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Abstract

The paper develops a Small Open Economy New Keynesian DSGE-VAR (SOENKDSGE-
VAR) model of the South African economy, characterised by incomplete pass-through of
exchange rate changes, external habit formation, partial indexation of domestic prices and
wages to past inflation, and staggered price and wage setting. The model is estimated
using Bayesian techniques on data for South Africa and the United States (US) from the
period 1990Q1 to 2003Q2, and then used to forecast output growth, inflation and a mea-
sure of nominal short-term interest rate for one- to eight-quarters-ahead over an out-of-
sample horizon of 2003Q3 to 2008Q4. The forecast performance of the SOENKDSGE-
VAR model is then compared with an independently estimated DSGE model, the classical
VAR and BVAR models, with the latter being estimated based on six alternative priors,
namely, Non-Informative and Informative Natural Conjugate priors, the Minnesota prior,
Independent Normal-Wishart Prior, Stochastic Search Variable Selection (SSVS) prior on
VAR coefficients and SSVS prior on both VAR coefficients and error covariance. Overall,
we can draw the following conclusions: First, barring the BVAR model based on the SSVS
prior on both VAR coefficients and the error covariance, the SOENKDSGE-VAR model is
found to perform competitively, if not, better than all the other VAR models for most of the
one- to eight-quarters-ahead forecasts. Second, there is no significant gain in forecasting
performance by moving to a DSGE-VAR framework when compared to an independently
estimated SOENKDSGE model. Finally, there is overwhelming evidence that the BVAR
model based on the SSVS prior on both VAR coefficients and the error covariance is the
best-suited model in forecasting the three variables of interest.
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1 Introduction

Recent studies, namely, Liu and Gupta (2007), Liu et al. (2009, 2010) and Gupta and Kabundi

(2010, forthcoming), have initiated a growing interest in forecasting macroeconomic variables

in South Africa using Dynamic Stochastic General Equilibrium (DSGE) models.1 However, in

general, the studies find it difficult to outperform the atheoretical Vector Autoregressive (VAR)

models, especially its Bayesian variant (BVAR) based on the Minnesota prior. These studies

tend to attribute the relatively poor performance of the DSGE models to the fact that the frame-

works of these models are not sophisticated enough, in the sense, that they, perhaps, do not

incorporate the real and nominal rigidities to an appropriate extent to correctly capture the true

dynamics of the data characterising the South African economy.

Against this backdrop, we develop a Small Open Economy New Keynesian DSGE-VAR (here-

after SOENKDSGE-VAR) model of the South African economy, characterised by incomplete

pass-through of exchange rate changes, external habit formation, partial indexation of domes-

tic prices and wages to past inflation, and staggered price and wage setting. The model is

estimated using Bayesian techniques on data for South Africa and the United States (US) from

the period 1990Q1 to 2003Q2, and then used to forecast output growth, inflation and a mea-

sure of nominal short-term interest rate for one- to eight-quarters-ahead over an out-of-sample

horizon of 2003Q3 to 2008Q4. The starting point of the out-of-sample horizon is chosen to

correspond with the period when the inflation rate reverted back to the inflation targeting band

of 3 percent to 6 percent2, while, the endpoint of the sample is purely driven by data avail-

ability at the time this paper was written. Note, the starting point of the in-sample was chosen

to be 1990Q1 to exclude the excessively volatile GDP, high interest rates and high inflation

characterising the South African economy during the 1980s (Steinbach et al., 2009). The fore-

cast performance of the SOENKDSGE-VAR model is then compared with an independently

estimated DSGE model, the classical VAR and BVAR models, with the latter being estimated

based on six alternative priors, namely, Non-Informative and Informative Natural Conjugate

priors, the Minnesota prior, Independent Normal-Wishart Prior, Stochastic Search Variable

1 See also Ortiz and Sturzenegger (2007), Steinbach et al. (2009), Alpanda et al. (2010, forthcoming) for
in-sample analysis of business cycle properties of South Africa using DSGE models.

2 Since the announcement made by the minister of Finance in the February of 2000, the sole objective of the
South African Reserve Bank (SARB) has been to achieve and maintain price stability. More specifically, the
SARB has now adopted an explicit inflation targeting regime, whereby it aims to keep the CPIX inflation rate,
where CPIX is defined as Consumer Price Index (CPI) excluding interest rates on mortgage bonds, within the
target band of 3 percent to 6 percent, using discretionary changes in the Repurchase (Repo) rate as its main
policy instrument.
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Selection (SSVS) prior on VAR coefficients and SSVS prior on both VAR coefficients and error

covariance.

In contrast to the VARs based on purely statistical foundations, the SOENKDSGE-VAR model

uses the theoretical information of a DSGE model to offset in-sample overfitting. Intuitively

speaking, the DSGE-VAR approach, as proposed by Del Negro and Schorfheide (2004), can

be described as follows: We start off by simulating time-series data from the DSGE Model

and then fitting a VAR to these data. In practice, the sample moments of the simulated data is

replaced by the population moments computed from the DSGE model solution. Given that the

DSGE model depends on unknown structural parameters, one uses a hierarchical prior, which

involves placing a specific distribution on the DSGE models parameters. A tightness param-

eter (λ), which is estimated by maximising the joint density of the data and the parameters,

controls the weight of the DSGE model prior relative to the weight of the actual sample, with

the values of 0, ∞ and 1 implying an unrestricted VAR, an independently estimated DSGE

model and a DSGE-VAR model with equal weight being given to the DSGE and the VAR. Fi-

nally, Markov Chain Monte Carlo (MCMC) methods are used to generate draws from the joint

posterior distribution of the VAR and DSGE model parameters. In other words, the DSGE-VAR

approach tends to create the best of two worlds by devising a framework which tries to mimic

the forecasting accuracy of the VAR models, especially the BVAR models, and simultaneously

be immune to the Lucas critique (Lucas, 1976), since it combines a stylised general equilibrium

model with a VAR by using prior information coming from a DSGE model in the estimation of

a VAR.

Our decision to use a DSGE-VAR approach, over and above an independently estimated

DSGE model, as done in the previous studies on South Africa, is motivated not only because

of the fact that VAR models have tended to outperform DSGE model forecasts for the country,

but also because of the available international evidence of DSGE-VAR models producing fore-

casts which are competitive, and at time substantially better, than the standard benchmark of

VAR and BVAR models3. In addition, recall, as outlined above briefly and as will be described

in more detail below, an independent DSGE model tends to be a special case of the DSGE-

VAR approach. Given this, when we compare the forecasts from the independently estimated

DSGE and the DSGE-VAR models, we can determine exactly where the gains in the forecast-

ing performance relative to standard benchmarks, if any, is emanating from, i.e., whether it

3 See for example Del Negro and Schorfheide (2004, 2006), Del Negro et al. (2007), Hodge et al. (2008) and
Lees et al. (forthcoming).
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is because of the DSGE framework devised or due to estimation of the model based on the

DSGE-VAR approach or both. To the best of our knowledge, this is the first attempt in forecast-

ing key variables of the South African economy using a DSGE-VAR approach. In addition, we

go beyond the convention in the forecasting literature of DSGE models, by incorporating BVAR

models estimated under wider set of priors assumptions besides the Minnesota prior. The re-

mainder of the paper is organised as follows: Respective subsections in Section 2 lays out the

estimation methodology of the DSGE-VAR model, discusses the DSGE framework, data, the

priors imposed on the DSGE model parameters and the estimation results. Section 3 presents

the basics of the alternative forecasting models, while, Section 4 compares the performance of

the DSGE-VAR model relative to an independently estimated DSGE model, the classical VAR

and the BVAR under six alternative prior assumptions. Finally, Section 5 concludes.

2 Estimation Methodology, Model, Priors, Data and Posterior Estimates

of the DSGE Model

2.1 The Basics of the DSGE-VAR Approach

This subsection provides a brief overview of the methodology used to estimate the DSGE-VAR

model, and follows closely the discussion in Del Negro and Schorfheide (2004).

Let the parameters of the DSGE model, which we describe in the next subsection, be denoted

by the vector θ. Let yt denote the column vector of n observable variables, which are also the

variables included in the VAR. That is,

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + ... + Φpyt−p + ut, (1)

where: Φ0 is a vector of constants; Φ1...p are matrices of VAR parameters; and ut ∼ N(0,Σu).
This can be written more compactly as Y = XΦ + U, where: Y and U are matrices with rows

y′t and u′t respectively; X has rows 1, y′t−1, y′t−2, ..., y′t−p and Φ ≡
[
Φ0,Φ1,Φ2, ...,Φp

]′. It is

noteworthy that the number of parameters in the DSGE model is much smaller than that in the

VAR, hence the VAR tends to have a greater ability to fit the data.

As in Del Negro and Schorfheide (2004), we want to use a DSGE model to provide information

about the parameters of the VAR. One way of doing this would be to simulate data from the

DSGE and to combine it with the actual data and then estimate the VAR, with λ governing the

relative weight placed on the prior information, since it is a measure of the relative share of
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simulated observations compared to the actual data.

However, rather than simulating data, one can instead use the solution to the log-linearised

version of the DSGE model to analytically compute the population moments of yt, since the

DSGE model specifies the stochastic process for yt. So by choosing λ, we can scale these

moments to be equivalent in magnitude to the (non-standardised) sample moments that would

have been obtained through simulation. Given this, we can then formulate the prior for the

VAR parameters, p(Φ,Σu|θ), given θ, as Σu|θ ∼ IW and Φ|Σu, θ ∼ N, i.e., in an Inverted-

Wishart (IW)-Normal (N) form. Note, the parameters of these prior densities are functions of

the population moments calculated from the DSGE model.4 Given that, we also have prior

beliefs about the parameters of the DSGE model, p(θ). The joint prior density of both sets of

parameters is then given by:

p(Φ,Σu, θ) = p(Φ,Σu|θ)p(θ). (2)

The posterior distribution of the VAR parameters, p(Φ,Σu|Y, θ), is obtained by the likelihood

function, which is essentially the combination of the prior with information from the data. Note

the likelihood, reflecting the distribution of the innovations (ut), and the priors for the VAR

parameters conjugate, since the former is multivariate normal, while the latter is Inverted-

Wishart-Normal. This is particularly helpful, since it allows the posterior to be Σu|θ,Y ∼ IW
and Φ|Σu.θ,Y ∼ N,5 i.e., the posterior follows the same class of distributions as the prior.

Finally, by first drawing a θ from the posterior of the DSGE parameters and then sampling from

these distributions allows us to simulate the posterior for the VAR parameters.

Note, the posterior of the VAR is conditional on a choice of λ. Let the set of possible λ be given

by Λ, where Λ ≡
{
λ1, ..., λi, ..., λq

}
, and for all i, λi > 0. Del Negro and Schorfheide (2004)

suggests the use of the marginal data density, p(Y |λ),6 to compare the model evaluated at

each λ ∈ Λ, which, in turn, can be obtained by integrating out the parameters of the joint

4 See Equations (24) and (25) in Del Negro and Schorfheide (2004) for further details.
5 We have suppressed the parameters of the posterior distributions. See Equations (30) and (31) in Del Negro

and Schorfheide (2004) for further details.
6 The notation of the marginal data density follows Del Negro et al (2007). Also, previously we suppressed the

fact that many of the densities, like, the joint prior density for the parameters of the VAR and the DSGE models
are conditional on λ.
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density of the data and the parameters as follows:

p(Y |λ) ≡
∫

Σu,Φ,Θ
p(Y, θ,Σu,Φ|λ)d(Σu,Φ, θ)

=

∫
Σu,Φ,Θ

p(Y |θ,Σu,Φ)p(θ,Σu,Φ|λ)d(Σu,Φ, θ), (3)

where Σu, Φ and Θ are the sets of possible parameter values for Σu, Φ and θ. Though the

integration involved in calculating the marginal data density is computationally intensive, but

with p(Φ,Σu, θ|λ) equals p(Φ,Σu|θ, λ)p(θ), and p(Φ,Σu|θ) is of Inverted-Wishart-Normal form,

the latter enables the integrals with respect to the VAR parameters to be calculated analytically.

This leaves only the integral with respect to θ to be calculated in order to approximate p(Y |λ).7

An ‘optimal’ λ, λ̂, could then be obtained so as to maximise p(Y |λ), that is,

λ̂ = arg max
λ∈Λ

p(Y |λ). (4)

Note one could also use the marginal data density to pick the lag length of the VAR, p (Del

Negro and Schorfheide, 2004). We, however, use the unanimity amongst the conventional lag-

length tests, namely, the LR test statistic, Akaike information criterion (AIC), the final prediction

error (FPE) criterion, the Schwarz information criterion (SIC), as well as the Hannan-Quinn

(HQ) information criterion, to decide on our optimal lag length to be used in the VAR (Lees et

al., forthcoming).

2.2 The DSGE model

The DSGE model structure builds on standard small open economy New Keynesian models

(see Monacelli (2005) and Justiniano and Preston (2004)). Additional nominal rigidities are

added to the staggered wage and price setting framework (Calvo, 1983) through partial index-

ation of domestic and imported prices to their past inflation, as well as partial indexation of

wages to past consumer price inflation. Moreover, the model structure allows for incomplete

pass-through of exchange rate movements over the short run. Real rigidity emanates from

external habit formation in consumption. The small open economy assumption implies that the

relative size of the foreign economy, i.e. the rest of the world in the context of this model, is

so large that it is not affected by developments in the South African economy and therefore

approximates a closed economy. Hence, the model structure of the foreign economy is sym-

metric to the domestic economy, save for it being closed.

7 See Geweke (1999) and An and Schorfheide (2007).
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The key log-linearised equations are provided below.8

ct =
1

1 + h
Etct+1 +

h
1 + h

ct−1 −
1 − h

σ(1 + h)

[
rt − Etπt+1 + εd

t

]
(5)

πh
t =

ω

1 + ωβ
πh

t−1 +
β

1 + ωβ
Etπ

h
t+1 +

(1 − θh)(1 − θhβ)
θh(1 + ωβ)

mct (6)

mct = rwt − at + γst + εp
t (7)

πw
t = απt−1 + βEtπ

w
t+1 − αβπt +

(1 − θw)(1 − θwβ)
θw(1 + ξwϕ)

µw
t (8)

π f
t =

δ

1 + δβ
π f

t−1 +
β

1 + δβ
Etπ

f
t+1 +

(1 − θ f )(1 − θ fβ)
θ f (1 + δβ)

ψt (9)

ψt = ψt−1 + ∆et + π∗t − π
f
t (10)

πt = (1 − γ)πh
t + γπ f

t (11)

rt = ρrrt−1 + (1 − ρr)[φππt + φyyt] + εr
t (12)

Etqt+1 = qt + (rt − Etπt+1) − (r∗t − Etπ
∗

t+1) + φt (13)

yt = at + lt (14)

yt = (1 − γ)ct + ηγ(2 − γ)st + γy∗t + ηγψt (15)

y∗t = hy∗t−1 +
σ

σ∗
(ct − hct−1) −

1 − h
σ∗

qt (16)

Eq. (5) is the consumption Euler equation. Consumption, denoted by ct, is determined by

past values of consumption, expectations about future consumption in t + 1, and the ex ante

real interest rate, rt − Etπt+1. In addition, shocks to consumption emanate from the external

demand shock εd
t , which is assumed to follow the AR(1) process εd

t = ρdε
d
t−1 + νd

t , where

νd
t ∼ i.i.d N(0, σ2

d). The parameter h in Eq. (5) represents the degree of habit formation in

consumption and σ is the inverse of the intertemporal elasticity of substitution for consump-

tion.

Domestic inflation, denoted by πh
t , is represented by a Phillips-curve in Eq. (6). It is modelled

as a function of its own lagged values, expected domestic inflation in t + 1 and marginal costs,

mct. Three parameters govern the dynamics of this equation: (i) the discount factor β; (ii) the

degree of indexation to past inflation ω; and (iii) the degree of price stickiness reflected by

the Calvo (1983) parameter θh. Marginal costs are a function of real wage (rwt) increases in

excess of productivity gains (at), the terms of trade (st) and a price markup shock (εp
t ). As

8 Lower case letters represent log-deviations from steady state. The full log-linearised model is provided in
Appendix A.
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in Smets and Wouters (2007), the price markup shock is assumed to follow an ARMA(1,1)

process εp
t = ρpε

p
t−1 + νp

t + µpν
p
t−1, where νp

t ∼ i.i.d N(0, σ2
p). The inclusion of the MA(1) term

should capture some of the high-frequency fluctuations that are observed in actual inflation.

A Phillips-curve type relationship also holds for nominal wage inflation (πw
t ) in Eq. (8), where

wages are partially indexed to consumer price inflation, πt. The wage mark-up (µw
t ) serves

as a wedge between the real wage and the marginal rate of substitution between labour and

consumption, that arises due to wage stickiness. The nature of the parameters that determine

the dynamics of wage inflation are similar to those of Eq. (6), as α captures the degree of

indexation to past consumer price inflation and θw reflects degree of wage stickiness. In addi-

tion, ξwϕ is the ratio of the labour demand and supply elasticities.

Eq. (9) indicates that imported inflation, denoted by π f
t , is a function of the previous period’s

value of imported inflation, expected imported inflation in t + 1 and the degree of imperfect ex-

change rate pass-through, ψt. Imperfect exchange rate pass-through is reflected by deviations

from the law-of-one-price in Eq. (10), where ∆et is the change in the nominal exchange rate

and π∗t represents foreign inflation. This specification reflects the assumption that importing

retailers pay the world market price in domestic currency at the dock, but face a downward

sloping demand curve in the domestic economy. As a result, importing retailers are not neces-

sarily able to fully pass on changes in the domestic currency denominated world market price

to the domestic economy over the short run. Nevertheless, complete exchange rate pass-

through is achieved in the long-run. Eq. (11) relates CPI inflation to domestic and imported

inflation, where γ is the degree of openness.

Monetary policy (rt) is described by a Taylor-type rule in Eq. (12), where ρr, φπ and φy are the

respective weights on policy smoothing, consumer price inflation and the output gap.9 The real

exchange rate (qt) is represented by the UIP condition in Eq. (13), where φt is a risk premium.

Finally, productivity and labour are the only inputs in production in Eq. (14), aggregate de-

mand in the domestic economy is expressed as Eq. (15), while the model is closed by the

consumption risk sharing condition in Eq. (16).

9 The decision to drop exchange rate, in either its real form or changes in the nominal value, is due to the
available evidence for South Africa on the insignificant role of the variable in the interest rate rule (Ortiz and
Sturzenegger, 2007; Alpanda et al., 2010).
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2.3 Priors

The model parameters are estimated with Bayesian techniques. However, a number of pa-

rameters are calibrated, as it is unlikely to identify all parameters during estimation given the

non-linear mapping of the structural parameter vector into the model’s reduced form (see Lubik

and Schorfheide (2005)). The calibrated parameters are summarised in Table 1.

The values selected for the domestic and foreign economy’s discount factor, intertemporal

elasticity of substitution for consumption, labour substitution elasticity, and the labour demand

elasticity are standard in the literature. Following Smets and Wouters (2007), the degree of

habit formation for both economies is set to 0.7.

The degrees of price indexation in the domestic economy for domestic price indexation and

imported price indexation are calibrated at 0.15. This fairly low degree of indexation is based

on Justiniano and Preston’s (2004) estimate – using a uniform prior within the (0, 1) interval –

that the degree of price indexation in the small open economies of Australia, Canada and New

Zealand is less than 0.2. Nevertheless, the degree to which nominal wages in South Africa are

indexed to previous values of CPI inflation is tends to be high. As a result, the degree of wage

indexation in the domestic economy is calibrated to 0.9. For the foreign economy, the degree

of price and wage indexation is set to 0.5, following the findings of Smets and Wouters (2003)

for price indexation in the Euro Area.

The smoothing of monetary policy in the domestic economy is set to 0.73, following Ortiz and

Sturzenegger (2007), who estimate a monetary policy rule for South Africa. For the foreign

economy, all three parameters in the Taylor-type rule (i.e., the weights on policy smoothing,

inflation and the output gap) are calibrated to values that are standard in the literature.

Finally, the calibration of the import share in the domestic economy at 0.2 follows Steinbach et

al. (2009). The authors justify this calibration as a combination of the actual import penetration

ratios in total South African GDP and consumption.

The prior specifications of the remaining parameters largely match those used in DSGE mod-

els estimated for small open economies. Firstly, all three Calvo parameters for the domestic

economy (i.e., domestic prices, wages and import prices) are assumed to follow a beta distri-

bution, with a mean of 0.75 and standard deviation of 0.1. A Calvo parameter of 0.75 implies

that firms reoptimise their prices once a year on average, hence reflecting the prior belief that

8



Table 1: Key Calibrated Parameters

Discount factor β 0.99
Habit persistence h 0.7
Consumption substitution σ 1
Labour supply ϕ 3
Labour demand ξw 1
Domestic economy Foreign economy

Price indexation: domestic ω 0.15 Price indexation: domestic ω∗ 0.5
Price indexation: imported δ 0.15 Price indexation: wages α∗ 0.5
Price indexation: wages α 0.9 Taylor rule: inflation φ∗y 1.5
Import weight γ 0.2 Taylor rule: output gap φ∗y 0.5
Taylor rule: Policy smoothing ρr 0.73 Taylor rule: Policy smoothing ρ∗r 0.8
AR(1): Productivity shock ρa 0.9 MA(1): Price markup shock µ∗p 0.5
MA(1): Price markup shock µp 0.9

price stickiness is fairly high in South Africa. Both the Taylor rule weights on inflation and the

output gap are assumed to be gamma distributed, where the inflation parameter has a prior

mean of 1.5, standard deviation of 0.125 and a lower bound of 1, while the output parameter

has a mean of 0.5 and standard deviation of 0.125. The prior for the elasticity of substitution

between home and foreign goods also follows a gamma distribution, with a mean of 1 and

standard deviation of 0.2.

Finally, since we do not a strong prior belief about the the relative weight of the DSGE model,

we follow Adjemian et al. (2008) and assume that λ̂ follows a uniform distribution between the

bounds of 0 and 10.

2.4 Data

Eight observable variables are used during estimation, four each for the domestic and foreign

economies. The observable domestic variables are:πt – CPI inflation (excluding interest rates

on mortgage bonds) for historical metropolitan and other urban areas; yt – Real Gross Domes-

tic Product at market prices (seasonally adjusted and annualised); rt – the Repurchase rate of

the South African Reserve Bank; and mct – marginal costs, proxied by South African real unit

labour costs.10 The data for the foreign economy are proxied by the United States. Here the

observable variables are: π∗t – US GDP deflator; y∗t – US real GDP; r∗t – the Federal Funds

rate; and l∗t – hours worked, proxied by the US Aggregate Weekly Hours Index for Total Private

10 Real unit labour costs are calculated as the ratio of average real remuneration per worker to real GDP, where
remuneration is deflated by the GDP deflator.
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Industries.11

Table 2: Prior Distributions and Posterior Estimates

Parameter description Prior Prior Prior Posterior Posterior
density mean std dev mean 90% interval

Domestic economy
Structural parameters
Home/foreign substitution η G 1 0.2 0.439 [ 0.301 ; 0.572 ]
Calvo: domestic prices θh B 0.75 0.1 0.608 [ 0.558 ; 0.662 ]
Calvo: imported prices θ f B 0.75 0.1 0.612 [ 0.455 ; 0.787 ]
Calvo: wages θw B 0.75 0.1 0.719 [ 0.617 ; 0.822 ]
Taylor rule weights
Inflation φπ G 1.5 0.125 1.464 [ 1.326 ; 1.601 ]
Output gap φy G 0.5 0.125 0.328 [ 0.215 ; 0.452 ]
Persistence parameters
AR(1): demand ρd B 0.8 0.1 0.741 [ 0.634 ; 0.852 ]
AR(1): price markups ρp B 0.8 0.1 0.684 [ 0.580 ; 0.791 ]
Standard deviations of domestic shocks
iid shock: productivity σa IG 1 ∞ 2.408 [ 1.966 ; 2.898 ]
iid shock: demand σd IG 1 ∞ 0.584 [ 0.367 ; 0.789 ]
iid shock: price markups σp IG 1 ∞ 2.492 [ 2.037 ; 2.911 ]
Iid shock: monetary policy σr IG 1 ∞ 0.336 [ 0.280 ; 0.392 ]

Foreign economy
Structural parameters
Calvo: prices θ∗ B 0.75 0.1 0.726 [ 0.652 ; 0.800 ]
Calvo: wages θ∗w B 0.75 0.1 0.918 [ 0.870 ; 0.969 ]
Persistence parameters
AR(1): productivity ρ∗a B 0.8 0.1 0.789 [ 0.697 ; 0.879 ]
AR(1): demand ρ∗d B 0.8 0.1 0.793 [ 0.703 ; 0.882 ]
AR(1): price markups ρ∗p B 0.8 0.1 0.677 [ 0.498 ; 0.871 ]
Standard deviations of foreign shocks
iid shock: productivity σ∗a IG 1 ∞ 0.459 [ 0.390 ; 0.529 ]
iid shock: demand σ∗d IG 1 ∞ 0.794 [ 0.587 ; 1.005 ]
iid shock: price markups σ∗p IG 1 ∞ 0.865 [ 0.431 ; 1.333 ]
iid shock: monetary policy σ∗r IG 1 ∞ 0.370 [ 0.317 ; 0.425 ]

2.5 Posterior estimates

The posterior parameter estimates – represented by the mean values of each parameter’s esti-

mated posterior distribution – are presented in Table 2. These estimates are for the full sample

(i.e. 1990Q1 to 2003Q2). With respect to the domestic economy, the degree of substitution

between domestic and foreign goods is low, when compared to Chari, Kehoe and McGratten’s

11 In order to match the log-linearised model specification, all series were detrended prior to estimation. Appendix
B lists the various data sources for the observed variables.
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(2002) calibration of 1.5. The posterior estimates of the Calvo parameters are lower than their

prior means. Both domestic and import prices appear to be reoptimised most frequently –

roughly every three quarters. Wages, being optimised once every four quarters, are reflective

of the wage formation process in South Africa. The Taylor rule parameter in inflation is broadly

in line with prior expectations, whereas the weight on output is lower than anticipated - perhaps

reflecting the fairly stable economic growth experienced in South Africa during the latter half of

the estimation period. Both the persistence parameters of demand and price markup shocks

are fairly high - in line with prior expectations. The standard deviations on productivity and

price markup shocks in the domestic economy dominate in terms of magnitude. For the for-

eign economy, the parameter estimates indicate that prices are reoptimised slightly less often

than in the domestic economy. Moreover, when compared to the domestic economy, shocks

to the foreign economy appear to be less volatile.

The posterior of the estimated relative weight of the DSGE model in the SOENKDSGE-VAR,

λ̂ is larger than 1, indicating that the data puts a larger weight on the DSGE than the VAR.12

3 The Basics of the Alternative Forecasting Models

In this section, we briefly lay out the alternative Bayesian priors imposed on the VAR model,

described in Eq. (1).13 Note the VAR model generally uses equal lag length for all the variables

of the model. One drawback of VAR models is that many parameters need to be estimated,

some of which may be insignificant. This problem of overparameterisation – resulting in multi-

collinearity and a loss of degrees of freedom – leads to inefficient estimates and possibly large

out-of-sample forecasting errors. Given this, one solution often adapted is to impose Bayesian

shrinkage on lags of the dependant variables.

3.1 The Minnesota Prior

Given that the early work with Bayesian VARs was carried out by researchers at the University

of Minnesota or the Federal Reserve Bank of Minneapolis (see Doan et al., 1984, and Litter-

man, 1986), the prior, discussed below, is popularly called the Minnesota prior. We start off by

rewriting: Y = XΦ + U as y = (In ⊗ X)α + ε, where ε ∼ N(0,Σ ⊗ In) and α = vec(Φ). The

Minnesota prior is based on approximations to simplify the specification of the priors and the

12 Note, the posterior of λ̂ for the in-sample, 1990Q1 to 2003Q2, was estimated to be 1.803.
13 This section relies heavily on the discussions available in Koop and Korobilis (2009) and Jochmann et al.

(2010).
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computation. The approximation involves replacing Σ with an estimate Σ̂, with Σ assumed to

be a diagonal matrix. Given this, each equation of the VAR can be estimated independently,

and we can set σ̂ii = s2
i (where s2

i is the standard OLS estimate of the error variance in the

ith equation and σ̂ii iith element of Σ̂). After replacing Σ with Σ̂, we need to only worry about a

prior for α, which is assumed to be as follows:

α ∼ N(αMin,V Min). (17)

For the prior mean, αMin, when using data in levels, αMin = 0KM, K = (1 + n × p), except for

the elements corresponding to the first own lag of the dependent variable in each equation,

which, in turn, is chosen to be one. When using growth rates data or detrended variables (as

in our case): αMin = 0KM. The Minnesota prior assumes the prior covariance matrix, V Min, is

diagonal. Defining V i as the block of V Min associated with the K coefficients in equation i and

V i, j j to be its diagonal elements, then traditionally the Minnesota prior would be set as follows:

V i, j j =


a1

p2
for coefficients on own lags

a2σii

p2σ j j
for coefficients lags of variables j , i

a3σii for coefficients on exogenous variables

(18)

The form of V i, j j imposes the fact that, coefficients on longer lags shrink to zero by choosing

a1 > a2, with own lags being more important predictors than lags of other variables. The

exact choice of values for a1, a2 and a3 depends on the empirical application in concern.

For instance, in our case, we experimented with a wide number of values for a1, a2 and a3

to ensure that we obtain the best forecasts for the three key macro variables. Finally, the

researcher generally sets: σii = s2
i .

3.2 Natural Conjugate Priors

Given the VAR described above, the natural conjugate prior has the following form:

α|Σ ∼ N(α,Σ ⊗ V) (19)

and

Σ−1 ∼ W(S −1, υ). (20)
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where α, V , υ and S are prior hyperparameters that need to be chosen by the researcher.

The noninformative prior requires one to set υ = S = V−1 = cI and letting c → 0. Note, the

major drawback of the non-informative prior is that it does not impose any shrinkage, which, in

general, is important for the classical VAR.

3.3 The Independent Normal-Wishart Prior

Note that the natural conjugate prior imposes α|Σ to be Normal and Σ−1 to be Wishart. In

this set up, α and Σ are not independent of one another, since the prior for α depends on Σ.

Given this, we now lay out a prior which imposes VAR coefficients and the error covariance

to be independent of one another, in other words, independent Normal-Wishart prior. We

need to modify our notations of the VAR model to allow for different equations in the VAR to

have different explanatory variables. We now use β = vec(Φ) rather than α, and write each

equation of the VAR as:

ymt = z′mtβm + εmt (21)

with t = 1, ,T observations for m = 1, , n variables. ymt is the tth observation on the mth

variable, zmt is a km-vector containing the tth observation of the vector of explanatory variables

relevant for the mth variable, βm is an accompanying km-vector of regression coefficients. Here,

we allow zmt to vary across equations, and, hence, can create a restricted VAR, whereby some

of the coefficients on the lagged dependent variables can be restricted to zero.

Stacking all equations into vectors or matrices as: yt = (y1t, ..., ynt)′, εt = (ε1t, ..., εnt)′ and

β =



β1

.

.

.

βn


, Zt =



z′1t 0 . . . 0
0 z′2t . . . .

. . .

. . .

. . 0
0 . . . 0 z′nt


where β is a k×1 vector, Zt is n×k where k = Σn

j=1k j, and ε ∼ i.i.d. N(o,Σ). Then, yt = Ztβ+εt.
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Further writing,

y =



y1

.

.

.

yT


, ε =



ε1

.

.

.

εT


, =



Z1

.

.

.

ZT


We can now write:

y = Zβ + ε, (22)

with ε ∼ N(0, I ⊗ Σ). Given the model above, a very general prior is the independent Normal-

Wishart prior, that can be described as follows:

p(β,Σ−1) = p(β)p(Σ−1), (23)

where

β ∼ N(β,V
β
)

and

Σ−1 ∼ W(S −1, υ).

Unlike the natural conjugate prior, the independent Normal-Wishart prior leaves the prior co-

variance matrix, V
β
, to be completely at the researcher’s discretion and does not restrict it to

the Σ ⊗ V form. A noninformative prior in this context would amount to setting:

υ = S = V−1
β

= 0.

3.4 Stochastic Search Variable Selection (SSVS) Prior for VAR Coefficients

The SSVS prior carries out the shrinkage in an automatic fashion, and, hence, unlike that of

the Bayesian priors described above requires only minimal prior input from the researcher. The

SSVS approach can take various forms, we, however, outline the implementation of George et

al. (2008).

Suppose α j is a VAR coefficient. The SSVS specifies a hierarchical prior which is a mixture of
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two Normal distributions as follows:

α j|γ j ∼ (1 − γ j)N(0, κ2
0 j) + γ jN(0, κ2

1 j), (24)

where γ j is a dummy variable taking a value of one or zero such that α j is then drawn from

the second Normal and the first Normal respectively. The SSVS aspect of this prior arises by

choosing the first prior variance, κ2
0 j, to be “small” and the second prior variance, κ2

1 j, to be

“large”.

George et al. (2008) describes a so-called “default semi-automatic approach” to selecting

the prior hyperparameters κ0 j and κ1 j, such that: κ0 j = c0

√
var(α j) and κ1 j = c1

√
var(α j)

where var(α j) is an estimate of the variance of the coefficient in an unrestricted VAR. The

pre-selected constants c0 and c1 must be related as follows: c0 << c1. For γ = (γ1, ..., γKn),
the SSVS prior assumes that each element has a Bernoulli form and, hence, for j = 1, ...,Kn,

we have: Pr(γ j = 1) = q
j
and Pr(γ j = 0) = 1 − q

j
, with q

j
= 0.5 for all j. For Σ, we use the

Wishart prior for Σ−1, i.e., Σ−1 ∼ W(S −1, υ).

3.5 Stochastic Search Variable Selection (SSVS) Prior for both VAR Coefficient and

Error Covariance

Instead of using Σ−1 ∼ W(S −1, υ), following George et al. (2008), one can use a SSVS prior

for Σ. Let:

Σ−1 = ΨΨ′ (25)

where Ψ is upper-triangular. The SSVS prior imposes a standard Gamma prior for square of

each of the diagonal elements of Ψ and the SSVS mixture of normal priors for each element

above the diagonal. Thus, the diagonal elements of Ψ are always included in the model and

ensures a positive definite error covariance matrix.

Let the non-zero elements of Ψ be ψi j with ψ = (ψ11, ..., ψnn)′, η j = (ψ1 j, ..., ψ j−1, j)′, and

η = (η′2, ..., η
′
n)
′. For the diagonal elements, prior independence is assumed with:

ψ2
j j ∼ G(a j, b j) (26)

where G(a j, b j) denotes the Gamma distribution with mean
a j
b j

and variance
a j

b2
j
. We fix a j =

b j = 0.01 (Koop and Korobilis, 2009). The hierarchical prior for η takes the same mixture
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forms of Normal as discussed above for α. For further details, interested readers are referred

to George et al. (2008) and Jochmann et al. (2010).

Note, we work with an unrestricted VAR with an intercept and four lags of the eight variables

included in every equation.14 At this stage, it is important to point out that, ideally, the four US

variables should be treated as exogenous, given that South Africa is a small open economy,

and hence, the four South African variables should play no part in explaining the behaviour

of the US variables. However, we consider all the eight variables as endogenous in the VAR,

to be consistent with the DSGE-VAR model, which is estimated using all the eight variables.

We do not see this as a problem though, because we are only concerned with forecasting the

domestic growth rate, inflation rate and the interest rate, based on their respective equations

in the eight variable VAR. Given that each equation has 33 parameters to be estimated and

a total of 264 parameters in the system, we consider the following parameterisation of the six

priors to provide shrinkage:

• Non-informative Natural Conjugate Prior

We choose: α = 0Kn×1, V = 0K×K, υ = 0 and S = 0n×n.

• Minnesota Prior

Recalling that in our case, all variables have been detrended, we set: αmin to be zero for

the lags of all variables. Σ is diagonal with elements s2
i obtained from univariate regres-

sions of each dependent variable on an intercept and three lags of the eight variables.

• Informative Natural Conjugate Prior

The subjectively chosen hyperparameters of the prior are: α = 0Kn×1, V = 10IK, υ =

n + 1 and S −1 = In.

• Independent Normal-Wishart Prior

The subjectively chosen prior hyperparameters are: β = 0Kn×1, V
β

= 10IKn, υ = n + 1
and S −1 = In.

• SSVS-VAR

For the SSVS prior for VAR coefficients only, which essentially involves a semi-automatic

approach, we choose: c0 = 0.1 and c1 = 10 and a Wishart prior for Σ with υ = n + 1
and S −1 = In.

14 The choice of 4 lags is based on the unanimity of the sequential modified LR test statistic, the AIC and the FPE
criterion, applied to a stable VAR estimated with the eight variables. Note, stability as usual, implies that no
roots were found to lie outside the unit circle.
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• SSVS

For the SSVS on both VAR coefficients and error covariance, we follow the default semi-

automatic approach outlined in George et al. (2008), Koop and Korobilis (2009) and

Jochmann et al. (2010).

Note that, analytical posterior and predictive results are available only for the first three priors,

while, for the last three, we require posterior and predictive simulation. The forecasting results

presented below are based on 50,000 MCMC draws using a burn-in of 20,000 (Koop and

Korobilis, 2009).

4 Evaluation of Forecast Accuracy

Given the specifications of the models, we estimate nine alternative models, namely, the

SOENKDSGE-VAR, the classical VAR, six different BVARs and an independently estimated

DSGE model, with the latter obtained by setting λ = 100, 000 (Hodge et al., 2008), over the

period 1990Q1 to 2003Q2, based on quarterly data. Then we compute the out-of-sample one-

through eight-quarters-ahead forecasts for the period 2003Q3 to 2008Q4, and compare the

forecast accuracy of the SOENKDSGE-VAR model with the eight alternative forecasting mod-

els. The different types of the VARs and the SOENKDSGE-VAR are estimated with 4 lags of

each variable. Since we use 4 lags, the initial 4 quarters of the sample, 1990Q1 to 1990Q4,

are used to feed the lags. We generate dynamic forecasts, as would naturally be achieved in

actual forecasting practice. The models are re-estimated each quarter over the out-of-sample

forecast horizon in order to update the estimate of the coefficients, before producing the 8-

quarters-ahead forecasts. This iterative estimation and 8-steps-ahead forecast procedure was

carried out for 22 quarters, with the first forecast beginning in 2003Q3. This experiment pro-

duced a total of 22 one-quarter-ahead forecasts, 21 two-quarters-ahead forecasts, and so on,

up to 15 8-step-ahead forecasts. The RMSEs for the forecasts are then calculated for the

growth rate, CPIX inflation rate and the Repo rate.15 Note for the SOENKDSGE-VAR model

the estimate of λ is recursively updated over the out-of-sample period. As in Del Negro and

Schorfheide (2004, 2006), Del Negro et al. (2007) and Lees et al. (forthcoming), the percent-

age gain or loss in the RMSE statistic for the SOENKDSGE-VAR model relative to the eight

other alternative models for one- to eight-quarters-ahead forecasts over the period 2003Q3 to

15 Note that if At+h denotes the actual value of a specific variable in period t + h and Ft+h is the forecast made in

period t for t + h, the RMSE statistic can be defined as:
√

1
h Σ(At+h − Ft+h)2. For h = 1, the summation runs from

2003:03 to 2008:04, and for h = 2, the same covers the period of 2003Q4 to 2008Q4, and so on.
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2008Q4 are then examined.

In Table 3, we compare the percentage gain (negative entry) or loss (positive entry) in RMSEs

by using the SOENKDSGE-VAR model over the classical VAR, BVARs and the independently

estimated DSGE model for one- to eight-quarters-ahead out-of-sample-forecasts over the pe-

riod of 2003Q3 to 2008Q4. At this stage, a few words need to be said regarding the choice

of the evaluation criterion for the out-of-sample forecasts generated from Bayesian models.

As Zellner (1986) points out the “optimal” Bayesian forecasts will differ depending upon the

loss function employed and the form of predictive probability density function. In other words,

Bayesian forecasts are sensitive to the choice of the measure used to evaluate the out-of-

sample forecast errors. However, Zellner (1986) points out that the use of the mean of the

predictive probability density function for a series, is optimal relative to a squared error loss

function and the Mean Squared Error (MSE), and, hence, the RMSE is an appropriate mea-

sure to evaluate performance of forecasts, when the mean of the predictive probability density

function is used.

For each of one- to eighth-quarters-ahead forecasts, we test whether the gain (loss) in the

RMSE from the SOENKDSGE-VAR model relative to the eight other alternative models is sig-

nificant, using the ENC − t test of Clark and McCraken (2001) designed for nested models,

given that the DSGE-VAR approach nests the VAR and the independently estimated DSGE

models. The test statistic is defined as follows:

ENC − t = (P − 1)
1
2

 c̄

(P−1ΣT−1
t=R (ct+h − c̄))

1
2

 (27)

where ct+h = ν̂0,t+h(ν̂0,t+h − ν̂1,t+h) and c̄ = ΣT−1
t=R ct+1, R denotes the estimation period, P is the

prediction period, f is some generic loss function, h ≥ 1 is the forecast horizon, ν̂0,t+h and ν̂1,t+h

are h-step ahead prediction errors for models 0 and 1 (where model 0 is the SOENKDSGE-

VAR model), constructed using Newey and West (1987) type consistent estimators.

The hypotheses of interest are:

H0 : E
{
f (ν̂0,t+h) − f (ν̂1,t+h)

}
= 0,

and

HA : E
{
f (ν̂0,t+h) − f (ν̂1,t+h)

}
> 0.
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The limiting distribution is N(0, 1) for h = 1. The limiting distribution for h > 1 is non-standard,

as discussed in Clark and McCraken (2001). However, as long as a Newey and West (1987)

type estimator is used when h > 1, then the tabulated critical values are quite close to the

N(0, 1) values (Bhardwaj and Swanson, 2006).

Table 3: One- to Eight-Quarters Ahead RMSEs (2003Q3 to 2008Q4)

Quarters ahead
Model 1 2 3 4 5 6 7 8

Inflation

DSGE-VAR 1.2120 1.390 1.407 1.136 1.323 1.462 1.548 1.293
VAR -42.898** -32.166* -12.800 -61.216*** -20.714* -60.314*** -39.623** -48.670**
BVAR1 -27.782* -42.698** -58.594** -82.689*** -84.545*** -86.076*** -95.341*** -95.696***
BVAR2 -12.242 -2.237 -1.390 -25.124* -0.329 4.609 2.927 -16.709
BVAR3 11.597 -20.590* -26.375* -59.091** -12.120 -63.651*** -70.419*** -45.341**
BVAR4 1.700 34.102* 6.934 -22.573* -16.160 -14.750 20.586* -11.678
BVAR5 3.700 37.981* 20.164* -10.301 -0.043 -7.790 36.178* -12.422
BVAR6 21.883* 27.294* 27.338* -4.820 1.249 9.635 19.260* -1.415
DSGE -0.815 -1.686 1.513 -4.874 -1.950 -0.225 0.810 -4.052

Output growth

DSGE-VAR 0.499 0.833 0.930 1.051 1.197 1.155 1.170 1.281
VAR -63.908*** -41.839** -47.259** -35.150* -29.586* -41.460** -52.125** -52.278**
BVAR1 -65.095*** -58.259** -65.599*** -68.353*** -63.651*** -76.635*** -91.025*** -88.608***
BVAR2 -61.639*** -37.914* -35.509* -40.343** -30.935* -38.400* -31.746* -30.473*
BVAR3 -65.356*** -52.297* -57.236** -62.948*** -64.891*** -63.782*** -68.431*** -63.877***
BVAR4 -66.292*** -50.388** -41.980** -34.745* -15.423 -29.976* -37.161* -27.293*
BVAR5 -66.647*** -53.144** -50.970** -47.045** -39.837* -45.321** -51.665** -46.099**
BVAR6 -23.920* 14.549 10.772 28.665* 20.706* 6.961 21.429* 59.785**
DSGE -1.883 1.348 6.469 5.644 7.509 9.622 6.559 1.615

Short-term interest rate

DSGE-VAR 0.403 0.547 0.545 0.579 0.637 0.669 0.716 0.739
VAR -37.334* -39.819* -42.471** -32.703* -44.497** -65.169*** -73.519*** -75.005***
BVAR1 -42.234** -60.930*** -63.412*** -73.375*** -90.475*** -87.878*** -94.131*** -97.981***
BVAR2 -37.197* -14.470 -24.315* -22.915* -17.884 -13.667 -18.390 -25.876*
BVAR3 -41.054** -45.845** -50.873*** -54.543** -67.046*** -70.975*** -81.135*** -84.439***
BVAR4 -35.667* -15.447 -26.431* -30.144* -5.877 -10.904 -25.931* -27.906*
BVAR5 -36.748* -11.927 -17.832 -16.556 1.314 8.026 4.363 4.957
BVAR6 12.080 43.420** 48.313** 42.759** 75.559*** 80.356*** 98.223*** 105.845***
DSGE 1.650 0.074 1.063 -3.488 -4.180 -4.327 -1.177 -0.923

Notes: Entries in the row DSGE-VAR corresponds to the RMSEs (in percentages) obtained from the SOENKDSGE-
VAR model. The entries in the other rows are percentage gain (negative entry) or loss (positive entry) from using the
SOENKDSGE-VAR relative to the eight other alternative models for one- to eight-quarters-ahead forecast. BVAR1: Non-
informative Natural Conjugate Prior; BVAR2: Minnesota Prior; BVAR3: Informative Natural Conjugate Prior; BVAR4: In-
dependent Normal-Wishart Prior; BVAR5: SSVS Prior on VAR Coefficients; BVAR6: SSVS Prior on VAR Coefficients and
Error Covariance. *(**)[***] Indicates 10%, (5%), [1%] Level of Significance for the ENC-t test statistic.

The conclusions, regarding the three variables of concern, based on the percentage gain or

loss in RMSEs by using the SOENKDSGE-VAR relative to the eight other alternative models
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for one- to eight-quarters-ahead forecast, from these tables can be summarised as follows:

Inflation Rate

The SOENKDSGE-VAR model is found to consistently and significantly (barring the third-

quarter-ahead forecast) outperform the classical VAR, as far as forecasting CPIX inflation

rate is concerned. The performance of the same becomes a bit weaker when compared to

BVAR model based on the Minnesota prior, but it continues to outperform the latter, barring the

seventh and eight-quarters-ahead forecasts. Though, the improvements in forecasts are not

significant. As far as the other BVAR models are concerned, the SOENKDSGE-VAR model

outperforms the BVAR model based on the non-informative natural conjugate prior signifi-

cantly, but, in turn, is outperformed significantly by the BVAR model based on the SSVS prior

on both the VAR coefficients and the error covariance. For the remaining BVAR models, the

results are mixed, but, more importantly, the forecast differences are rarely significant. Fi-

nally, the SOENKDSGE-VAR model outperforms the independently estimated SOENKDSGE,

except for the third- and seventh-steps-ahead forecasts, but the ENC − t test statistic is not

significant for any of the one- to eight-quarters-ahead forecasts;

Growth Rate

The SOENKDSGE-VAR model is found to consistently and significantly outperform the clas-

sical VAR and the BVAR model based on the Minnesota prior. This result continues to hold

as far as the other BVAR models are concerned, barring the BVAR model based on the SSVS

prior on both the VAR coefficients and the error covariance. As with the inflation rate, the

SOENKDSGE-VAR is outperformed significantly in most cases by the BVAR model based on

the SSVS prior on both the VAR coefficients and the error covariance, with the exception of the

first-quarter-ahead forecast. Finally, the SOENKDSGE-VAR model is also outperformed by the

independently estimated SOENKDSGE, except for the one-quarter-ahead forecast. However,

the ENC−t test statistic is not significant for any of the one- to eight-quarters-ahead forecasts;

Interest Rate

The SOENKDSGE-VAR model is found to consistently and in majority of the cases signifi-

cantly outperform the classical VAR and the BVAR model based on the Minnesota prior. This

result continues to hold as far as the other BVAR models are concerned, barring the longer-

horizon forecasts from the BVAR model based on the SSVS prior on the VAR coefficients, and

for all the one- to eight-steps-ahead forecasts by the BVAR model based on the SSVS prior

on both VAR coefficients and the error covariance. Except for the one-step-ahead forecasts,
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the DM statistics for the BVAR model with SSVS prior on both VAR coefficients and the er-

ror covariance is significant. Finally, the SOENKDSGE-VAR model is found to outperform the

independently estimated SOENKDSGE model, especially beyond the third-step-ahead fore-

casts. However, as with the inflation rate and the growth rate, the ENC − t test statistic is not

significant for any of the one- to eight-quarters-ahead forecasts.

5 Conclusion

Recent studies on forecasting macroeconomic variables in South Africa using DSGE models

have been found to perform poorly relative to VAR and BVAR models. Against this backdrop,

we develop a SOENKDSGE-VAR model of the South African economy, characterised by in-

complete pass-through of exchange rate changes, external habit formation, partial indexation

of domestic prices and wages to past inflation, and staggered price and wage setting. The

model is estimated using Bayesian techniques on data for South Africa and the US from the

period 1990Q1 to 2003Q2, and then used to forecast output growth, inflation and a measure

of nominal short-term interest rate for one- to eight-quarters-ahead over an out-of-sample hori-

zon of 2003Q3 to 2008Q4. The forecast performance of the SOENKDSGE-VAR model is then

compared with an independently estimated DSGE model, the classical VAR and BVAR mod-

els, with the latter being estimated based on six alternative priors, namely, Non-Informative and

Informative Natural Conjugate priors, the Minnesota prior, Independent Normal-Wishart Prior,

SSVS prior on VAR coefficients and SSVS prior on both VAR coefficients and error covariance.

Overall, for the three variables, we can make following important observations: First, barring

the BVAR model based on the SSVS prior on both VAR coefficients and the error covariance,

the SOENKDSGE-VAR model is found to perform competitively if not better than all the other

VAR models for most of the one- to eight-quarters-ahead forecasts. Second, there is no signif-

icant gain in forecasting performance by moving to a DSGE-VAR framework when compared

to an independently estimated SOENKDSGE model. Combining the two observations made

above, we can conclude that the DSGE framework, developed in this paper, is in itself quite

competent, and, does not require a combined approach involving the DSGE and VAR models,

whereby macroeconomic theory of the DSGE model is utilised to provide priors to an oth-

erwise completely atheoretical VAR model. Finally, there is overwhelming evidence that the

BVAR model based on the SSVS prior on both VAR coefficients and the error covariance is

the best-suited model in forecasting the three variables of interest.
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The fact that our DSGE model is found to perform exceptionally well in terms of forecasting

key macroeconomic variables, which includes the inflation rate, of South Africa (an inflation-

targeting economy), relative to the commonly used statistical benchmark models, namely, the

VARs, makes the framework and, hence, the study immensely important, especially in light

of the Lucas (1976) critique, and policy makers need for structural models characterised by

“deep” parameters. Future research in this area would be targeted in three possible direc-

tions: First, due loss of information associated with first-order linearisation of DSGE models,

we would like to carry out the analysis by accounting for non-linearities and re-estimating the

model using particle filters, as in Pichler (2008). Second, we would like to incorporate a hous-

ing sector in this framework to account for housing market spillover on the real sector of the

economy, as in Iacoviello and Neri (2010), and to analyse whether the SARB tends to respond

to house price movements. Finally, we would also like to extend our framework to a DSGE

model based factor model, as in Boivin and Giannoni (2006) and Schorfheide et al. (2010),

to help us forecast variables beyond those used as explicit observable variables in estimating

the DSGE model.
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Appendix

A.1. The full-log-linearised model

CPI inflation

πt = (1 − γ)πh
t + γπ f

t (A.1)

Domestic inflation

πh
t =

ω

1 + ωβ
πh

t−1 +
β

1 + ωβ
Etπ

h
t+1 +

(1 − θh)(1 − θhβ)
θh(1 + ωβ)

mct (A.2)

Marginal costs

mct = rwt − at + γst + εp
t , (A.3)

Real wages

rwt = rwt−1 + πw
t − πt (A.4)

Nominal wage inflation

πw
t = απt−1 + βEtπ

w
t+1 − αβπt +

(1 − θw)(1 − θwβ)
θw(1 + ϕξw)

µw
t (A.5)

Wage markup

µw
t =

σ

1 − h
(ct − hct−1) + ϕ(yt − at) − rwt (A.6)

Imported inflation

π f
t =

δ

1 + δβ
π f

t−1 +
β

1 + δβ
Etπ

f
t+1 +

(1 − θ f )(1 − θ fβ)
θ f (1 + δβ)

ψt (A.7)

Law of one price gap

ψt = qt − (1 − γ)st (A.8)

Terms of trade

st = st−1 + π f
t − π

h
t (A.9)

UIP condition

Etqt+1 = qt + (rt − Etπt+1) − (r∗t − Etπ
∗

t+1) + φt, (A.10)

Taylor rule

rt = ρrrt−1 + (1 − ρr)[φππt + φyyt] + εr
t (A.11)
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Aggregate supply

yt = at + lt (A.12)

Aggregate demand

yt = (1 − γ)ct + ηγ(2 − γ)st + γy∗t + ηγψt (A.13)

Risk sharing condition

y∗t = hy∗t−1 +
σ

σ∗
(ct − hct−1) −

1 − h
σ∗

qt (A.14)

Price markup shock, ARMA(1,1)

εp
t = ρpε

p
t−1 + νp

t + µpν
p
t−1 (A.15)

Demand shock, AR(1)

εd
t = ρdε

d
t−1 + νd

t (A.16)

Productivity shock, AR(1)

at = ρaat−1 + νa
t (A.17)

Foreign inflation

π∗t =
ω∗

1 + ω∗β
π∗t−1 +

β

1 + ω∗β
Etπ

∗

t+1 +
(1 − θ∗)(1 − θ∗β)
θ∗(1 + ω∗β)

mc∗t (A.18)

Foreign marginal costs

mc∗t = rw∗t − a∗t + εp∗
t , (A.19)

Foreign real wages

rw∗t = rw∗t−1 + πw∗
t − π

∗

t (A.20)

Foreign nominal wage inflation

πw∗
t = απ∗t−1 + βEtπ

w∗
t+1 − αβπ

∗

t +
(1 − θ∗w)(1 − θ∗wβ)
θ∗w(1 + ϕ∗ξw)

µw∗
t (A.21)

Foreign wage markup

µw∗
t =

σ

1 − h
(y∗t − hy∗t−1) + ϕl∗ − rw∗t (A.22)

Foreign Taylor rule

r∗t = ρ∗rr
∗

t−1 + (1 − ρ∗r)[φ
∗

ππ
∗

t + φ∗yy
∗

t ] + εr∗
t (A.23)
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Foreign Euler equation

y∗t =
1

1 + h
Ety∗t+1 +

h
1 + h

y∗t−1 −
1 − h

σ∗(1 + h)

[
r∗t − Etπ

∗

t+1 + εd∗
t

]
(A.24)

Foreign aggregate supply

y∗t = a∗t + l∗t (A.25)

Foreign price shock, ARMA(1,1)

εp∗
t = ρ∗pε

p∗
t−1 + νp∗

t + µ∗pν
p∗
t−1 (A.26)

Foreign demand shock, AR(1)

εd∗
t = ρ∗dε

d∗
t−1 + νd∗

t (A.27)

Foreign productivity shock, AR(1)

a∗t = ρ∗aa
∗

t−1 + νa∗
t (A.28)

Risk premium

φt = εd
t − ε

d∗
t (A.29)
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A.2. Data sources

Observed series Source

South Africa
CPI inflation (excluding interest rates on mortgage bonds) Statistics South Africa
Real Gross Domestic Product (seasonally adjusted) Statistics South Africa
Repurchase rate South African Reserve Bank (SARB)
Real unit labour costs Authors’ own calculations; SARB

United States
GDP deflator International Financial Statistics, IMF
Real GDP (seasonally adjusted) International Financial Statistics, IMF
Federal Funds rate Federal Reserve Bank of St. Louis
US Aggregate Weekly Hours Index (Total Private Industries) Bureau of Labour Statistics
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