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Abstract 

SHRIMP dating of titanite from metasyenites in the Central Zone of the Limpopo Belt 
yields a mean 207Pb/206Pb age of 2010.3 +/- 4.5 Ma calculated from twenty-three analyses. 
This age, combined with petrographic and field observations, suggests the metamorphism 
in the syenites occurred during the regional Palaeoproterozoic event.  
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Introduction  
A unique body of (meta)-syenite intrudes the Alldays Gneiss and outcrops in an elongate, 
6.25 x 1.25 km body WNW of Alldays within the Central Zone of the Limpopo Belt, 
South Africa (Fig 1a + b). A recent study by Rigby et al. (2008a) reveals the metasyenites 
underwent a metamorphic evolution characterized by a maximum pressure of 7-8 kbar 
and ~770oC. The subsequent retrograde path involved a simultaneous P-T decrease along 
a decompression-cooling path to 4 kbar and ~550oC. These P-T estimates are 
‘intermediate’ between the high-grade conditions reported by Zeh et al. (2004) and Rigby 
(2009) for metapelites near Messina and the amphibolite-facies conditions reported by 
Zeh et al. (2005a,b) and Chudy et al. (2008) for rocks from the Venetia area. Collectively, 
this data led Rigby et al. (2008a) to postulate the existence of a metamorphic field 
gradient. However, there are two main tectonometamorphic episodes known in the 
Central Zone of Limpopo Belt, one in the Neoarchean (e.g. McCourt & Armstrong, 1998; 
Kroner et al., 1998; Bumby et al., 2001; Bumby & van der Merwe, 2004; Zeh et al., 
2007; Millonig et al., 2008; Perchuk et al., 2008; Van Reenen et al., 2008; Gerdes & Zeh, 
2009; Zeh et al. 2009) and one in the Palaeoproterozoic (e.g. Jaeckel et al., 1997; Holzer 
et al., 1998; Kroner et al., 1999; Zeh et al., 2004; Rigby et al., 2008b; Chudy et al., 2008; 
Eriksson et al., 2009; Gerdes & Zeh, 2009; Rigby et al., 2010; Eriksson et al., 2010a and 
b; Millonig et al., 2010) and without robust geochronological constraints it is not clear in 
which event the metasyenites were metamorphosed. Additionally, due to this uncertainty, 
the existence of the proposed metamorphic field gradient by Rigby et al (2008a) is, at 
present, mere speculation. In this short communication we present new U-Pb SHRIMP 
data obtained from titanite in the metasyenites to delineate their age and support the 
metamorphic field gradient hypothesis. 
 



 
 
Fig. 1. (A) A map of the Limpopo Belt (after Boshoff et al. (2006)). (B) A detailed geological map of the 
field area (after Boshoff et al. (2006) and Rigby et al. (2008a)). 
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Geological Context 
Regional  
The Limpopo Belt of southern Africa (Fig. 1a) is a predominantly high-grade terrane 
composed of three distinct zones, each with a distinctive geological history and tectono-
metamorphic evolution. The Southern Marginal Zone (SMZ) represents a high-grade 
equivalent of the granite-greenstone successions that prevail in the adjacent Kaapvaal 
Craton (KC). The SMZ is separated from the KC by the inward-dipping strike-slip ductile 
shear zone known as the Hout River Shear Zone. Similarly, the Northern Marginal Zone 
(NMZ) is a high-grade equivalent of the Zimbabwe Craton, which is separated from the 
NMZ by the North Limpopo Thrust Zone. Conversely, the Central Zone (CZ) forms a 
unique and distinct supracrustal block, which is bound to the north and south by the 
Magohapote and Triangle Shear Zone and Zoefontein-Palala Shear Zones respectively. 
The P-T-t evolution of the CZ of the Limpopo Belt is a vast and contentious issue too 
lengthy to be discussed here, however, the reader is referred to Perchuk et al. (2008), Zeh 
& Klemd (2008) and Rigby (2009) and references therein for a comprehensive 
description and discussion of this topic.  
 
Local 
The metasyenites outcrop within the farms of Rietfontein 217 MR and Mietjiesfontein 
220 MR, approximately 25km W-N-W of Alldays (S22o35’19.2” EO28o50’12.4”) (inset 
Figure 1B). Field relationships indicate the (meta)syenites intruded into the Alldays 
gneiss (Brandl & Pretorious, 2000). In hand-specimen the metasyenite is a coarse-
grained, crystalline rock composed primarily of K-feldspar, quartz and amphibole. The 
amphiboles are aligned forming a weak but macroscopically-prominent foliation that 
strikes approximately NE-SW and dips steeply towards the NW. The metasyenites also 
contain 20-30 cm-scale, asymmetric folds that have fold-axes trending NW-SE. A large 
number of quartzo-feldspathic veins, interpreted to represent mobilized melt from the 
surrounding Alldays gneisss, cross-cut the metasyenite and manifest in various forms; (1) 
as single, linear veins measuring from 0.2cm-30cm in diameter (2) as linear conjugate 
pairs intersecting at ~60/120o measuring up to 15cm in diameter (3) as folded veins 
measuring up to 10cm in diameter (Figure 2A) (4) as linear veins, offset by small-scale 
normal faults and (5) as inter-connected, mesh-like networks (Rigby et al. 2008a).   
 
Samples & Methodology  
Sample description 
The rock contains amphibole in two distinct textural settings; (1) weakly aligned, parallel 
prismatic grains measuring up to 8mm in length that form a weak foliation. (2) as 
randomly oriented blocky grains measuring up to 4mm in diameter. The amphiboles are 
set in a coarse grained, inter-locking crystalline matrix consisting of predominantly K-
feldspar with interstitial clinopyroxene, plagioclase, quartz, titanite and magnetite (Figure 
2B). K-feldspar forms randomly oriented, euhedral-blocky grains, measuring up 10mm in 
diameter and commonly exhibiting micro-perthitic exsolution textures. Plagioclase and 
K-feldspar show signs of sericitization. Quartz, commonly exhibiting sub-grain 
development, is found only in contact with K-feldspar and plagioclase where it forms 
relatively small (<2mm) interstitial patches between the blocky grains. Clinopyroxene 
forms randomly oriented subhedral-euhedral grains that are interstitial between large  



  
 
Fig. 2. (A) Field photograph small-scale folding within the metasyenite. (B) Photomicrograph of the thin-
section RM06/49 illustrating the mineral assemblage (Amph = amphibole; Di = clinopyroxene; 
Ti = titanite; Mt = magnetite. (C) Photomicrograph of the thin-section RM06/49 illustrating large elongate 
titanites. (D) BSE image illustrating the zoning/internal structure of a single titianite grain. 
 
blocky K-feldspars and elongate amphibole. Magnetite forms small equant grains 
measuring up to 0.5 mm in diameter, which are commonly located in contact with, or 
immediately adjacent to the amphiboles. Titanite is the most abundant accessory mineral, 
forming both large (>5mm) subhedral-to-euhedral grains (Figure 2C) and randomly 
oriented clusters composed of several small grains (0.1-1mm).  
 
Methodology 
Photomicrographs in transmitted and reflected light were taken of the titanite thin-
sections and together with back-scattered electron (BSE) images, were used to delineate 
the internal structures of the sectioned grains and to target specific areas within the 
minerals for spot analyses. BSE images of titanite reveal that specific domains of an 
individual grain have a contrast in the grey-scale, which may indicate compositional 
zoning (Figure 2D). U-Pb analyses of titanite were performed in situ from several thin-
sections of the same sample at the Research School of Earth Sciences (RSES), Australian 
National University using a SHRIMP II. Uncertainties given for individual analyses 
(ratios and ages; Table 1) are at the 1σ level, whereas uncertainties in the calculated 
weighted mean ages are reported at 95% confidence limits and include the uncertainties 



in the standard calibration. Concordia plots and weighted mean age calculations were 
carried out using Isoplot/Ex (Ludwig 1999). Concordia ages were calculated using the 
SQUID Excel macro (Ludwig 2000) with uncertainties from the standard calibration 
included in the final errors quoted. On the basis of previous studies, the quadratic 
relationship between Pb+/U+ and UO+/U+ (Claoue´-Long et al. 1995) used for zircon also 
provides a good first-order correction for the interelement fractionation in the ion 
emission from titanite (Williams, 1998). 
 
Results and Discussion 
Twenty-three analyses from different titantite grains were undertaken and the results are 
presented in table 1. The concordia plot (Figure 3) demonstrates most analyses are 
concordant. Intercepts occur at 2012 +/- 14 & 64 +/- 560 Ma with a MSWD of 0.38. The 
data yields a precise calculated mean 207Pb/206Pb age of 2010.3 +/- 4.5 Ma. 207Pb/206Pb 
ages range from 1996.4 +/- 9.6 to 2057 +/- 49 Ma and there is no discernible age 
difference between different zones within a single titanite grain.  
 

 
 
Fig. 3. U–Pb Concordia diagram for sample RM06/49. 
 
The calculated mean 207Pb/206Pb age of 2010.3 +/- 4.5 Ma suggests the titanite formed 
during the Paleoproterozoic event and is agreement with the data from the following 
studies: Chudy et al. (2008) who determined U-Pb dating of monazite yields an age of 
2015 +/- 8Ma; Pb stepwise leaching data obtained by Holzer et al. (1998) from garnet and 
titanite, which yield ages of 2010 ± 17 Ma and 2007 ± 5 Ma, respectively; Zircon ages 
from Gerdes & Zeh (2009) at 2021 +/- 10 Ma and Van Reenen et al. (2008) who dated 



syntectonic anatectic material by U–Pb monazite (2017.1±2.8 Ma) and PbSL garnet 
(2023±11 Ma).  
 
The experiments of Cherniak (1993) indicate that titanite with a diffusion domain radii of 
0.005 to 0.5cm should close to Pb diffusion between 650 and 780oC, respectively, for 
cooling rates typical of regional metamorphism. The studied titanite grains form crystals 
up to 0.5 cm in radius, compatible with a closure temperature of 780oC (Cherniak 1993); 
a temperature which is in agreement with the peak metamorphic conditions determined 
from pseudosections and conventional thermobarometry by Rigby et al. (2008a) and may 
suggest the titanite formed during metamorphism. Conversely, Rigby et al. (2008a) 
suggest that the titanites were part of the primary magmatic assemblage and that 
metamorphism of the syenite was not associated with neo-mineralization. Prior to the 
experiments of Cherniak (1993) titanite was deemed to have a very low closure 
temperature as it recrystallizes easily during deformation (e.g. Mezger et al. 1991). 
Therefore it can date deformation even under low grade conditions. In the present case 
the most likely interpretation is therefore that the titanite dates the tectonometamorphic 
episode at c. 2.0 Ga. Irrespective of arguments pertaining to closure temperatures, the 
data does constrain the age of the metamorphism irrespective of the whether the titanites 
are magmatic or metamorphic in origin. If the titanites are metamorphic in origin then the 
data defines a precise growth age. Alternatively, if the titanites are magmatic then the 
SHRIMP data, coupled with field observations and petrographic data that indicate the 
metasyenites are deformed, define a minimum-age constraint on the Paleoproterozoic 
event. Moreover, the P-T conditions determined by Rigby et al. (2008a) to be 
‘intermediate’ between the amphibolite facies conditions reported by Zeh et al. (2005a) 
and the granulite facies conditions of Zeh et al. (2004) and Rigby (2009) are now 
bracketed in terms of their age, and collectively this data may suggest that the 
metamorphic field gradient hypothesis proposed by Rigby et al. (2008a) is a valid 
concept and that metamorphic conditions across the Central Zone of the Limpopo Belt at 
2.0Ga varied predictably.  However, this hypothesis is dependent on the reliability of the 
P-T conditions determined by different workers using different methods (Perchuk et al., 
2008 versus Zeh & Klemd, 2008 and Rigby, 2009). If the P-T estimates produced by the 
pseudosection approach (e.g. Zeh et al. 2004; 2005a; Rigby et al., 2008a and Rigby, 
2009) are correct then the field gradient hypothesis remains a valid concept. However, if 
the local equilibrium estimates of Boshoff et al. (2006) and Perchuk et al. (2008) are 
correct then the hypothesis may be flawed. The debate over the P-T estimates is a 
contentious issue which has yet to be fully resolved. In regards to the ‘field gradient’ it is 
a working hypothesis and additional P-T-t work is required to further validate the 
concept. 
 
Conclusion 
A mean 207Pb/206Pb age of 2010.3 +/- 4.5 Ma from titanite brackets the age of 
metamorphism in the syenites to have occurred during the regional Paleoproterozoic 
event. The age, when used in conjunction with other published data may suggest that the 
Central Zone of the Limpopo Belt preserves evidence of a metamorphic field gradient at 
c. 2.0 Ga.  
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Table 1. Summary of SHRIMP U–Pb zircon data for sample RM06/49.  
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bc 
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(1) 
206Pb/238

U Age 

(1) 
207Pb/206PbA
ge 

%Di
s-
cor-
dant 

(1) 
207Pb*/206P
b* 

±
% 

(1) 
207Pb*/235

U 

±
% 

(1) 
206Pb*/238

U 

±
% 

Err. 
cor
r. 

20.1 3.64 60 110 1.89 18.5 191
4 

±3
4 2003 ±48 4 0.1232 2.7 5.87 3.4 0.3456 2.1 .606

21.1 0.33 324 112
0 3.57 96.1 190

6 
±2
1 

2006.
1 ±7.1 5 0.12341 0.4 5.855 1.3 0.3441 1.3 .954

 

Errors are 1-sigma; Pbc and Pb* indicate the common and radiogenic portions, respectively.Error in Standard calibration was 0.30% (not included 
in above errors but required when comparing data from different mounts). (1) Common Pb corrected using measured 204Pb. 
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