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Abstract. In order to widen the scope of the applications of deterministic
homogenization, we consider here the homogenization problem for a family of
integral functionals. The homogenization procedure tending to be classical, the
choice focused on the convex integral functionals is made just to simplify the
presentation of the paper. We use a new approach based on the Stepanov type
spaces, which approach allows us to solve various problems such as the almost
periodic homogenization problem and others without resorting to additional
assumptions. We then apply it to obtain a general homogenization result
and then we provide a number of physical applications of the result. The
convergence method used falls within the scope of two-scale convergence.

1. Introduction

We study the asymptotic behaviour (as 0 < "! 0) of the sequence of solutions
to the problems

min
n
F"(v) : v 2W 1;p

0 (
;Rn)
o

where the functional F" is de�ned on W
1;p
0 (
;Rn) by

F"(v) =

Z



f
�
x;
x

"
;Dv(x)

�
dx (v 2W 1;p

0 (
;Rn)); (1.1)


 being a bounded open set in RN (integers n, N � 1), D denoting the gradient
operator in 
, and the function f : RN � RN � RnN ! [0;+1) satisfying the
following conditions:

(H1) There exist a continuous positive function ! : R ! R+ � [0;+1) with
!(0) = 0, and a function a 2 L1loc(RNy ) such that

jf(x; y; �)� f(x0; y; �)j � !(jx� x0j)(a(y) + f(x; y; �)) (1.2)

for all x; x0 2 RN ; � 2 RnN and for almost all y 2 RN ,
(H2) f(x; �; �) is measurable for all (x; �) 2 RN � RnN ,
(H3) f(x; y; �) is strictly convex for almost all y 2 RN and for all x 2 RN ,
(H4) There exist three constants p > 1 and c1, c2 > 0 such that

c1 j�jp � f(x; y; �) � c2(1 + j�jp) (1.3)

for all (x; �) 2 RN � RnN and for almost all y 2 RN .
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Since the function f(x; y; �) is convex, it comes from (1.3) (see in particular the
right-hand side of the inequality in (1.3)) that��f(x; y; �)� f(x; y; �0)�� � c2(1 + j�jp�1 +

���0��p�1) ���� �0��
for all x 2 RN , �; �0 2 RnN and for almost all y 2 RN . (1.4)

Consequently, for any �xed " > 0 and for w 2 Lp(
;RnN ), the function x 7!
f (x; x="; w(x)) of 
 into R+ (denoted by f"(�; �; w)), is well de�ned and lies in
L1(
) (see [28]), with

c1 kwkpLp(
)nN � kf
"(�; �; w)kL1(
) � c02

�
1 + kwkpLp(
)nN

�
where c02 = c2max(1; j
j) with j
j =

R


dx. Indeed due to the inequalities (1.2)

and (1.4) the mapping (x; x0; y) 7! f(x; y; w(x0)) (for any �xed w in C(
;RnN ))
from 
 � 
 � RNy to R+, lies in C(
 � 
;L1(RNy )), and so one can naturally de-
�ne the trace (x; y) 7! f(x; y; w(x)) of 
� RNy into R+ as follows: f(x; y; w(x)) =
f(x; y; w(x0))jx0=x, which belongs to C(
;L1(RNy )). Therefore, due to [27, Propo-
sition 1.5], one can easily de�ne the trace function x 7! f (x; x="; w(x)), of 

into R+, as an element of L1(
;R+); and by density, owing to [28], the function
x 7! f (x; x="; w(x)) (for w 2 Lp(
;RnN )) is well de�ned and lies in L1(
). Hence,
assuming the vector spaceW 1;p

0 (
;Rn) to be endowed with the norm kvkW 1;p
0 (
)n =

kDvkLp(
)nN (which makes it a Banach space), we have in particular

c1 kvkpW 1;p
0 (
)n

� kf"(�; �; Dv)kL1(
) � c02

�
1 + kvkp

W 1;p
0 (
)n

�
; (1.5)

which allows us to justify the de�nition (1.1). Therefore, using together the inequal-
ity (1.4) (which implies the continuity of the functional F") with the strict convexity
of F" (see (H3)) and the left-hand side of the inequality in (1.5) (which means the
coercivity of F"), we deduce [13, 31] the existence of a unique u" 2 W 1;p

0 (
;Rn)
solution to the minimization problem

F"(u") = min
v2W 1;p

0 (
;Rn)
F"(v): (1.6)

Under an abstract structure assumption (to be speci�ed later), the homogeniza-
tion of functionals F" amounts to �nding a homogenized functional F such that
the sequence of minimizers u" converges to a limit u, which turns out to be the
minimizer of F .
From a physical point of view, e.g., in elasticity theory, the term F"(v) can be

viewed as the energy under a deformation v of an elastic body whose microstructure
behaves realistically. In the case where the microstructure has a periodic behav-
iour, the functionals F" have been attracted the attention of a great number of
researchers. We refer, e.g., to [1, 2, 7, 14, 31]. In [7], the functionals of the type
(1.1) have been studied by Braides under assumptions (H1)-(H4). Recently, Baia
and Fonseca [2] have studied this problem under hypothesis (H4) and requiring
continuity on (y; �) and measurability in x. It is to be noted that in [1, 14, 31], the
authors have considered functionals of the formZ




f
�x
"
;Dv(x)

�
dx: (1.7)

The main references for functionals of type (1.7) are Marcellini [24] and Carbone-
Sbordone [10].
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Apart from [1], all the works cited above have two common points : (1) they
have been studied under the periodicity hypothesis on the fast variable y; (2) the
convergence method used is that of �-convergence [15]. In [1], under a periodic hy-
pothesis, and a di¤erentiability hypothesis on f with respect to �, Allaire recovers
some explicit results via the technique of two-scale convergence. Concerning the
results beyond the periodic setting, Kozlov [20] was the �rst to prove an homog-
enization result for functionals of the form (1.7), with f being a quadratic form
in its second occurrence and almost periodic in the �rst one. Later on, Braides
[8], using the �-convergence techniques, studied functionals (1.7) under the almost
periodicity assumption with respect to the fast variable y and the quasiconvexity
hypothesis on f with respect to the second variable.
Our goal in this paper is to study the asymptotic behaviour of F" under an

abstract assumption covering a wide range of concrete behaviours such as the peri-
odicity, the almost periodicity, the convergence at in�nity, and many more besides.
We present here a new approach to solve deterministic homogenization problems.
This new approach is based on the generalized Stepanov type spaces, and widely
opens the scope of applications of our result, Theorem 3.1, as can be easily seen in
Section 4. In particular this approach allows us to work out the almost periodic
homogenization problem without any further assumption on the function f as is
usually the case in all the previous works dealing with deterministic homogeniza-
tion theory; see for instance [28, 29]. The homogenization approach followed here
is the �-convergence method proceeding from two-scale convergence ideas and use
of the so-called homogenization algebras; see [25] for more details.
The paper is framed as follows. Section 2 deals with notations and preliminary

results. In Section 3, we study the homogenization of problem (1.6) under an
abstract hypothesis on f(x; y; �) (for �xed x; �). Finally, in Section 4, we solve
some concrete homogenization problems for (1.6).
Unless otherwise speci�ed, vector spaces throughout are assumed to be complex

vector spaces, and scalar functions are assumed to take values in C (the complex).
This permits us to make use of basic tools provided by the classical Banach algebras
theory. For basic concepts and notation about integration theory we refer to [6].
We shall always assume that the numerical spaces Rm and their open sets are each
equipped with the Lebesgue measure.

2. Notations and preliminary results

2.1. Homogenization algebras: an overview of basic results. We recall that
B(RNy ) denotes the space of bounded continuous complex functions on RNy (the
space RN of variables y = (y1; :::; yN )). It is well known that B(RNy ) with the sup
norm and the usual algebra operations is a commutative C�-algebra with identity
(the involution is here the usual one of complex conjugation).
Throughout the present Section 2, A denotes a separable closed subalgebra of

the Banach algebra B(RNy ). Furthermore, we assume that A contains the constants,
A is stable under complex conjugation (i.e., the complex conjugate, u, of any u 2 A
still lies in A), and �nally, A has the following property : for any u 2 A, we have
u" !M (u) in L1(RNx )-weak � as "! 0 (" > 0), where M(u) 2 C and

u"(x) = u
�x
"

�
(x 2 RN ):
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The complex mapping u 7!M(u) on A, denoted byM , is a nonnegative continuous
linear form with M(1) = 1; so that M is a mean value (see [26]).
A is called an H-algebra (H stands for homogenization). It is clear that A is

a commutative C�-algebra with identity. We denote by �(A) the spectrum of A
and by G the Gelfand transformation on A. For the bene�t of the reader it is
worth recalling that �(A) is the set of all nonzero multiplicative linear forms on
A, and G is the mapping of A into C(�(A)) such that G(u)(s) = hs; ui (s 2 �(A)),
where h ; i denotes the duality pairing between A0 (the topological dual of A) and
A. The appropriate topology on �(A) is the relative weak � topology on A0. So
topologized, �(A) is a metrizable compact space, and the Gelfand transformation
is an isometric isomorphism of the C�-algebra A onto the C�-algebra C(�(A)). See,
e.g., [21] for further details concerning the Banach algebras theory. Since the mean
value M is a nonnegative continuous linear functional on A with M(1) = 1, this
provides us with a linear nonnegative functional  7!M1( ) =M(G�1( )) de�ned
on C(�(A)) = G(A) which is clearly bounded. Therefore, by the Riesz-Markov
theorem, M1( ) is representable by integration with respect to a Radon measure �
(of total mass 1) in �(A), called the M -measure for A. It is evident that we have
M(u) =

R
�(A)

G(u)d� for u 2 A.
Before we go any further, it seems necessary to render more explicit the notion

of the spectrum of an H-algebra in some well-known cases. If A is the periodic
H-algebra Cper(Y ) of Y -periodic continuous functions on RN , then �(A) can be
identi�ed with the period Y = [�1=2; 1=2]N . Let R be a countable subgroup of
RN . Let APR(RN ) denote the algebra of functions on RN that are uniformly
approximated by �nite linear combinations of the functions in the set f
k : k 2
Rg where 
k is de�ned by 
k(y) = exp(2i�k � y) (y 2 RN ). It is known that
APR(RN ) is an H-algebra [25, Example 2.2] and its spectrum �(APR(RN )) is a
compact topological group homeomorphic to the dual group bR of R consisting of
the characters 
k (k 2 R) of RN ; see [27, Propositions 2.2 and 2.6] for details.
The partial derivative of index i (1 � i � N) on �(A) is de�ned to be the

mapping @i = G � Dyi � G�1 (usual composition) of D1(�(A)) = f' 2 C(�(A)) :
G�1(') 2 A1g into C(�(A)); where A1 = f 2 C1(RNy ) :  ; @ @yi 2 A (1 � i � N)g,
Dyi =

@
@yi

: Higher order derivatives can be de�ned analogously (see [25]). Now,

let A1 be the space of  2 C1(RNy ) such that D�
y =

@j�j 
@y

�1
1 ���@y�NN

2 A for every

multi-index � = (�1; � � �; �N ) 2 NN ; and let D(�(A)) = f' 2 C(�(A)) : G�1(') 2
A1g: Endowed with a suitable locally convex topology (see [25]), A1 (respectively
D(�(A))) is a Fréchet space and further, G viewed as de�ned on A1 is a topological
isomorphism of A1 onto D(�(A)).
By a distribution on �(A) we mean any continuous linear form on D(�(A)).

The space of all distributions on �(A) is then the dual, D0(�(A)); of D(�(A)):We
endow D0(�(A)) with the strong dual topology. The following result permits us to
view the space Lp(�(A)) (1 � p � 1) as a subspace of D0(�(A)) and so will allows
us to de�ne the Sobolev type spaces associated to the spectrum of an H-algebra.

Proposition 2.1. Let A be an H-algebra. Assume A is translation invariant, that
is, �au 2 A for any a 2 RN , where �au � u(� �a), and moreover that each element
of A is uniformly continuous. Then the space A1 is dense in A.
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Proof. Let u 2 A; then for all ' 2 D(RN ) we have ' � u 2 C1(RN ) where ' � u
stands for the product of convolution de�ned by (' � u)(y) =

R
'(�)u(y � �)d�

(y 2 RN ). Now, since u and ' are uniformly continuous, there exist, for every
" > 0, some y1; :::; yn 2 RN and some positive real numbers �1; :::; �n such that

sup
x2RN

�����
Z
u(x� y)'(y)dy �

nX
i=1

u(x� yi)'(yi)�i

����� < ";

i.e., 




' � u�
nX
i=1

'(yi)�i�yiu







1

< "

where �yiu(x) = u(x � yi) for x 2 RN . But A is translation invariant, hence
�yiu 2 A and so

Pn
i=1 �yiu'(yi)�i 2 A, and therefore ' � u 2 A, A being closed

with the sup norm topology. Since D�('�u) = D�'�u for all � 2 NN , we conclude
that D�(' � u) 2 A, and so, ' � u 2 A1.
Now let (�n)n�1 be a molli�er on RN , i.e. (�n)n�1 � D(RN ) with �n � 0,R
�n(y)dy = 1, �n has support contained in 1

nBN , where BN is the closed unit
ball in RN . Set un = �n � u (n � 1); clearly un 2 A1 and un(x) � u(x) =R
(u(x� y)� u(x))�n(y)dy, hence

kun � uk1 � sup
x2RN

sup
jyj� 1

n

ju(x� y)� u(x)j .

But u is uniformly continuous and bounded since A is an H-algebra. One deduces
that supx2RN supjyj� 1

n
ju(x� y)� u(x)j ! 0 as n ! 1, i.e. un ! u in A as

n!1. The proposition follows thereby. �

It will be an easy exercise (left to the reader) to see that all the H-algebras
encountered in this paper are translation invariant. Any H-algebra A verifying
the property that A1 is dense in A will be termed of class C1. The above result
provides us with a large class of H-algebras of class C1.
Proposition 2.1 is equivalent to say that D(�(A)) (= G(A1)) is dense in C(�(A))

(= G(A)), so that one can easily see that Lp(�(A)) � D0(�(A)) (1 � p � 1) with
continuous embedding. Hence we may de�ne the Sobolev space

W 1;p(�(A)) = fu 2 Lp(�(A)) : @iu 2 Lp(�(A)) (1 � i � N)g (1 � p <1)

where the derivative @iu is taken in the distribution sense on �(A) (exactly as the
Schwartz derivative in the classical case). This is a Banach space with the norm

jjujjW 1;p(�(A)) =

 
jjujjpLp(�(A)) +

NX
i=1

jj@iujjpLp(�(A))

! 1
p �

u 2W 1;p(�(A))
�
:

However, in practice the appropriate space is not W 1;p(�(A)) but its closed sub-
space

W 1;p(�(A))=C =

(
u 2W 1;p(�(A)) :

Z
�(A)

u(s)d�(s) = 0

)



6 GABRIEL NGUETSENG, HUBERT NNANG, AND JEAN LOUIS WOUKENG

equipped with the seminorm

jjujjW 1;p(�(A))=C =

 
NX
i=1

jj@iujjpLp(�(A))

! 1
p �

u 2W 1;p(�(A))=C
�
:

Unfortunately, the spaceW 1;p(�(A))=C is in general nonseparate and noncomplete.
We introduce the separated completion, W 1;p

# (�(A)), of W 1;p(�(A))=C, and the
canonical mapping J of W 1;p(�(A))=C into its separated completion. For 1 < p <

1, W 1;p
# (�(A)) is a re�exive Banach space and W 1;2

# (�(A)) is a Hilbert space.
Furthermore, as pointed out in [25], the distribution derivative @i viewed as a
mapping of W 1;p(�(A))=C into Lp(�(A)) extends to a unique continuous linear
mapping, still denoted by @i, of W

1;p
# (�(A)) into Lp(�(A)) such that @iJ(v) = @iv

for v 2W 1;p(�(A))=C and

jjujjW 1;p
# (�(A)) =

 
NX
i=1

jj@iujjpLp(�(A))

! 1
p

for u 2W 1;p
# (�(A)):

We will now recall the notion of �-convergence in Lp (1 � p <1) in the present
context. Before that, let us state another de�nition: the letter E throughout will
stand for any subset of positive real numbers admitting 0 as accumulation point.
When E is an ordinary sequence of reals ("n)n2N with 0 < "n � 1 and "n ! 0 as
n!1, it will be referred to as a fundamental sequence.

De�nition 2.1. A sequence (u")"2E � Lp (
) is said to :

(i) weakly �-converge in Lp (
) to some u0 2 Lp (
��(A)) if as E 3 "! 0,Z



u" (x) 
" (x) dx!

ZZ

��(A)

u0 (x; s) b (x; s) dxd� (s) (2.1)

for all  2 Lp0 (
;A)
�
1
p0 = 1�

1
p

�
where  " (x) =  

�
x; x"

�
and b (x; �) =

G( (x; �)) a:e: in x 2 
;
(ii) strongly �-converge in Lp (
) to some u0 2 Lp (
��(A)) if the following

property is veri�ed :�
Given � > 0 and v 2 Lp (
;A) with ku0 � bvkLp(
��(A)) � �

2 , there
is some � > 0 such that ku" � v"kLp(
) � � provided E 3 " � �.

Remark 2.1. The existence of such v�s as in (ii) above results from the density
of Lp (
; C(�(A))) in Lp (
;Lp(�(A))).

We will brie�y express weak and strong �-convergence by writing u" ! u0 in
Lp (
)-weak � and u" ! u0 in Lp (
)-strong �, respectively.
For the main results regarding �-convergence, we will draw the reader�s attention

to [25]. However, we recall below one fundamental result and the notion of proper
H-algebra which play crucial roles in �-convergence theory.

Theorem 2.2. Let 1 < p < 1. Given a fundamental sequence E and a sequence
(u")"2E which is bounded in Lp(
), a subsequence E0 can be extracted from E such
that the sequence (u")"2E0 weakly �-converges in Lp(
).
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Proof. Set L"(f) =
R


u"f

"dx (f 2 Lp
0
(
;A)), where f" 2 Lp

0
(
) is de�ned by

f"(x) = f(x; x="), x 2 
. Then

jL"(f)j � c kfkLp0 (
;A) (" 2 E);

hence (L"(f))"2E is bounded in C and therefore, there exist a subsequence E0(f)
and a complex number L( bf) ( bf = G(f), G the Gelfand transformation on A) such
that, as E0(f) 3 "! 0, one has L"(f)! L( bf). Using the separability of Lp0(
;A)
(note that A is separable) and the diagonal process, one gets the existence of a
subsequence E0 from E such that, as E0 3 "! 0,

L"(f)! L( bf) for any f 2 Lp0(
;A):
But one also has the inequality jL"(f)j � c kf"kLp0 (
) and further, as E0 3 " ! 0,

kf"kLp0 (
) !



 bf




Lp0 (
��(A))
(see e.g. [25]), so that the following holds:���L( bf)��� � c




 bf



Lp0 (
��(A))

:

Hence the linear form L : bf 7! L( bf), from Lp
0
(
; C(�(A))) to C, extends by

continuity to an element of Lp
0
(
 � �(A)) (because Lp0(
; C(�(A))) is dense in

Lp
0
(
��(A))). Therefore there exists a function u 2 Lp(
��(A)) such that

L( bf) = Z



Z
�(A)

u bfd�dx (f 2 Lp
0
(
;A)).

This completes the proof. �

The notion of W 1;p-proper H-algebras will be of fundamental interest in the
ensuing sections.

De�nition 2.2. The H-algebra A is said to be W 1;p-proper for some given real
p > 1 if the following conditions are ful�lled :

(PR)1 D(�(A)) is dense in W 1;p(�(A));
(PR)2 For any bounded open set 
 in RNx , W 1;p(
) is �-re�exive in the following

sense: Given a fundamental sequence E and a sequence (u")"2E which
is bounded in W 1;p(
), one can extract a subsequence E0 from E such
that as E0 3 " ! 0, we have u" ! u0 in W 1;p(
)-weak and @u"

@xi
!

@u0
@xi

+ @iu1 in Lp(
)-weak � (1 � i � N), where u0 2 W 1;p(
) and u1 2
Lp(
;W 1;p

# (�(A))).

We give here below a few examples of W 1;p-proper H-algebras.

Example 2.1. Let A = Cper(Y ) (Y = (0; 1)N ) be the periodic H-algebra of Y -
periodic continuous functions on RN . Then A is W 1;p-proper for any real number
p > 1; see [28].

Example 2.2. Let R be a countable subgroup of RN . Let A = APR(RN ) be
the algebra of complex almost periodic continuous functions de�ned earlier in this
subsection. Then following the same line of reasoning as in [12]) we see that the
H-algebra A is W 1;p-proper for any real number p > 1.
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Example 2.3. Let R be as in Example 2.2. One de�ne the H-algebra of perturbed
almost periodic functions as the direct sum A = APR(RN )�C0(RN ) where C0(RN )
denotes the space of continuous functions in RN that vanish at in�nity. Then it
can be shown using [28] and Example 2.2 that A is a W 1;p-proper H-algebra for
any real number p > 1. Indeed A is the space denoted by B1;R(RN ) de�ned in
[25] as the closure in B(RN ) of the space of all �nite sumsX

�nite

'iui ('i 2 B1(RN ); ui 2 APR(RN ));

where B1(RN ) is the space of all continuous complex functions on RN that have
�nite limit at in�nity. In particular for R = f0g we have that A = R � C0(RN ) =
B1(RN ) is W 1;p-proper for any real number p > 1.

2.2. The abstract problem and preliminary results. Let 1 � p <1, and let
Y =

�
� 1
2 ;

1
2

�N
be the unit cell. We denote by (Lp; `1)(RN ) [18] the space of all

u 2 Lploc(RN ) such that

kukp;1 = sup
k2ZN

�Z
k+Y

ju(y)jp dy
� 1

p

< +1.

This is a Banach space under the norm k � kp;1.
Now, let A be an H-algebra on RN which is assumed to be translation invariant.

We de�ne BpA(RN ) to be the closure of A in (Lp; `1)(RN ). Provided with the norm
k�kp;1, B

p
A(RN ) is a Banach space. It is a generalized Stepanov type space. Since

its properties are very closed to those of the generalized Besicovitch type spaces
[11, 12] we refer the reader to [11, 12] for the documented presentation of these
spaces. Moreover Propositions 2.3-2.4 and Corollaries 2.1-2.2 of [25] are still valid
in the present context. In particular we have the following fundamental results:

1) The mean value M as de�ned on A, extends by continuity to a positive
continuous linear form (still denoted by M) on BpA(RN ). Furthermore, for
each u 2 BpA(RN ), we have u" ! M(u) in Lp(
)-weak as " ! 0, where
u" 2 Lp(
) is de�ned by u"(x) = u (x=") for x 2 
;

2) If 1 � p; q; r < 1 are such that 1
p +

1
q =

1
r and if u 2 BpA(RN ) and

v 2 BqA(RN ), then uv 2 BrA(RN );
3) Property (2.1) (in De�nition 2.1) still holds for  2 C(
;Bp

0;1
A ) where

Bp
0;1
A = Bp

0

A (RN )\L1(RN ) and p0 = p=(p�1). Furthermore, if we provide
the space Bp

0;1
A with the L1(RN )-norm, it can be shown that, for u 2

Bp
0;1
A , we have G(u) 2 L1(�(A)) and kG(u)kL1(�(A)) � kukL1(RN ).

4) The Gelfand transformation G : A ! C(�(A)) extends by continuity to
a unique continuous linear mapping, still denoted by G, of BpA(RN ) into
Lp(�(A)).

This being so, the main purpose of this section is to investigate the asymptotic
analysis, as "! 0, of u" (see (1.6)) under the abstract structure hypothesis

f(x; �; �) 2 B1A(RN ) for any x 2 
 and all � 2 RnN : (2.2)

where p0 = p=(p� 1) with 1 < p <1.
Now, let AR = A \ C(RNy ;R) and A1R = A1 \ AR. The following result will be

fundamental in the homogenization process.
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Proposition 2.3. Assume (2.2) holds true. Then, for every 	 2 (AR)
nN and

every x 2 
, the function y 7! f(x; y;	(y)) denoted below by f(x; �;	), lies in
B1A(RN ).

Proof. Let K � RnN be a compact set such that 	(y) 2 K for all y 2 RN . By
viewing f as a function (x; �) 7! f(x; �; �) of 
 � RnN into B1A(RN ), we have
that f belongs to C(
� RnN ;B1A(RN )) (combine (2.2) with (1.2) and (1.4)). Still
denoting by f the restriction of this function to 
 � K, it immediately follows
that f 2 C(
 � K;B1A(RN )). Hence using the density of C(
 � K) 
 B1A(RN ) in
C(
 �K;B1A(RN )), one may consider a sequence (qn)n�1 in C(
 �K) 
 B1A(RN )
such that

sup
x2


sup
�2K

kqn(x; �; �)� f(x; �; �)k1;1 ! 0 as n!1.

As
kqn(x; �;	)� f(x; �;	)k1;1 � sup

x2

sup
�2K

kqn(x; �; �)� f(x; �; �)k1;1

we have qn(x; �;	) ! f(x; �;	) in B1A(RN ) as n ! 1. Thus, the proposition is
shown if we can verify that each qn(x; �;	) lies in B1A(RN ). However this will follow
in an obvious way once we have checked that for any function q : 
�RNy �RnN� ! R
of the form

q(x; y; �) = �(x; �)�(y) (y 2 RN ; � 2 RnN ; x 2 
) with � 2 C(
�K) and � 2 B1A(RN );
we have q(x; �;	) 2 B1A(RN ). But given q as above, we know by the Stone-
Weierstrass theorem that there is a sequence (fn)n�1 of polynomials in (x; �) 2

 � K such that fn ! � in C(
 � K) as n ! 1, hence fn(x;	) ! �(x;	)
in B(RNy ) as n ! 1. Therefore, it follows that �(x;	) lies in AR, since the
same is true for each fn(x;	) (recall that A is an algebra). We conclude that
q(x; �;	) = �(x;	)� 2 B1A(RN ) as the product of an element of A by an element
of B1A(RN ). This concludes the proof. �

Now, let 	 2 C(
; (AR)nN ). It is worth recalling that using inequalities (1.2) and
(1.4), one can easily de�ne the function y 7! f(x; y;	(x; y)) of RN into R+, denoted
by f(x; �;	(x; �)), which lies in L1(RNy ), and hence the function x 7! f(x; �;	(x; �))
of 
 into L1(RNy ) (denoted by f(�; �;	)) as element of C(
;L1(RNy )). Therefore,
for �xed " > 0, we de�ne the function x 7! f (x; x=";	(x; x=")) of 
 into R+
(denoted by f"(�; �;	")) as element of L1(
;R). This function will be of particular
interest in the rest of this work. Moreover, in view of (1.2), (1.4) and (2.2), we have

f(�; �;	) 2 C(
;B1A(RN )) for all 	 2 C(
; (AR)nN ):
Before going any further, however, we require a few preliminary notions and

results. To this end, let 1 < p <1. Set
F1;p0 =W 1;p

0 (
;Rn)� Lp(
;W 1;p
# (�(A);R)n);

where W 1;p
# (�(A);R) = fu 2 W 1;p

# (�(A)) : @iu 2 Lp(�(A);R) (1 � i � N)g is
provided with the W 1;p

# (�(A))-norm (which makes it a Banach space). We equip

F1;p0 with the norm

kukF1;p0
=

�
ku0kpW 1;p

0 (
)n
+ ku1kpLp(
;W 1;p

# (�(A))n)

� 1
p

(u = (u0; u1) 2 F1;p0 )
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where k�kW 1;p
0 (
)n is de�ned in Section 1, and

ku1kLp(
;W 1;p
# (�(A))n) =

0@ nX
i=1

NX
j=1

k@ju1;ikpLp(
��(A))

1A 1
p

for u1 = (u1;i)1�i�n:

With this norm, F1;p0 is a Banach space. In the sequel we assume that D(�(A)) is
dense in W 1;p(�(A)). Then F10 = D(
;R)n � [D(
;R) 
 J(D(�(A);R)=C)n] is
dense in F1;p0 , where D(�(A);R)=C = fu 2 D(�(A);R) :

R
�(A)

ud� = 0g.
In all that follows, we assume that (2.2) holds. Then f(x; �;	) 2 B1;1A (RN ) =

B1A(RN ) \ L1(RN ;R) for all x 2 
 and for all 	 2 (AR)
nN . Consequently

G(f(x; �;	)) 2 L1(�(A)) for all x 2 
 (see [25, Corollary 2.2]). This being so, for
' 2 C(�(A);R)nN and x 2 
, let

b(x; ') = G(f(x; �;G�1'))

where G�1' = (G�1'j)1�j�nN . Then, for �xed x 2 
, one de�nes a transformation
b(x; �) from C(�(A);R)nN into L1(�(A)).
The following result will allow us to rigorously set the homogenized problem.

Proposition 2.4. Suppose that (2.2) holds. For 	 2 C(
; (AR)nN ), let b(x; b	(x)) =
G(f(x; �;	(x; �))) (x 2 
) where b	 = (G �  j)1�j�nN with 	 = ( j)1�j�nN . This

de�nes a mapping x 7! b(x; b	(x)), denoted by b(�; b	), of 
 into L1(�(A)). Fur-
thermore, the following assertions are true:

(i) b(�; b	) 2 C(
;L1(�(A))) and
f"(�; �;	")! b(�; b	) in L1(
)-weak � as "! 0: (2.3)

(ii) The mapping � 7! b(�;�) of C(
; C(�(A);R)nN ) into L1(
��(A)) extends
by continuity to a mapping, denoted by b, of Lp(
��(A);R)nN into L1(
�
�(A);R) such that

kb(�;u)� b(�;v)kL1(
��(A)) �

c
�
1 + kukp�1Lp(
��(A))nN + kvk

p�1
Lp(
��(A))nN

� p�1
p ku� vkLp(
��(A))nN

(2.4)

for all u;v 2 Lp(
��(A);R)nN .

Proof. Let 	 2 C(
; (AR)nN ). Thanks to the preceding proposition, assuming
(2.2) holds, then the function (x; y) 7! f(x; y;	(x; y)) is de�ned as an element of
C(
;B1;1A ) denoted by f(�; �;	) or explicitly by f(x; y;	). Now, since property
(2.1) (in De�nition 2.1) still holds for v 2 C(
;B1;1A ) and thanks to the result
1) stated previously, the convergence result (2.3) follows at once. On the other
hand, by the de�nition of the function f(�; �;	) it is immediate that this function
veri�es property of the same type as in (1.4), so that arguing as in the proof of [29,
Proposition 3.1] we get the remainder of the above proposition, that is, (ii). �

Remark 2.2. We have in particular
(i) c1 j�jp � b(x; �) � c2(1 + j�jp) (x 2 
, � 2 RnN );
(ii) b(x; �) is strictly convex for all x 2 
;
(iii) b(�; �) is measurable for all � 2 RnN .
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The next corollary will be of great interest in the proof of the main result of the
paper.

Corollary 2.5. Let

�" =  0 + " 
"
1; (2.5)

i.e., �"(x) =  0(x) + " 1(x; x=") for x 2 
, where  0 2 D(
;R)n and  1 2
(D(
;R)
A1R )n. Then, as "! 0,

f"(�; �; D�")! b(�; D 0 + @b 1) in L1(
)-weak �
where @b 1 = (@jb 1)1�j�N .
Proof. Since D�" = D 0+(Dy 1)

"+ "(D 1)
", it is immediate by (1.4) (where we

have taken there y = x=", � = D 0+(Dy 1)
" and �0 = D�", and after integrating

the resultant inequality over 
) that, as "! 0,

f"(�; �; D�")� f"(�; �; D 0 + (Dy 1)
")! 0 in L1(
): (2.6)

Thus by the decomposition (for v 2 L1(
;A))Z



f"(�; �; D�")v"dx�
ZZ


��(A)
b(�; D 0 + @b 1)bvdxd�

=

Z



[f"(�; �; D�")� f"(�; �; D 0 + (Dy 1)
")]v"dx

+

Z



f"(�; �; D 0 + (Dy 1)
")v"dx

�
ZZ


��(A)
b(�; D 0 + @b 1)bvdxd�;

the result follows at once by (2.6) and by [part (i) of] Proposition 2.3. �

Now, for v = (v0; v1) 2 F1;p0 , set Dv = Dv0 + @v1 2 Lp(
��(A))nN and de�ne
the functional F on F1;p0 by

F (v) =

ZZ

��(A)

b(�;Dv)dxd�:

Thanks to Remark 2.2, there exists a unique function u = (u0; u1) 2 F1;p0 that
minimizes F on F1;p0 , i.e.,

F (u) = inf
v2F1;p0

F (v): (2.7)

2.3. Regularization and partial results. Let �m 2 D(RnN ) (integer m � 1)
with 0 � �m, supp�m � 1

mBnN (BnN the open unit ball in RnN , BnN its closure
in RnN ) and

R
�m(�)d� = 1. We regularize the integrand f in F" in order to get an

approximating family of integrands (fm)m�1 satisfying standard growth conditions
of order p and di¤erentiability as follows:

fm(x; y; �) =

Z
�m(�)f(x; y; �� �)d� ((x; y; �) 2 RN � RN � RnN ):

The main properties of this new integrand are the following:
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(H1)m We have

jfm(x; y; �)� fm(x0; y; �)j � !(jx� x0j)(a(y) + fm(x; y; �))
for all x; x0 2 RN ; � 2 RnN and for almost all y 2 RN , where the functions
! and a are as in (H1) (see Section 1),

(H2)m fm(x; �; �) is measurable for all (x; �) 2 RN � RnN ,
(H3)m fm(x; y; �) is convex for almost all y 2 RN and for all x 2 RN ,
(H4)m There exist 0 < c3 � c4, c3 depending or not to m and c4 independent to

m, such that

c3 j�jp � fm(x; y; �) � c4(1 + j�jp) (x 2 RN ; � 2 RnN ; a.e. y 2 RN ) (m � 1)

(H5)m
@fm
@� (x; y; �) exists for all (x; �) and for almost all y 2 R

N , and there exists
a constant c > 0 depending on m such that����@fm@� (x; y; �)

���� � c
�
1 + j�jp�1

�
for all (x; �) 2 RN � RnN and for almost all y 2 RN (m � 1).

Properties (H1)m-(H5)m come easily from properties (H1)-(H4) and from the
Riemann-Lebesgue theorem.

Lemma 2.6. Assume (2.2) holds. Then for any integer m � 1 and any function
	 2 (AR)nN we have fm(x; �;	) 2 B1A for all x 2 
.

The proof of the preceding lemma strongly relies on the following proposition
whose proof can be found in [6].

Proposition 2.7 ([6, Chap. III, Sect. 3, no 3, Proposition 7]). Let F be a locally
convex topological vector space which is separated, and let X be a locally compact
topological space provided with some Radon measure �. Finally let f : X ! F be a
continuous function with compact support. If the range f(X) of f is contained in
a complete convex subset of F , then the integral of f ,

R
fd�, lies in F .

We can now prove the previous lemma.

Proof of Lemma 2.6. Fix an integer m � 1. Since the function fm satis�es proper-
ties (H1)m-(H4)m, as a result of Proposition 2.3 we only need to check the following:

fm(x; �; �) 2 B1A for all (x; �) 2 
� RnN . (2.8)

For that purpose, set g(y; �) = �m(�)f(x; y; �� �) (y 2 RN , � 2 RnN ) for x and �
arbitrarily �xed. Then by (2.2) one has g(�; �) 2 B1A for any � 2 RnN , and moreover
combining (1.4) with the fact that �m 2 D(RnN ) we easily deduce that the function
� 7! g(�; �), is an element of K(RnN ;B1A) (the space of continuous functions of RnN
into B1A with compact support). Thus, by virtue of Proposition 2.7 above, we getR
g(�; �)d� 2 B1A, i.e., (2.8). �

Now, �x m � 1. We know by the preceding lemma that fm(x; �;	) 2 B1A for all
	 2 (AR)nN and for all x 2 
. Hence by setting

bm(x; b	(x)) = G(fm(x; �;	(x; �))) for 	 2 C(
; (AR)nN ) and x 2 
, (2.9)

we have the results similar to those in Proposition 2.4 mutatis mutandis. Moreover
the following result holds.
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Lemma 2.8. Let u 2 Lp(
��(A);R)nN . Then, as m!1,
bm(�; u)! b(�; u) in L1(
��(A)):

Proof. This will be done in two steps.
Step 1. Let 	 2 C(
; (AR)nN ); then


bm(�; b	)� b(�; b	)




L1(
��(A))
=
RR

��(A)

���bm(x; b	(x))� b(x; b	(x))��� dxd�
=
R R


��(A) jG (fm(x; �;	(x; �))� f(x; �;	(x; �)))j dxd�
=
R


kG (fm(x; �;	(x; �))� f(x; �;	(x; �)))kL1(�(A)) dx

�
R


kfm(x; �;	(x; �))� f(x; �;	(x; �))k1;1 dx

=
R



�
supk2Y

R
k+Y

jfm(x; y;	(x; y))� f(x; y;	(x; y))j dy
�
dx

�
R



�
supk2Y

R
k+Y

��R �m(�) [f(x; y;	(x; y)� �)� f(x; y;	(x; y))] d��� dy� dx
� cj
j

m sup
x2


sup
j�j�1=m

sup
z2RN

�
1 + j	(x; z)� �jp�1 + j	(x; z)jp�1

�
where j
j =

R


dx. It is easily shown that the right-hand side of the last inequality

above goes to zero whenever m!1.
Step 2. Now let u 2 Lp(
��(A);R)nN ; and let (	j) be a sequence in C(
; (AR)nN )
such that b	j ! u in Lp(
��(A))nN as j !1. The sequence (b	j)j being bounded
in Lp(
��(A))nN , there exists a positive constant c0 such that

c0 > 2c sup
j2N

�
1 + kukp�1Lp(
��(A))nN +




b	j


p�1
Lp(
��(A))nN

� 1
p0

;

where the constant c is as in (2.4). Finally, let � > 0, and let j0 2 N be such

that



u� b	j0




Lp(
��(A))nN
< �=2c0 (remind that b	j ! u in Lp(
��(A))nN as

j !1). In view of Step 1 there exists an integer m0 � 0 such that


bm(�; b	j0)� b(�; b	j0)



L1(
��(A))

< �=2 whenever m � m0:

Whence for any m � m0 large enough, we get kbm(�; u)� b(�; u)kL1(
��(A)) < �,
where we have used the inequality

kbm(�; u)� b(�; u)kL1(
��(A)) �



bm(�; u)� bm(�; b	j0)




L1(
��(A))
+

+



bm(�; b	j0)� b(�; b	j0)




L1(
��(A))

+



b(�; b	j0)� b(�; u)




L1(
��(A))
�

� 2c
�
1 + kukp�1Lp(
��(A))nN +




b	j0


p�1
Lp(
��(A))nN

� 1
p0 


u� b	j0




Lp(
��(A))nN
+

+



bm(�; b	j0)� b(�; b	j0)




L1(
��(A))
:

This completes the proof. �

Remark 2.3. Note that the way the function @fm
@�i

is de�ned implies that for

	 2 C(
; (AR)nN )), the function x 7! @fm
@�i

(x; �;	(x; �)) from 
 into L1(RNy ) is well
de�ned. We denote this function by @fm

@�i
(�; �;	).

We are now ready to prove one of the most important results of this work.
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Proposition 2.9. Let (v")"2E be a sequence in Lp(
;R)nN which weakly �-converges
componentwise to v 2 Lp(
 � �(A);R)nN . Assume that (2.2) holds and that for
any integer m we have

@fm
@�i

(x; �; �) 2 Bp
0

A for any � 2 RnN , for all x 2 
 and all 1 � i � nN: (2.10)

Then for any integer m � 1 we haveZZ

��(A)

bm(x; v)dxd� � lim inf
E3"!0

Z



fm

�
x;
x

"
; v"(x)

�
dx:

Proof. We follow an argument of Allaire [1]. Let 	 2 (D(
;R) 
 AR)
nN and let

m � 1 be freely �xed. Since fm(x; y; �) is convex and di¤erentiable we haveZ



fm

�
x;
x

"
; v"(x)

�
dx �

Z



fm

�
x;
x

"
;	
�
x;
x

"

��
dx+

+

Z



@fm
@�

�
x;
x

"
;	
�
x;
x

"

��
�
�
v"(x)�	

�
x;
x

"

��
dx:

In view of Lemma 2.6 we have

lim
E3"!0

Z



fm

�
x;
x

"
;	
�
x;
x

"

��
dx =

ZZ

��(A)

bm(x; b	(x))dxd�
where bm(�; b	) is de�ned by (2.9). On the other hand, thanks to (2.10) one has
@fm
@�i

(�; �;	) 2 C(
;Bp
0;1
A ) where @fm@�i (�; �;	) stands for the function x 7!

@fm
@�i

(x; �;	(x; �))
from 
 into Bp

0

A . Whence, when E 3 "! 0, as a result of [25, Proposition 4.5], one
has R



@fm
@�

�
x; x" ;	

�
x; x"

��
�
�
v"(x)�	

�
x; x"

��
dx

!
RR

��(A)

d@fm
@� (x; �;	(x; �)) � (v(x)� b	(x))dxd�

where d@fm@� (x; �;	(x; �)) = �G �@fm@�i (x; �;	(x; �))��1�i�nN , G being here the canon-
ical mapping of Bp

0

A into Lp
0
(�(A)). Therefore

lim inf
E3"!0

R


fm
�
x; x" ; v"(x)

�
dx �

R R

��(A) bm(x;

b	(x))dxd�
+
R R


��(A)
d@fm
@� (x; �;	(x; �)) � (v(x)� b	(x))dxd�:

But, we have to take into account property (Hm)5����RR
��(A) d@fm@� (x; �;	(x; �)) � (v(x)� b	(x))dxd�����
� 2

1
p c

1
p0

�
j
j+




b	


p
Lp(
��(A))nN

� 1
p0 


v � b	




Lp(
��(A))nN
:

Thus, by choosing a sequence (	l)l in (D(
;R) 
 AR)
nN such that b	l ! v in

Lp(
��(A))nN as l!1, it follows that for �xed � > 0, there exists l0 2 N such
that �����

ZZ

��(A)

d@fm
@�

(x; �;	l(x; �)) � (v(x)� b	l(x))dxd�
����� � � for all l � l0.

Hence

lim inf
E3"!0

Z



fm

�
x;
x

"
; v"(x)

�
dx �

ZZ

��(A)

bm(x; b	l(x))dxd� � � for all l � l0.
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Passing to the limit as l!1, and using the continuity of � 7! bm(x; �) yield

lim inf
E3"!0

Z



fm

�
x;
x

"
; v"(x)

�
dx �

ZZ

��(A)

bm(x; v(x))dxd� � �:

Since � is arbitrarily �xed, we are led to

lim inf
E3"!0

Z



fm

�
x;
x

"
; v"(x)

�
dx �

ZZ

��(A)

bm(x; v(x))dxd�;

which completes the proof. �

Remark 2.4. We shall see in Section 4 that hypothesis (2.10) will always be
satis�ed for the concrete problems that we will consider.

As a consequence of the preceding proposition we have the following

Corollary 2.10. Let (u")"2E be a sequence inW 1;p(
;Rn). Assume that (Du")"2E
weakly �-converges componentwise to Du = Du0+@u1 2 Lp(
��(A);R)nN , where
u = (u0; u1) 2 F1;p0 . Further assume that (2.2) and (2.10) hold. ThenZZ


��(A)
b(x;Du)dxd� � lim inf

E3"!0

Z



f
�
x;
x

"
;Du"(x)

�
dx: (2.11)

Proof. For any � 2 RnN one has

f(x; y; �� �) � f(x; y; �) + c2(1 + j�� �jp�1 + j�jp�1) j�j (see (1.4)),

hence

fm(x; y; �) � f(x; y; �) + c2

Z
�m(�)(1 + j�� �jp�1 + j�jp�1) j�j d�:

Thus

fm(x; y; �) � f(x; y; �) +
c2
m

sup
j�j� 1

m

(1 + j�� �jp�1 + j�jp�1);

so that R


fm
�
x; x" ; Du"(x)

�
dx �

R


f
�
x; x" ; Du"(x)

�
dx

+ c2
m

R



�
supj�j� 1

m

�
1 + jDu"(x)� �jp�1 + jDu"(x)jp�1

��
dx:

Therefore, using Proposition 2.9 we getRR

��(A) bm(x;Du)dxd� � lim infE3"!0

R


fm
�
x; x" ; Du"(x)

�
dx �

� lim inf
E3"!0

R


f
�
x; x" ; Du"(x)

�
dx+

+ c2
m lim infE3"!0

R



�
supj�j� 1

m
(1 + jDu"(x)� �jp�1 + jDu"(x)jp�1)

�
dx:

By letting m!1, using Lemma 2.8 we are led to (2.11). �
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3. Abstract homogenization result

Our main purpose in this section is to prove the following homogenization result.

Theorem 3.1. Suppose (2.2) and (2.10) hold and further A is W 1;p-proper (1 <
p < 1). For each real " > 0, let u" be the unique solution of (1.6). Then, as
"! 0,

u" ! u0 in W 1;p(
)n-weak, (3.1)

@u"
@xi

! @u0
@xi

+ @iu1 in Lp(
)n-weak � (1 � i � N), (3.2)

where u = (u0; u1) 2 F1;p0 is the unique solution of the minimization problem (2.7).

Proof. In view of the growth conditions in (H4), the sequence (u")">0 is bounded in
W 1;p
0 (
;Rn) and so the sequence (f"(�; �; Du"))">0 is bounded in L1(
). Thus, given

an arbitrary fundamental sequence E, the properness of A and the compactness of
the embedding W 1;p

0 (
;R) ! Lp(
;R) guarantee the existence of a subsequence
E0 from E and a couple u = (u0; u1) 2 F1;p0 such that (3.1)-(3.2) hold when E0 3
" ! 0. The real sequence (F"(u"))">0 being bounded (since (u")">0 is bounded
in W 1;p

0 (
;Rn)), there exists a subsequence from E0 still denoted by E0 such that
limE03"!0 F"(u") exists. It remains to verify that u = (u0; u1) solves (2.7). In
fact, if u solves this problem, then thanks to the uniqueness of the solution of
(2.7), the whole sequence (u")">0 will verify (3.1) and (3.2) when "! 0. Thus our
only concern here is to show that u solves problem (2.7). To this end, in view of
Corollary 2.10, we haveZZ


��(A)
b(x;Du)dxd� � lim

E03"!0

Z



f
�
x;
x

"
;Du"(x)

�
dx: (3.3)

On the other hand, let us establish an upper bound for
R


f
�
x; x" ; Du"(x)

�
dx. To

do that, let � = ( 0; J
n(b 1)) 2 F10 with  0 2 D(
;R)n,  1 = ( 1;i)1�i�n 2

[D(
;R) 
 (A1R =C)n], Jn(b 1) = (J � b 1;i)1�i�n, where A1R =C = f 2 A1R :
M( ) = 0g. De�ne �" as in Corollary 2.5. Since u" is the minimizer, one hasZ




f
�
x;
x

"
;Du"(x)

�
dx �

Z



f
�
x;
x

"
;D�"(x)

�
dx

Thus, using Corollary 2.5 we get

lim
E03"!0

Z



f
�
x;
x

"
;Du"(x)

�
dx �

ZZ

��(A)

b(x;D 0 + @
b 1)dxd�

for any � = ( 0; J
n(b 1)) 2 F10 , and by density, for all � in F1;p0 . From which,

lim
E03"!0

Z



f
�
x;
x

"
;Du"(x)

�
dx � inf

v2F1;p0

ZZ

��(A)

b(x;Dv)dxd�: (3.4)

Inequalities (3.3) and (3.4) yieldZZ

��(A)

b(x;Du)dxd� = inf
v2F1;p0

ZZ

��(A)

b(x;Dv)dxd�;

i.e., (2.7). The proof is complete. �
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4. Some concrete homogenization problems for (1.6)

This section deals with the study of some concrete homogenization problems for
(1.6). Thanks to Proposition 2.3, the way of proceeding will be very simple.

4.1. Problem I (Periodic setting). Our goal in this subsection is to study the
homogenization of (1.6) under the periodicity hypothesis :

For any k 2 ZN , for all x 2 
 and all � 2 RnN ;
f(x; y + k; �) = f(x; y; �) a.e. in y 2 RN : (4.1)

We express this by saying that the function f(x; �; �) (for �xed x; �) is Y -periodic,
where Y = (0; 1)N . The appropriated H-algebra here is the periodic H-algebra
A = Cper(Y ) (the space of Y -periodic continuous complex functions on RNy ). We
are immediately led to

f(x; y + k;	(y + k)) = f(x; y;	(y)) (x 2 
; k 2 ZN , a.e. in y 2 RN )
for any 	 2 (AR)nN :

Whence, thanks to (4.1) and the right inequality in (1.3),

f(x; �; �) 2 L1per(Y ) for all � 2 RnN and for all x 2 
,

so that, since L1per(Y ) � L1per(Y ),

f(x; �; �) 2 L1per(Y ) for all � 2 RnN and for all x 2 
,

where L1per(Y ) (resp. L
1
per(Y )) denotes the space of Y -periodic functions in L

1
loc(RN )

(resp. L1(RN )). But L1per(Y ) = B1A and the H-algebra Cper(Y ) is W 1;p-proper
for any real number p > 1. Hence the conclusion of Theorem 3.1 holds with
A = Cper(Y ), and with Y in place of �(A), dy in place of d� and Dy in that of @
(see [25]). Precisely we have the following result.

Theorem 4.1. Let 1 < p <1. For each �xed " > 0, let u" be the unique solution
to (1.6). Then, as "! 0,

u" ! u0 in W
1;p
0 (
)-weak

and
@u"
@xi

! @u0
@xi

+
@u1
@yi

in Lp(
)-weak � (1 � i � N)

where the vector function u = (u0; u1) 2 F1;p0 is the unique solution to the varia-
tional minimization problem

F (u) = inf
v=(v0;v1)2F1;p0

ZZ

�Y

f(x; y;Dv0 +Dyv1)dxdy

where F1;p0 = W 1;p
0 (
;Rn) � Lp(
;W 1;p

# (Y )n) with W 1;p
# (Y ) = fu 2 W 1;p

per (Y ;R) :R
Y
u(y)dy = 0g,W 1;p

per (Y ;R) being the space of Y -periodic functions inW
1;p
loc (RN ;R).
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4.2. Problem II. We plan to study here the homogenization of (1.6) under the
hypothesis

f(x; �; �) 2 L11;ZN (R
N ) for all x 2 
 and all � 2 RnN (4.2)

where L11;ZN (R
N ) denotes the closure in (L1; `1)(RN ) of the space of �nite sumsX

�nite

'iui with 'i 2 B1(RN ), ui 2 Cper(Y );

B1(RN ) being the space of continuous complex functions on RN that converge at
in�nity. Then the appropriate H-algebra for this study is A = B1;ZN (RN ) where
B1;ZN (RN ) is de�ned as in Example 2.3 by taking there R = ZN . Since A is W 1;p-
proper for any real number p > 1, the homogenization problem for (1.6) follows
under the assumption (4.2).

4.3. Problem III (Almost periodic setting). Before stating the problem to be
studied, let us however, recall a general notion of almost periodicity : A function
u 2 Lploc(RN ) (1 � p <1) is said to be almost periodic in Stepanov sense if u lies in
the amalgam space (Lp; `1)(RN ) and further the translates f�hugh2RN form a rel-
atively compact set in (Lp; `1)(RN ). Such functions form a closed vector subspace
of (Lp; `1)(RN ) denoted by LpAP (RN ). It is worth recalling that (Lp; `1)(RN ) is
the space of functions u 2 Lploc(RN ) such that

kukp;1 = sup
k2ZN

 Z
k+(0;1)N

ju(y)jp dy
! 1

p

<1:

(Lp; `1)(RN ) is a Banach space under the norm k�kp;1, and the appropriate norm
on LpAP (RN ) is the (Lp; `1)(RN )-norm. It is also worth noting that AP (RN ) (the
space of Bohr almost periodic continuous functions [27]) is a dense vector subspace
of LpAP (RN ). Let R be a countable subgroup of RN . If we set LpAP;R(RN ) =
fu 2 LpAP (RN ) : Sp(u) � Rg where Sp(u) = fk 2 RN : M(
ku) 6= 0g with

k(y) = exp(2i�k � y) (y 2 RN ), then LpAP;R(RN ) is a Banach space under the
norm k�kp;1, which admits APR(RN ) = fu 2 AP (RN ) : Sp(u) � Rg as a dense
subspace. A = APR(RN ) is an H-algebra which isW 1;p-proper for any real number
p > 1; see Example 2.2.
After these preliminaries, we turn now to the goal of this subsection, which is to

study the homogenization problem for (1.6) under the hypothesis

f(x; �; �) 2 L1AP (RN ) for any x 2 
 and any � 2 RnN : (4.3)

But thanks to Corollary 4.1 in [29] we get the existence of a countable subgroup R
of RN such that

f(x; �; �) 2 L1AP;R(RN ) for any x 2 
 and any � 2 RnN :

Therefore the suitable H-algebra for our study here is A = APR(RN ), and in view
of Proposition 2.3 the conclusion of Theorem 3.1 is achieved under hypothesis (4.3).

Remark 4.1. In almost all the previous papers dealing with deterministic homoge-
nization theory (see for instance [28, 29, 30, 32]) the almost periodic homogenization
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problem were stated by combining hypothesis (4.3) above with the following one:

For any x 2 
 and for any 	 2 AP (RN ;R)nN ;
supk2ZN

R
k+(0;1)N

jf(x; y � r;	(y))� f(x; y;	(y))j dy ! 0

as jrj ! 0:

(4.4)

This being so, we observe that here we have two signi�cant improvements: (1)
�rstly, the hypothesis (4.4) on the uniform equicontinuity is purely dropped; (2)
secondly, the homogenization problem is stated here in general terms since the H-
algebra is W 1;p-proper for any real p > 1 and not only for p = 2 as considered in
the papers [28, 29, 30, 32]. This is a true advance as the applications in the almost
periodic setting are concerned.

4.4. Problem IV. Let AP (RN�1) be the space of all continuous complex almost
periodic functions on RN�1 (the space of all variables y0 = (y1; :::; yN�1)). Let
B1(R;AP (RN�1)) denote the space of all continuous complex functions u : R !
AP (RN�1) such that u(yN ) converges in AP (RN�1) (with the sup norm) when
jyN j ! +1.
We mean to study the homogenization of (1.6) under the hypothesis

f(x; �; �) 2 B1(R;AP (RN�1)) for all x 2 
 and all � 2 RnN : (4.5)

Arguing as in [29] we see that there exists a countable subgroup R0 of RN�1 such
that

f(x; �; �) 2 B1(R;APR0(RN�1)) for all x 2 
 and all � 2 RnN :
It can be shown that A = B1(R;APR0(RN�1)) is aW 1;p-proper H-algebra (indeed
A is translation invariant and satis�es all the requirements of [12]) so that the
homogenization of (1.6) is achieved under assumption (4.5).

4.5. Problem V (Perturbed almost periodic homogenization). The prob-
lem to be studied here states as follows: homogenize the variational minimization
problem (1.6) under the assumption

f(x; �; �) 2 L11;AP (RN ) for all x 2 
 and all � 2 RnN (4.6)

where L11;AP (RN ) denotes the closure in (L1; `1)(RN ) of the space of �nite sumsX
�nite

'iui with 'i 2 B1(RN ), ui 2 AP (RN ):

Then Arguing as in [29] we deduce the existence of a countable subgroup R of RN
such that

f(x; �; �) 2 L11;R(RN ) for all x 2 
 and all � 2 RnN

where L11;R(RN ) stands for the closure in (L1; `1)(RN ) of the spaceA = B1;R(RN )
de�ned in Example 2.3, aW 1;p-proper H-algebra for any real number p > 1. There-
fore having in mind Proposition 2.3, we see that the conclusion of Theorem 3.1
follows under hypothesis (4.6).

Other concrete assumptions can be considered, notably the following hypotheses
lead to the homogenization of (1.6) for suitable W 1;p-proper H-algebras that can
easily be determined :
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(SH)1 f(x; �; �) is a piecewise continuous function, i.e.,

f(x; y; �) = c(x; k; �) for almost all y 2 k + Y
 
Y =

�
�1
2
;
1

2

�N!
, k 2 ZN ;

where c : 
 � ZN � RnN is a function with the properties (H1)-(H4), and
satisfy the following structure hypothesis

c(x; �; �) 2 B1(ZN ) for all x 2 
 and all � 2 RnN ,
where B1(ZN ) is the set of all u : ZN ! C such that limjkj!1 u(k) 2 C.

(SH)2 f(x; �; �) 2 B1(R;L1per(Y 0)) for all x 2 
 and all � 2 RnN , with Y 0 =
(0; 1)N�1.

4.6. Conclusion. We have just shown that deterministic homogenization theory
also tackle variational minimization problems. It is worth recalling that in the pe-
riodic setting, problem (1.6) has been extensively studied. Here we make a brief
comparison between the already existing results and ours. In [1] Allaire considers
the periodic homogenization of functionals of the form

R


f(x=";Dv(x))dx, the in-

tegrand f being convex and of class C1 in its second argument. In [2], problem (1.6)
is considered but with the continuity hypothesis with respect to the microscopic
variable y, restricting by this the scope of applications of their results. In the above
two works, the connection with our work is that they use the two-scale convergence
method to derive their results. In [3] Barchiesi use the multi-scale Young measures
to recover our results in the periodic framework. Here we just lay emphasis on
the fact that our results also apply in the periodic setting as a particular case. In
the almost periodic setting, our results are new. In fact, till now the only results
in that setting pertain to Braides [8] and to Kozlov [20] who considered, for the
�rst author, the almost periodic homogenization of functionals of the same type as
Allaire (see here above) with f being almost periodic in its �rst occurrence, and
for the second one, the almost periodic homogenization of functionals of the same
type, but with f being a quadratic form in its second occurrence. Apart from these
two problems (the periodic and the almost periodic ones) all the other problems
involved in this study lead to new results. Equally, the study carried out in this
paper can easily be generalized to the homogenization of the integral functionals of
the form Z




f
�
x;
x

"
;
x

"2
; Du"

�
dx

where the integrand f is convex in its last argument, and to a certain extent, to
functionals of the form (1.1) but with f not necessarily convex in its last argument.
It would also be interesting to know whether our main result applies to a more range
of physical behaviours such as the case of weakly almost periodic [16] environment.
Indeed the algebra of weakly almost periodic functions is not separable since it can
be shown that the subalgebra of the algebra of weakly almost periodic functions
consisting of functions with quadratic mean value zero, is not separable. However,
it seems that Theorem 3.1 applies with that algebra. This is an open problem.
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