�m2+1;a2b)

where g(v) is the density function of a beta-prime variable with parameters �1
and �2 and h (u) is the density function of a gamma variable with parameters

b�1 and �1+�2:Using numerical integration, (4.5) is graphed in Figure 4.2 for

the �ve different �shape types� given in Figure 2.2. The choice of parameters

for Figure 4.2 is the same as for Figures 2.2 and 4.1.

From Figure 4.2 the density of V =
Y1
Y2
with c = 1 do not take on such

a wide variety of shapes as the density of U in Figure 4.1. Also, the �matrix�

in Figure 4.2 is not symmetrical. Another interesting feature of the shape of

the density (4.5) is that it seems to be dominated by the shape of the density
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Figure 4.2 Summary of shapes for the pdf of V =
Y1
Y2
; c = 1 with row

legend Y2 = X1
2 and column legend Y1 = X1

1
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of the numerator (Y1) with a few exceptions (especially where the shape of the

density of Y2 is of case 4).

Figure 4.3 The effect of c on the shape of the density function of

U =
Xc
1

Xc
1 +X

c
2

=
Y1

Y1 + Y2
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To show the effect of c, in Figure 4.3 the density of U =
Y1

Y1 + Y2
is again

graphed for the most interesting combinations in Figure 4.1, but this time not

only for c = 1, but also for c = 0:5 and c = 5. To make comparison easier,

the case where c = 1 is repeated from Figure 4.1. It is interesting to note that

for c = 5 the density is always in the skewed U-shape, whereas for c = 0:5

the density again takes on a very wide variety of shapes which, in some cases,

look like the mixture of two distributions.

5. Discussion
The quotient of two independent variables has many applications, one of which

is the determination of a safe dose interval in pharmacology. When a speci�c

drug is administered to the human body, the concentration of the drug in the

blood plasma reaches a certain level. As the drug is biochemically modi�ed by

the body, the concentration in the blood plasma decreases and reaches a point

where the plasma concentration is half the original value. Pharmacologists

refer to this point as the �half-life� of the drug. It is of utmost importance that

the dose interval indicated on the label is longer than the half-life of the drug

in order to prevent the drug from building up in the body, which may lead to

serious toxic effects.

Let variable Y1 represent the dose interval for a certain drug with half-life

that is represented by Y2 with both variables Weibullized generalized gamma

distributed. The safety (�) of the treatment is the probability that the dose

interval exceeds the half-life of the drug and is given by

� = P (Y1 > Y2) = P

�
Y1
Y2

> 1

�
= P (V > 1) :

This probability should typically be close to one. The WGG distribution is

de�ned over the positive range and can take on a variety of shapes: positive

skew, negative skew and also approximately symmetrical. This make the WGG
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distribution ideal to model both dose interval and half-life. One may expect

half-life to follow an approximately symmetrical distribution with a small

variance, and the dose interval to follow a slightly negatively skew distribution.

Figure 5.1 (a) gives the distribution of dose interval (Y1) and half-life (Y2) if we

let Y1 � WGG (1; 1; 2; � 5; 0:3) and Y2 � WGG (3; 1; 2; 3; 0:3). The

table gives the means and the variances for both distributions. The distribution

of V =
Y1
Y2
is graphed in Figure 5.1 (b). The safety of the treatment is given

by the shaded area in the graph and can be calculated as � = 0:777.

(a) (b)

Mean Variance
Dose interval Y1 1.186 0.057
Half-life Y2 0.918 0.033 Safety � = 0:777

Figure 5.1 Safety of the treatment for dose interval (Y1) and half-life (Y2)
with Y1 �WGG (1; 1; 2;�5; 0:3) and Y2 �WGG (3; 1; 2; 3; 0:3).

It is typically more desirable for the safety of the treatment to be closer to one.

One may improve the safety of the treatment by increasing the dose interval.

Keeping half-life the same as above, one can change the distribution of the

dose interval to Y1 �WGG (1; 1; 2;�10; 0:3).
Similar to Figure 5.1, Figure 5.2 (a) gives the distribution of dose interval

(Y1) and half-life (Y2) if we change the distribution of dose interval to Y1 �
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WGG (1; 1; 2;�10; 0:3). The safety of the treatment is indicated by the
shaded area in Figure 5.2 (b) and can be calculated as � = 0:986 , which is

a more desirable situation than the one illustrated in Figure 5.1.

(a) (b)

Mean Variance
Dose interval Y1 1.547 0.032
Half-life Y2 0.918 0.033 Safety � = 0:986

Figure 5.2 Safety of the treatment for dose interval (Y1) and half-life (Y2)
with Y1 �WGG (1; 1; 2;�10; 0:3) and Y2 �WGG (3; 1; 2; 3; 0:3)
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