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Abstract
In the transition years, Grades 7 to 9, the shift from natural numbers to rational numbers 
and the associated multiplicative concepts prove challenging for many learners. The new 
concepts, operations and notation must be mastered if the student is to thereafter rise to meet 
the challenges of algebra and more advanced and powerful mathematics. The multiplicative 
conceptual field (MCF) groups together such concepts as fraction, ratio, rate, percentage and 
proportion, all of which are related yet subtly distinct from one another, each with its own 
challenges. Rasch analysis allows us to compare the difficulty of mathematical problems 
located within the MCF while, on the same scale, locating the degree to which individual 
learners have mastered the necessary skill set. Such location of problems and learners on the 
same unidimensional scale allows for fine-grained analysis of which aspects of the problems 
being analysed make one problrm more difficult than another. Simultaneously the scale gives 
the teacher clear evidence of which students have mastered which concepts and skills and which 
have not, thereby allowing more targeted assistance to the class and individual learners. This 
paper illustrates the process involved in such analysis by reporting on results located within 
a larger study. It is suggested that implementing Rasch analysis within the school classroom 
on appropriately designed assessment instruments would provide clarity for the teacher on the 
locations of difficulty within the problems used in the assessment and the relative degree to 
which individual learners are achieving success at mastering the targeted concepts.  
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Introduction
Usiskin (2005) asserts that the transition years, Grades 7 to 9 in the school mathematics 
curriculum, demand radical conceptual shifts, most notably from natural numbers to rational 
numbers and from rational numbers to real numbers. According to Skemp (1971) each new 
system retains elements of the previous system, but introduces new notation, new meanings to 
operations, and contributes additional rules. 

In each new [number] system there are sub-sets which are isomorphic1 with earlier systems. This 
[isomorphism] allows us to move freely from one number system to another, and also to mix 
systems provided that each one is operated according to its own methods. The overall result is a 
conceptual system of enormous power and flexibility (Skemp, 1971, p. 226). 

It is this structure of number systems that is the Rubicon for most learners of mathematics as 
they make the transition from whole numbers to rational numbers. Aspects of the system, for 
example, the fraction notation used for both fraction and ratio, are deceptively alike and yet 
subtly different. For learners of mathematics, assimilation into existing schema2 and modifying 
existing schema to incorporate new concepts are considerable challenges (Skemp, 1971). The 
new elements that have to be accommodated often comprise threshold concepts, the label used 
by Meyer & Land (2005) to name concepts that involve a shift in perspective, thereby opening up 
a new conceptual space, which provides the necessary gateway to more complex and powerful 
concepts.

Additive structures, including the operations addition and subtraction3, are initially adequate 
for solving the problem situations young learners may encounter. The schemes used by young 
children when solving simple shopping or playground problems provide the basis for additive 
structures. As mathematics learning progresses, multiplicative structures are required for many 
problem situations, where formerly additive structures may have been sufficient. The situations 
of increasing complexity demand the development of multiplicative structures, including the 
operation of division by non-zero numbers, which together lead to more advanced concepts and 
procedures such as fractions, ratio and rate, percentages and functions.

The particular challenge encountered by the fields of education and psychology is to explicate 
how learners develop competences in mathematics and progressively master concepts of 
increasing complexity. A great deal of research has focused in detail on the analysis of 
mathematical concepts, the levels of difficulty and misconceptions likely to occur (Hart, 1984) 
and the complex interrelationship of concepts within a conceptual field (Sowder et al, 1998). 
Much research has also focused on the learners’ thinking and reasoning in relation to a specific 
topic, for example fractions, percentage or proportional reasoning (Smith III, 2002; Parker & 
Leinhardt, 1995; Misailidou & Williams, 2003). 

According to Piaget and Garcia (1989), the essential problem in education is “how to 
characterize the important stages in the evolution of a concept or a structure or even the general 
perspective concerning a particular discipline, irrespective of accelerations or regressions, the 
impact of precursors, or epistemological gaps” (p. 7). Vergnaud (1997) extends the description, 
from characterizing the evolution of a problem, to include the importance of tracking learner 
competences in relation to mathematical concepts. A feature of mathematics education research 
emphasized by Vergnaud (1983;1988) is that both the problem situations in which mathematical 
concepts are embedded and the cognitive skills required to solve the problems can most 
accurately be described using mathematical concepts and theorems. Other means of description, 
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such as using language or levels of abstraction that are unrelated to mathematics, do not give 
the pertinent detail required, nor do they act as markers to indicate developmental progression.

The notion of “a general perspective” about mathematics that is foregrounded in this study is that 
the power of mathematics lies in the process of transforming the intuitive and implicit knowledge 
first used in the solving of problems or a class of problems, into explicit and generalisable 
knowledge that can be applied to more than one situation (Vergnaud, 1990). Research focused on 
a conceptual field accommodates the pervasive feature of mathematics that a problem situation 
can rarely be explained by a single concept, and a single concept cannot be explicated through 
only one mathematical context. The demarcation of the multiplicative conceptual field as the 
research terrain for this study locates this study within the theory of conceptual fields.

In this study the research problem is to locate the hierarchical development of mathematical 
concepts and the associated cognitive conceptions in problem situations invoking the 
multiplicative conceptual field, on a scale, which can then be used to describe and analyse 
difficulty levels and proficiency levels. Data on learner proficiency and item performance 
arises from a suitable test instrument. The Rasch model (Rasch, 1960/1980), a probabilistic 
model asserting that the probability of attaining a correct answer on an item is a function of 
the difference between difficulty level of the item and ability level of the student, was applied 
in this study. The application of the Rasch model to the data obtained from administering a 
suitable instrument leads to an interval qualitative scale against which item difficulty and current 
individual learner performance can be represented (Bond & Fox, 2007). These Rasch measures 
on the tested construct enable the teacher to perceive, identify and address proximal zones of 
mathematical development4 in groups of learners. 

It is imperative that research into aspects of mathematics teaching and learning be situated in a 
theory which encompasses an epistemology of mathematics, notions addressing how children 
acquire new concepts, the role of language and symbols, the role of the teacher and the function 
of assessment. The danger of not situating research in a comprehensive theory is that short-
sighted decisions may be made as a result of research conceived against a set of criteria that does 
not match the envisaged educational outcomes.

Theory of conceptual fields
The theory of conceptual fields builds on the work of both Piaget and Vygotsky. The major 
contribution of Piaget (1949 as cited in Vergnaud, 1990) is that knowledge develops within a 
learner in response to dealing with his or her environment. In some cases new knowledge is 
assimilated into knowledge structures. In other cases the learner has to accommodate (i.e. alter) 
existing cognitive structures in order to engage with more complex learning. Different kinds 
of knowledge are developed from different kinds of abstraction, notably empirical abstraction, 
which is developed from isolating properties and relationships of external objects, and reflective 
abstraction which isolates properties and relationships of the person’s own operations. Language 
is developed in response to action and is a factor in thinking, but actions for Piaget were more 
important than language. Vygotsky (1962) provides complementary views which stress the role 
of language and symbols in learning and thinking. 

The theory of conceptual fields complements the socio constructivist work of Piaget in that it 
extends some of the concepts he developed to the teaching and learning environment. Secondly 
the development of mathematics concepts is investigated in terms of mathematics concepts and 
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theorems, rather than reducing mathematics concepts to logic or levels of abstraction. Building 
on the work of Vygotsky, the roles of language and of symbols are incorporated into the theory 
of acquiring and developing mathematical concepts. The use of representation is extended to 
diagrams and tables, whose role is to articulate the relations between the elements of a problem, 
thereby providing the basis for symbolic thinking (Vergnaud, 1988). Elements from the 
intuitionist and formalist conception of mathematics education are also incorporated into this 
framework, where the concepts are appropriate to teaching and learning. In particular both the 
strength of intuitions in guiding or adapting schemes and the critical role of logic and formal 
structures for convincing a putative mathematical community (if only the classroom community) 
of the correctness of one’s reasoning, are noted as essential. 

Complementary to the mathematical concepts and theorems, are important psychological 
constructs that are essential to the theory. The concept of a scheme5 refers to the “sequential 
organization of activity for a (specific) situation” (Vergnaud, 2009, p. 84). For the purposes of 
this paper, a scheme is essentially a set of cognitive processes with which a learner engages in 
response to a problem situation. A critical factor is that a scheme embodies a goal to achieve. 
This aspect of a scheme may relate to other psychological factors deemed to be important for 
learning, such as motivation. The goal in mathematics learning may entail getting to the right 
answer, but it may also be to understand better the problem situation that is encountered; it may 
be to grasp a concept more fully, or it may be a combination of all these sub goals. A further 
characteristic of a scheme is that it embodies rules by which to generate actions (which may be 
procedures learned in class, or a learner’s self-generated procedures, or a mixture of the two) 
and operational invariants (the enduring predispositions to identifying objects, finding patterns, 
recognizing concepts and applying procedures). 

Two terms essential to the theory are concept-in-action and theorem-in-action. The first point to 
be made is that there is a dialectical relationship between concepts and theorems, in that there is 
no concept without a theorem and no theorem without a concept (Vergnaud, 2009). The concepts 
of addition and multiplication develop over a long period of time through situations that call 
for theorems at different levels. The terms concept and theorem are used to refer to specific 
mathematical objects; Vergnaud uses the terms concepts-in-action and theorems-in-action to 
describe the prototypes of concepts and theorems that develop as operational invariants in the 
schemes of the learner (Vergnaud, 1988). The importance of these concepts in this study is that 
the developing concepts and theorems can be recognized in the action procedures and language 
of the learner. This recognition enables the researcher or teacher to identify both the level of 
understanding and some potential formulation of a plausible next step along a particular learner’s 
path to a more complete understanding of the concept being taught.

The task of describing a network of concepts that are related both hierarchically and horizontally 
required both theoretical investigation and empirical validation. One of the tasks of the larger 
study, and the focus of this paper, is to ascertain current learner competence levels, describe these 
levels and analyse the particular competences or lack of competences in terms of mathematics 
concepts and theorems. 

The research questions addressed in this phase of the research for the larger study are;

1.	 What concepts-in-action and theorems-in-action are currently used by learners to solve 
the mathematical problem items located in the multiplicative conceptual field, in particular 
involving the elements fraction ratio, rate, proportion, probability and percent?

2.	 Upon which implicit concepts and theorems does each action procedure rely?
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Research design and analysis procedures
In the larger study from which this paper is drawn, a test was designed with 35 items selected 
from the Trends in International Mathematics and Science Study (TIMSS) Grade 8 released 
items, with 5 items from the Grade 4 set of released items (TIMSS, 2003), including both 
multiple choice and constructed response questions. The general validity of the test, including 
the items, was judged to be a valid representation of the construct, the multiplicative conceptual 
field, as conceptualised in this study. Messick (1989) requires additional validation of the use of 
the test scores and related inferences to be made in terms of the value implications, relevance 
and social consequences. When judged in terms of all these requirements, the test and the items 
meet the criteria.

The test was administered to all 330 Grades 7, 8 and 9 learners at two schools. The schools 
were selected on the grounds that they were well-functioning schools, whose learners were 
representative of the South African demographics. The purpose of this selection was to eliminate 
undue noise in the results that could be attributed to lack of instruction.

The application of the Rasch model resulted in the hierarchical location of item difficulty and 
learner proficiency as measured by this test, represented in the Person-Item map (see Figure 
1). For purposes of analysis the item substrands that could be identified as constituting similar 
concepts were specified, for example a percent strand was identified. However it must be noted 
that the items invariably included more than one concept. 

All 35 items were analysed in terms of the context of the problem, mathematical structure, 
concepts and processes, notation and representation, and number range (see Table 1). Interviews 
were conducted on four selected items at distinct graded difficulty levels and with from three to 
six selected learners6 drawn from each of the schools, at three graded levels of proficiency, as 
defined in terms of their location on the instrument scale. This selection was restricted to learners 
who were in Grade 8 at the time of taking the test. 

The purpose of conducting learner interviews was firstly to provide additional insight into the 
performance of the items and distractors, and secondly to describe in general the competences of 
learners at particular scale location segments. In this paper the preliminary analysis of four items 
is shown. The results of four interviews, conducted on one of the four items and focused on the 
substrand, ratio, rate and proportion are discussed in this paper.

The learners, interviewed in groups of similar proficiency a few months after the test, were 
requested to answer four items from the original test, but on the second occasion to write down 
their calculations, even in the case of the multiple choice items. Once they had completed this 
task, they were asked to explain how they had reasoned about the problem. This explanation 
was recorded. As is to be expected, learners at the high proficiency levels had clearer and shorter 
explanations. For the learners exhibiting less mathematical proficiency and located at the low 
end of the scale, even the easiest of the interview items were a challenge. 

The decision was made to engage with learners in the interviews in order to clarify their existing 
concepts-in-action and theorems-in-action and to establish the concepts with which the learner 
was able to engage.
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Figure 1: Person-Item map: location of learners and items 

In the Rasch model, the locations of item difficulty level, and therefore complexity, and of learner 
proficiency being presented on the same scale enables partial identification of the hierarchical 
development of multiplicative constructs. The application of the model to an instrument 
requires that its construct of interest be theoretically defined and that the constituent items, the 
realizations of the construct, are hierarchically ordered in terms of difficulty7 level (see Figure 1).

LOCATION         PERSONS     ITEMS [locations]    o = 2 Person  
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                       ooo |  
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                 ooooooooo |  
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                      oooo |  
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                         o |   

A machine uses 2.4 litres of 

gasoline for every 30 hours of 

operation. How many litres of 

gasoline will the machine use in 

100 hours? 

Adele 

Three  brothers, Thabo, Samuel 

and Dan, receive 45 000 zeds 

from their father in proportion to 

the number of children each one 

has. Thabo has two children, 

Samuel has three children and 

Dan has four children. 

How many zeds does Dan get? 

 

 

A shop increased its price by 

20%. What is the new price of an 

item which previously sold for 

800 zeds? 

 

 

Zandi 

Kani 

 Kelly 

A computer club had 40 

members, and 60% of the 

members were girls. Later, 10 

boys joined the club. What 

percentage of members now are 

girls?  
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Likewise learners can be located on a scale in the sense that particular learners may be judged to 
have attained a level of proficiency on the unidimensional8 construct of interest. The location of 
items in terms of difficulty from greater levels to lesser levels, and the location of learners ranked 
in terms of greater observed proficiency to lesser proficiency are inserted on the same scale, 
through the process of transforming raw scores into logarithmic odds ratios (Rasch, 1960/1980; 
Andrich & Marais, 2008).

Item analysis
The initial selection of items was in terms of the multiplicative structure that the item content 
exhibited. The items were required to cover a range of concepts including fractions, ratio, rate 
and proportion, percentage, probability, and there were items that elicited pre-algebraic ideas 
and methods. According to Vergnaud (1988, p. 143), the difficulty or complexity of an item 
depends on the context domain, the structure of the problem, the presentation and the numerical 
characteristics (number range and value) of the data. The analysis9 of four items based on these 
factors is shown in Table 2. 

The Rasch Person-Item map shows items at graded levels of difficulty from greater at the top of 
the scale to lesser at the bottom of the scale. The mean of the item difficulties is arbitrarily set at 
zero. Likewise learner proficiencies are located along the scale from greater proficiency at the 
top of the scale to lower proficiency at the lower end of the scale. The five items, labelled 13, 1, 
17, 2 and 22, which were found empirically to be the easiest items, were in fact the TIMSS Grade 
4 items, selected in order to target the lower end of the range of learners being tested.

Supporting the Person-item map, but not presented in this paper, is a differential item fit 
(DIF) analysis. In Rasch model theory and analysis this DIF information amounts to a set of 
item-specific reliability measures, which permit the identification of items which give rise to 
anomalous features. Similarly it is also possible to identify specific learners whose patterns of 
correct and incorrect answers are not consistent with the empirical array of item difficulty levels 
associated with the full set of learners, but are anomalous, such as might arise from, say, random 
guessing. No evidence emerged to suggest any reliability problems from either prospective 
source. Conventional measures of reliability are not relevant here.

The learner locations are linked to the item locations in the following way: a person located at 
the same point on the scale as an item has a 50% chance of obtaining a correct answer on that 
item, a less than 50% chance of obtaining a correct answer for any item higher on the scale and 
a greater than 50% chance of obtaining a correct answer for any item that is lower on the scale. 
For example Item 5 (location - 0.585) is easier than most items. Learners at Zandi’s location, just 
below Item 5, have in theory slightly less than a 50% chance of obtaining a correct answer to this 
item. For learners located above the item on the scale, for example Adele and Kelly, the chance 
of obtaining a correct answer is substantially higher than 50%. 

The four items in Table 1, though drawn from the ratio and percent substrands, involve various 
contexts. It is to be expected that contexts with which learners may be familiar, for example, 
sharing money, may be easier for most learners than less familiar contexts, such as calculating 
percent increase. Of course a child helping his parent in a trading store may have gleaned some 
experience of percentage increase, and find this context more familiar than his peers may find it.
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In terms of the mathematical structure, all four items require multiple steps in the process of 
solving the problem. The first process required for Item 5 is to add the number of children (9); 
the second is to divide the total amount of money by the number of children to obtain an amount 
per child (45 000/9 = 5000) ; and the third is to multiply the number of Dan’s children by the 
amount (4 x 5000). It is however expected that a child may not make the correct steps in the 
same sequence as outlined. Item 26 also requires three steps; the complexity, however lies in 
the change of referent from 40 to 50 midway through the problem-solving process. Locating 
the referent in percent calculations has been noted by Parker and Leinhardt (1995) as being 
particularly difficult.

Table 1: Four items at graded difficulty level used to interview learners

Description Context
Mathematical 

Structure 

Cognitive 
processes 
(concepts 

and 
theorems)

Notation and 
presentation

Number 
range and 

value

5. 45 000 
zeds shared 
in unequal 
proportions  

Family 
sharing 
money

2 : 3 : 4 

    of 45 000 

= 20 000 

Proportion, 
fractions, 
ratio, 
multiplication

Natural 
language

≤  45000

(thousands)

8. Increase 
800 zeds by 
20%. 

Financial 
context, 
Price 
increase

800 + 20% of 
800

100% of 800 + 
20% of 800 
= 120% of 800 
= 960

Multiplication, 
fractions, 
percentage 
increase

Natural 
language,

percent 
notation

1000≤

(hundreds)

Percentages

10. 2.4 litres 
to 30 hours, 
how much 
for 100 
hours? 

Capacity- 
time

2.4 is to 30

x is to 100

         =  

x = 8.0 

Decimal 
fractions

Proportional 
reasoning 

Natural 
language, 
decimal 
notation

≤  100

decimal 
fractions

26. Finding 
number 
given the 
percentage. 
Recalculating  
percentage 
with change 
in whole 
amount. 

Computer 
club

60% of 40 = 24, 

40 + 10 = 50

        =   

        = 48%

Multiplication, 
fractions, 
percent,

Change of 
referent

Natural 
language, 
percent 
notation

100≤

percentages 

The notation and presentation, and the number range and value, also contribute to the difficulty 
level of items. In some cases a seemingly large number, for example, 45 000 may not present 
great difficulty as it may be perceived as 45 thousands and therefore become easier to deal with, 

24 x 2
50 x 2

24
50

x
100

2.4
30

4
9

1000

100
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in the implicitly revised units. Diagrammatic and picture representations are easier than symbolic 
representations and may provide cognitive stepping stones towards more abstract understanding.

Interview analysis
In order to gain further insight into the complexity of the items, interviews were conducted 
with learners at varied levels of proficiency on four of the items. For the purposes of this paper 
the interviews on one of the items, Item 5, with four learners at graded levels of proficiency is 
discussed. Note that the learners were selected for the interviews on the basis of their contrasting 
locations on the scale that is Adele (location 4.13), Kelly (location 1.86), Zandi (location -0.82) 
and Kani (-2.71) (see Figure 1). Their responses to Item 5 are provided in Table 2.

Table 2: Learners’ responses to Item 5

Learner response Natural language Mathematical structure

Adele 

I divided by nine and 
multiplied by four

2 + 3 + 4 = 9

4500 

                   ÷   9

5000

                     ×   4

20 000

Kelly  
I first divided by nine 
then timesed by 4.

2 + 3 + 4 = 9 
4500 

                     ÷ 9

5000

                       ×  4
20 000

Zandi I said you divide this 
(45 000 zeds) by 4, 
because he had four 
children. And then it 
is wrong 
Divide by three …….. 
(does calculation] 
… divide by 4  … he 
gets 11 thousand  
…. 11 thousand 
3 hundred and 
something …..

45 000 ÷ 4

45 000 ÷ 3

Kani          
             No response

 
See transcript
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Learners Adele and Kelly both obtain a correct answer (see Table 2). However there are 
notable differences. The layout of Adele’s calculation is accurate mathematically and her verbal 
explanation is clear. Kelly makes the mistake of using the equals sign as a separator between the 
mathematical statements rather than a symbol which denotes equality between the respective 
lines (Kieren, 1990). This misuse of the equal sign does not affect Kelly in this problem situation. 
It is part of a theorem-in-action and was noted in two of the other problem situations about which 
she was interviewed. The problem is that this error will become an obstacle for problems of 
greater complexity. By contrast the procedure used by Adele is generalisable to other problems 
of similar and more complex structure.

It appears that Zandi is not able to locate the mathematical relationships in the problem (see 
Table 2). Her scheme involves trial and error. The fact that the multiple choice distractors were 
available may have tempted her to guess at the procedure. She did however have a scheme with 
which to engage with the problem. Kani, on the other hand could not engage with the problem 
without probing and scaffolding on the part of the interviewer. He may have experienced reading 
problems, and in fact in the Item 10 interview transcript, Kani observes that a picture or a graph 
would be easier to understand (see Long, in process).

Kani did not attempt this problem situation. The interviewer engaged Kani in order to establish 
which concepts-in-action and theorems-in-action Kani used in order to attack the problem. It was 
essential to probe in order to establish what the stumbling blocks were. One of the problems not 
directly related to the mathematics was an inability to engage with the problem, either because 
of lack of focus or because of reading difficulties.

Speaker Transcript Mathematical structure and 
language

Interviewer

Kani

Interviewer

Kani

Interviewer

Kani 
Interviewer
Kani

Interviewer
Kani 
Interviewer

Kani
Interviewer
Kani
Interviewer
Kani

Can you tell me how you thought about this 
problem? 
The number of children counted altogether 
is 9, so I divide this 45 into the number of 
children 
So you divided … the number of children is 
nine … and the amount of money?
45, so 45 divided by nine … the answer is 
five.
So just read through the question again
(after about 2 minutes)
Ohhhh … now I get it … okay I get it …
So what is the answer?
Oh miss, let me see ….. (reads through)
(after about 30 seconds)
How many children does Dan have?
He has four children
So you say Dan has four children. What does 
the 5000 zeds represent?
The one child
And so for four children …?
The four children altogether make 20 …
So which is the correct answer?
Oh, for Dan it is 20. Okay, now I get it.

Concepts-in-action (addition, 
division); Theorem-in-action 
(simple proportion)
 

Multiplicative structures not 
stable 
Problems understanding the 
text

Uses 20 rather than 20 000
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In spite of the difficulties, Kani was able to understand the problem and with scaffolding was able 
to recognize and therefore act on some of the prompts provided by the interviewer. It appears 
that items exhibiting this mathematical structure and these concepts are within Kani’s zone of 
proximal development (Vygotsky, 1962). However it can also be argued that greater fluency with 
language may assist access to greater mathematical proficiency through these transition years.

Discussion
This paper provides a short excerpt from the larger study investigating proficiency in the 
multiplicative conceptual field. The Rasch model provides a theoretical and methodological tool 
for the research design, and the data analysis. In this excerpt the preliminary analysis of four of 
the thirty-five items has been provided. In addition an in-depth discussion has been presented of 
only one of the four items on which interviews were conducted with only one of the 24 learners. 
The claims made on this snapshot of the larger study are necessarily provisional; the potential of 
the methodology to provide levels of competence, as a result of the analysis of the 35 items and 
selected interviews is foregrounded in this paper.

The Rasch method made it possible to choose interviewees and problems carefully targeted to 
reveal a range of concepts-in-action and theorems-in-action. While Adele revealed a mature 
theorem-in-action of proportional reasoning, Kelly demonstrated the same technique but with 
a less sophisticated conceptual understanding of the role of the equal sign. Zandi demonstrates 
that her developing concepts-in-action of ratio and proportion require additional support before 
reaching the desired level. The interview with Kani confirms that his understanding of ratio 
and proportion is the weakest of the four, as the Rasch Person-Item map indicates, but that the 
solution of the problem is within his zone of proximal development and is hence within his grasp 
if sufficient support is provided by the teacher or peers.

The theory of conceptual fields provides a framework that includes complementary foundational 
mathematical elements from different perspectives. Socioconstructivism is acknowledged 
as contributing to an understanding of how children acquire mathematical concepts but other 
perspectives, namely intuitionism and formalism, are acknowledged for the contributions 
that they make to the development of mathematical constructs. Mathematics, its concepts 
and theorems are the essence of the theory of conceptual fields. In addition, the theory, being 
underpinned by the work of Piaget and Vygotsky, includes the psychological constructs necessary 
to understand cognitive structures. The theory also provides the tools for analysis of problem 
situations and learner responses. Vergnaud (1988) stresses the importance of analyzing both 
mathematical situations and learner schemes, in terms of mathematical constructs, so that the 
path of mathematical development may be identified and therefore guide instruction.

The requirements of the Rasch measurement model resonate with the theory of conceptual 
fields in that both item difficulty and learner proficiency are located on the same scale. The 
selection of items at graded difficulty levels and learners at various proficiency levels allows a 
complementary analysis which serves both the purpose of research and the purpose of teaching 
to foster the mathematical development of learners. The locations (see Figure 1) of Adele (4.13), 
Kelly (1.86), Zandi (0.82), and Kani (-2.71) each represent four distinct sets of learners at the 
same levels of proficiency. The analysis of items, exhibiting concepts and procedures that are 
located at the difficulty level of the learners and the analysis of the schemes employed by learners 
in solving these problems may, with additional support, inform teaching. 

AJRMSTE 14 (3) 6 Long.indd   89 2010/11/18   10:11:01 AM



Proficiency in the multiplicative conceptual field: using Rasch measurement to identify levels of competence

90 

The strength of locating the research problem in a theory which encompasses an epistemology 
of mathematics and notions concerning essential elements of the education process guarantees 
that there is the potential for coherence of theoretical concepts, research design, data analysis and 
recommendations about envisaged educational processes and responses.

Notes
1.	 Two number systems are isomorphic if 1) there is a mapping of one into the other that puts them into 

one-to-one correspondence, and 2) under this mapping, sums and products are preserved.

2.	 Schema is the term used by Skemp (1971) to refer to conceptual structures. The term scheme is used 
in this study, and is defined as “the invariant organisation of behaviour for a [particular] class of 
situations” (Vergnaud, 1998, p.167). The term “invariant organization” is interpreted in this paper 
to mean an enduring rather than unalterable predisposition to seek, mimic, or impose contrasts, 
similarities, patterns and relationships on one’s environment.

3.	 Following Sfard (1995), mathematical objects are considered to comprise both structural and 
operational properties as “two sides of the same coin”. In early mathematical development, addition 
and subtraction are both regarded as operations.

4.	 Proximal zones of mathematical development refer to area between the current level of proficiency 
and the potential level of proficiency that is reached through instruction. 

5.	 According to Vergnaud (2009), the term scheme was introduced by Kant and used by various French 
philosophers in the early 20th century: Piaget provided concrete examples of its significance.

6.	 Six learners were identified at each of three locations at each of the two schools. These names were 
supplied to the teacher concerned who requested parental approval for participation on our behalf. 
Some of the children were not available. 

7.	 The term difficulty in this sense is used to mean “require more ability”.

8.	 The notion of unidimensionality receives finer analysis in Andrich (2006). A test construct may contain 
greater or lesser ‘bandwidth’, a feature which does not contradict unidimensionality.

9.	 Further analysis in terms of the selection of distractors and inferences about the selection of distractors 
was conducted for all items. This further analysis is not shown here.
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