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ABSTRACT 
 
Recent experience with a number of material-related construction problems has indicated 
that many of the fundamental chemical and chemico-physical properties of these materials 
are not clearly understood. These are related for instance to the hydrophilic/hydrophobic 
properties, surface charges, ionic bonding, zeta potential and dielectric constant of the 
materials. These appear to affect the water susceptibility and stabilization potential of the 
materials. One particular area of interest in the United States is the use of the dielectric 
properties of soils and stabilized materials in the prediction of their performance when 
used in road pavements. The relevance of the dielectric constant (DC) as a road 
construction material assessment and quality control parameter has, however, not been 
clearly demonstrated and some fundamental research in this area has been undertaken. 
The results of testing a range of materials under different conditions are presented and 
demonstrate the measurement of the DC to be primarily relevant for moisture content 
assessment at constant density or vice versa. This renders DC measurements useful only 
for limited applications and where one variable remains constant. Critical discussion 
regarding the possible use of the DC in South Africa is presented. 
 
1 INTRODUCTION 
 
Recent experience with a number of material-related construction problems has indicated 
that many fundamental and chemico-physical properties of these materials are not clearly 
understood. These are related for instance to the hydrophilic/hydrophobic properties, 
surface charges, ionic bonding, zeta potential, dielectric constant, etc, of the materials, 
many of which react erratically with water and soil stabilizers (bituminous and hydraulic). 
One particular field that is gaining momentum in the United States, particularly, is the use 
of the dielectric properties of soils and stabilized materials in the prediction of their 
performance when used in road pavements. The Tube Suction Test (TST) (Hilbrich & 
Scullion, 2008) in particular, is being increasingly used to predict the “durability” of 
stabilized materials in the United States. The relevance of the dielectric constant (DC) as a 
road construction material assessment and quality control parameter has, however, not 
been clearly demonstrated and some fundamental research in this area has been 
undertaken.  
 
The aim of the current work was to determine the influence of various fundamental 
material properties that affect the performance of materials when used in road construction 
and their effect on the dielectric constant of materials. The investigation entailed 
preliminary testing of a range of materials under different moisture and density conditions 
to evaluate the variation in DC of local materials. 
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2 BACKGROUND 
 
The dielectric properties of a material are essentially a measure of the capability of the 
material to act as an electrical insulator, or a measure of the electric permittivity (electrical 
conductivity) of the material, i.e., the ability of the material to allow the flow of electrical 
current through it. The materials may hold an electrostatic charge but this charge may not 
necessarily flow, although the electrostatic lines of flux are not impeded or interrupted. 
Essentially, dielectric materials have no loosely bound or free electrons to conduct a 
current and by definition a dielectric material is one that has a low permittivity (i.e., is an 
insulator). The dielectric constant is thus a measure of a material's insulating capacity or 
that property of a dielectric which determines the electrostatic energy stored per unit 
volume for unit potential gradient. It is also a measure of a substance's relative hydrophilic 
character. 
 
The dielectric constant of a material is equal to the ratio of the electrostatic capacity of 
condenser plates separated by the material to that of the same condenser with a vacuum 
(assigned a value of 1.0) between the plates (Scullion and Saarenketo, 1997). 
 
The dielectric constant of a soil-water-air mixture is a function of:  
• dielectric constants of the individual components; 
• volume fractions of the components;  
• geometric properties of the components; and  
• electrochemical interactions between the components (Saarenketo, 1998). 
 
Typical values of the Dielectric Constant for highway materials are shown in Table 1. 
 
Table 1: Typical values of Dielectric Constant (Scullion and Saarenketo, 1997; Evans et al, 2007) 

 
 
The Dielectric Constant is measured using equipment based on Time Domain 
Reflectometry (TDR) principles. The equipment consists of a surface probe (more like a 
contact foot) and a display unit (Figure 1). A 1.36 kg weight is used to ensure consistent 
pressure during measurement. A Rainbow Instrument Dielectric Sensor was used for all 
DC measurements in this study.  
 
The sensor consists of a transmitter and receiver integrated into the probe and the probe 
sweep scans a certain frequency band to find the resonant frequency. The dielectric 
constant of the material is inversely proportional to the resonant frequency. The probe has 
a depth of penetration into the materials to be measured of about (25 to 50 mm) 
depending on the material. 
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Figure 1: The Rainbow Instruments Dielectric Sensor. Measuring unit, probe with 3lb weight 
placed on the Perspex block used to regulate the sensor. 
 
3 EXPERIMENTAL WORK 
 
In order to get a fundamental understanding of the dielectric properties of materials, a 
range of materials was tested using the sensor. The testing was carried out in 3 stages 
during an ongoing research project.  
 
3.1 Stage One 
 
The first stage involved testing samples covering a range of properties from highly active 
clays to clean sands. The samples were compacted at 95% of the Mod AASHTO 
maximum dry density at optimum moisture content (OMC) and then allowed to dry with 
periodic DC measurements. The moisture contents and density condition were known 
factors during testing. Each dielectric measurement for analysis was taken as the average 
of four measurements taken on various positions on the surface of the sample as 
illustrated in Figure 2.   
 
Tests were also carried out to determine the effect of stabilizers on the dielectric constant 
of materials. Three specimens each of untreated black clay and black clay treated with 5% 
lime were moulded and then allowed to dry back at ambient conditions for several days 
until the dielectric values stabilised. The samples were then subjected to a modified Tube 
Suction Test. The Tube Suction Test is based on the change in dielectric constant of a 300 
x 150 mm compacted stabilized specimen with increased capillary suction from the base of 
the specimen over a 10 day period. The test essentially determines the rate of capillary 
suction in the specimen based on the unbound water content. The objective of this test 
was to predict the permanency (durability) of stabilized layers (Hilbrich and Scullion, 2008). 
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Figure 2: Measuring points on the surface of the sample. 
 
3.2 Stage Two 
 
The second stage of the study was carried out to determine if any additional factors affect 
the DC readings of materials. The factors that were investigated were water quality and 
density. The correction of DC readings according to temperature was also investigated.  
 
3.2.1 Correlation between DC and temperature 
Since the temperature of a material has an effect on the DC of the material, all DC 
readings should be corrected to a reference temperature before evaluating the readings. 
For this reason the DC of the Perspex block supplied with the Rainbow Instruments 
dielectric probe for calibration was measured at various temperatures to determine the 
manner and the rate at which the DC changes occur with temperature. As different 
materials may exhibit different rates of change of DC with changes in temperature the DC 
of a core of anorthosite and three asphalt cores were also measured to observe if the 
material had a similar rate and pattern of DC change to the Perspex block.  
 
3.2.2 Effect of water quality on DC 
In order to determine the effect of water quality on the dielectric constant a single material 
was compacted using water with different salt contents. The aim of this experiment was to 
determine the effect that different construction water qualities would have on DC readings 
taken during construction and the effect of different quality infiltration waters on DC 
readings of completed pavements. The tested samples were compacted at constant 
moisture content and under the same compactive effort. The salt content of the water 
varied from 0g/l NaCl (distilled water) to 20g/l NaCl in order to cover the full range of water 
classes as defined by the South African National standards water classes and extreme 
cases of salt concentrations (20g/l). 
 
3.2.3 Field readings on road 
As an initial investigation of the feasibility of using the DC as a measure of the changing 
moisture conditions within a pavement structure, a section of existing road was monitored 
on the CSIR campus. The road section selected was extensively cracked on the one edge 
while the other areas were intact (Figure 3). Monitoring involved the measurement of the 
DC of the road at specific points laterally across the road.  
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Figure 3: Road section tested showing position of measuring points and extensive cracking 

etween points 1 and 2. b
  
The DC was measured on four different occasions during the study period as the moisture 
conditions of the road were expected to change due to the onset of the rainy season. No 
material samples were taken and as such no gravimetric moisture content evaluations 
were done. The area closest to the crack (Sample point 1) was assumed to have been 
exposed to infiltrating water and as such was expected to have a higher moisture content. 
 
The experiment was therefore not a quantitative investigation of DC versus moisture 
content but rather a qualitative investigation of relative changes in DC readings with 
changing moisture conditions. As the road is old (constructed in approximately 1970) and 
lightly trafficked no compaction of the pavement layers is expected to have occurred 
during the monitoring period. Any changes in DC values would therefore be due solely to 
changing temperatures or moisture conditions. 
 
3.2.4 DC versus density 
Various materials were compacted in standard CBR moulds at various moisture contents 
and to various densities. The purpose of the process was to determine if the different 
materials show any different trends of DC with varying moisture contents and density. 
 
3.3 Stage Three 
 
During the third and final stage the effects of both moisture content and density on DC 
readings of untreated materials was further investigated. DC measurements of compacted 
samples of known moisture content and density were recorded to analyse the relationship 
between the factors. Three materials were selected and used for DC measurements after 
the routine compaction tests were carried out to determine OMC and maximum dry density 
of each material. Of the three materials, a total of 87 samples (61 from material A, 16 from 
material B and 10 from material C) were compacted for correlation analysis. The 
investigation also took into account the use of a temperature correction factor as specified 
in previous testing. 
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Routine compaction tests with varying moisture contents and density were carried out on 
moulds of material A and B with the dielectric measurements being taken on each mould. 
Material C moulds were compacted at a constant moisture content to varying densities to 
determine the effect of density alone on the DC of a sample. A regression analysis was 
also performed on the results to evaluate the relationship between the three factors and to 
evaluate which factor (moisture content or density) had a more significant affect on the 
DC. 
 
4 RESULTS AND DISCUSSION 
 
4.1 Stage One 
 
The relationship between the DC and moisture content of the materials compacted to 
maximum dry density showed that, for the sand, no correlation can be made between 
dielectric constant and moisture content. For all other materials an increase in DC with 
increasing moisture content was observed (Figure 4). The relationship of the dielectric 
constant of the materials compacted at OMC to densities ranging from 90 to 100% of max 
dry density revealed similar trends of DC increasing with density (Figure 5). 
 

 
Figure 4: Moisture content vs dielectric constant for different materials 
 

 
Figure 5: Relationship between density and Dielectric Constant for various materials  
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The Tube Suction Test (TST) investigation into the effect of stabilization showed that the 
top of the sample appears to have dried out over the first 12 days (Figure 6), before the 
suction effects brought moisture into the area of influence of the test probe. Thereafter the 
dielectric constant was directly affected by the increasing moisture content. The same 
pattern was obtained for both the stabilized and unstabilized materials, although the effect 
of the stabilization appeared to reduce the water content slightly (Figure 6). This 
investigation, however, did not reveal significant results and as such needs to be explored 
further. 

 
Figure 6: Change of dielectric constant with time for untreated and stabilized materials in tube 
suction test 
 
4.2 Stage two 
 
The observed relationship of changing DC with changing temperature (Figure 7) of all 
tested materials revealed a definite positive correlation between increasing temperature 
and DC. The effect of temperature on the DC was, however, highly variable but not 
extreme with gradients of the linear trends not exceeding 0.07. Temperature corrections 
should, however, be applied and for consistency a conservative correction gradient of 0.05 
was used in all subsequent tests. It is believed to be important to apply a means of 
correction as significant variance in DC values may otherwise be lost (or added) especially 
when materials are tested with a high temperature range.  
 

 
Figure 7: Plot illustrating the changes in DC with Temperature 
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The DC of the material does not follow any specific trend with increasing moisture salt 
content (Table 2) and therefore the quality of the water used during construction or the 
quality of water infiltrating a completed pavement will most probably not have a significant 
effect on the DC readings. It must be mentioned that only the salt content of the water was 
varied and it can therefore be concluded that salt concentrations (NaCl and similar) do not 
appear to affect the DC of materials. Other forms of pollution, e.g. metals and non 
aqueous phase liquids, could affect the DC. 
 
The measurement of the DC of an existing road revealed that the DC sensor could not 
detect changes in moisture content in materials under a layer of asphalt. A possible source 
of error associated with the experiment is that the sensor has a reported maximum depth 
of penetration of 5cm. The asphalt and reseal on the tested road section may approach 
this thickness and as such the readings would only indicate the DC of the relatively 
hydrophobic asphalt layer. Based on stage two results the suitability of the DC sensor as a 
density determining device for compacted materials seems limited as no consistent trend 
was observed within the limited samples set tested. 
 
Table 2: Summary of properties of the samples used to determine the effect of salt water on DC 
readings. 

Sample 
Number 

Water Salt content (g/l 
NaCl) 

Soil Moisture 
content (%) 

Soil Density 
(g/ml) 

Dry density (g/ml) Dielectric constant 

1 0 7.65 1.87 1.73 12.025  

2 0.5 7.76  1.86 1.72 10.65  

3 1 7.52  1.87 1.74 12.15  

4 2 7.70 1.82 1.69 10.925  

5 10 7.66  1.85 1.72 11.95  

6 20 7.48 1.86 1.74 11.925 

 
4.3 Stage Three 
 
4.3.1 Laboratory analysis 
The relationships between the DC, moisture content and density obtained for all samples 
from the three materials tested are illustrated in Figure 8 to Figure 11. 
   

 
Figure 8: The distribution of DC readings in relation to a: density and b: moisture content (Material 
A with 61 values in data set) 
 
The results for material A and B show that no significant relationship exists between 
density and DC since the regression coefficients are 0.03 and 0.27 respectively (Figure 8a 
and Figure 9a). The relationship between the moisture content and DC is better with 
regression coefficients of 0.69 and 0.73 respectively (Figure 7b and 8b). 
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Figure 9: The distribution of DC readings in relation to A: density and B: moisture content (Material 
B with 16 values in data set) 
 
Since the moisture content of the material appeared to have a significant effect on the DC 
of the specimens and the density had little or no effect, an experiment was carried out to 
determine whether the density would affect the DC without any variation in the moisture 
content. Samples that were compacted for CBR testing (material A), with constant 
moisture content but different densities, were used for DC measurements  
 
The data set consisted of 5 sets of 3 moulds of compacted soil at optimum moisture 
content, and varying densities. DC measurements were also taken after the standard four 
day soaking period to evaluate the changes in moisture content and its effect on the DC-
density relationship.  The results are plotted in Figure 10a and b. 
 
When material A samples were compacted to various densities at constant moisture 
content (three repetitive samples) the DC of the samples increased with an increase in 
density (Figure 10a). The regression coefficient for this relationship ranged from 0.93 to 
0.99 (average of 0.965).  
 

 
Figure 10: The relationship between DC and density before (a) and after (b) soaking (Material C 
with 10 values in the data set) 
 
The relationship changes when the samples are soaked for the standard four day period 
and the moisture contents increased from initial values of between 11 and 13% to from 13 
to 19% after soaking. The highly variable changes in moisture content resulted in an 
erratic effect on the DC (Figure 10b) with the DC to density regression coefficient ranging 
from 0.32 to 0.98. This again illustrates the greater significance of moisture content than 
density on the DC. 
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When material C was used to extend the investigation of the effect of density on the DC 
two sets of 5 moulds were compacted at constant moisture content with 5 different 
compactive efforts. In this case the stronger relationship is observed to be between DC 
and density (Figure 11a) than between moisture content and DC.  
 
  

 
Figure 11: The distribution of DC readings in relation to a: density and b: moisture content 
material C with 10 values in data set) (

  
4.3.2 Regression Analysis 
The data set was run through a regression analysis to confirm the results obtained from 
laboratory testing. A linear regression analysis is performed by using the "least squares" 
method to fit a line through a set of observations. It can be used to analyze how a single 
dependent variable is affected by the values of one or more independent variables. In this 
case the analysis is carried out to determine how the DC is affected by the other two 
factors (moisture content and density). Contributions in the performance measure can then 
be allocated to each of the factors, based on the performance data. 
 
In general, the equation of a line is written as: 

XbaY *+=  (1)
 
Where Y is the dependent variable, X is the independent variable, a is the intercept and b 
is the coefficient of change on X (b measures how much Y changes when X changes by 
1). Once the regression analysis is run, estimated coefficients of change associated with 
each of the X variables will be calculated and the output can then be written in the form of 
the general equation (1). The coefficients describe the size of the effect the independent 
variables (X1, X2, X3) have on the dependent variable Y, and a is the value Y is predicted 
to have when all the independent variables are equal to zero. 
 
The regression analysis showed moisture content to have a more significant effect on DC 
than density. Density data was then discarded and the regression analysis run again to 
verify the coefficients obtained before. From both analyses run, the coefficients obtained 
for moisture content were 1.06 and 1.03, which was significantly higher than that of 
density. The coefficient obtained for density was 0.0068. The R-squared valued obtained 
for both analyses was 0.69, which is similar to the values obtained in the previous 
analyses. 
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5 SUMMARY 
 
Despite the effect of temperature on the DC being very small a consistent conservative 
correction gradient of 0.05 was used in this research. It was shown that DC is not affected 
by change in water quality but only the effects of NaCl were investigated and as such 
some very dense pollutants or pollutants other than common salts could have an effect on 
the DC of materials. Generally such pollutants are uncommon in infiltration and 
construction waters and it therefore seems unlikely that DC measurements are 
significantly affected by water quality. 
 
The testing of an existing road proved inconclusive since the dielectric sensor appears to 
only measure the top 5 cm of a layer. The sensor is thus probably not suitable for 
investigating pavements below a depth of 5cm.  
 
The suitability of the Dielectric constant for monitoring and controlling the density of 
compacted materials seems limited as there are many variables that affect the readings. 
Laboratory investigations under controlled conditions (constant moisture and temperature) 
may possibly yield some useful results but this may not provide good correlations for field 
investigations.  
 
The DC sensor may be useful as a tool to measure the moisture content of a material. 
Even with varying densities, moisture content has a significant effect on the DC of a 
material. This does not hold true for density. The dielectric sensor is based on Time 
Domain Reflectometry (TDR), which determines the dielectric permittivity of a medium by 
measuring the time it takes for an electromagnetic wave to propagate along a transmission 
line that is surrounded by the medium. (In fact, TDR is a standard process for measuring 
moisture content in soils and agricultural produce.)The transit time (t) for an 
electromagnetic pulse to travel the length of a transmission line and return is related to the 
dielectric permittivity of the medium. The permittivity is the property of the dielectric that 
determines how well it transmits an electric field (Wacker, 2002). 
 
For the samples tested, the transmission line would refer to the soil, water and air that fill 
the voids in the soil. The electromagnetic wave is likely to follow the easiest path, which is 
through the water in the voids. Hence, an increase in the moisture content would result in 
an increase in the DC of the material. For those samples with constant moisture content 
and varying densities, the same principle would apply. As the density increases, the void 
spaces decrease, thereby causing the water molecules to accumulate and form easy 
“pathways” for the electromagnetic waves. This would result in higher DC values. 
 
This is verified in the work by Saarenketo (1998), in which the degree of compaction is 
demonstrated to have a considerable effect on the dielectric of a material. The air 
component within the sample is reduced for a higher compaction effort and for a fixed 
moisture content the saturation ratio in the voids would increase, resulting in a higher 
dielectric value. The dielectric constant is significantly affected by the moisture content of a 
material, which in turn is a function of the density and void ratio of that material. Although 
used as an indicator of the durability of stabilized materials in the United States, the 
dielectric constant does not appear to be useful for this purpose in South Africa.  Durability 
is related to the ability of the material to resist deterioration under external forces. Although 
excessive moisture can weaken materials, it does not necessarily indicate that the material 
is non-durable. 
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6 CONCLUSION 
 
The general outcome of the study shows that the dielectric sensor may be useful as a tool 
to measure the moisture content of a material and this may, for example, be useful to test 
the amount of moisture infiltration through a pavement seal by monitoring the change in 
moisture content of the upper part of a base course with time. However for deeper 
moisture content measurements the DC sensor will be impractical for routine 
measurements as it will require the creation of an access pit to reach the deeper layers.  
 
Another use of the DC that may be feasible is that of determining the density of material 
that has a known constant moisture content. An example of such an application would be 
the measurement of DC (and the subsequent derivation of the density) of various points 
across a recently constructed pavement layer, bearing in mind that it is probably only the 
upper 50 mm of the layer that is being evaluated.  
 
However as a general material characterizing tool the DC sensor appears to be of limited 
use since too many variables affect it and extensive calibration is needed. The use of the 
DC as an indication of stabilization durability and pavement design as applied in the USA 
appears to be very tenuous and results from this study show that the dielectric sensor 
primarily measures the water content in a material. The presence of water, however, in 
stabilized materials is not necessarily an indication of potential durability.  Durability is 
related to the ability of the material to resist deterioration under external forces. Although 
excessive moisture can weaken materials, it does not necessarily indicate that the material 
is non-durable. 
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