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ABSTRACT 
 
In recent years, an increase in the number of non-destructive testing devices (NDT) 
commonly utilized in field characterization of pavement systems as well as in assessment 
of construction quality control of road pavement layers has been witnessed.  These 
devices utilize either static or dynamic loading mechanisms. Most of these devices impart 
an impact or vibratory load to the road surface with the applied force and the induced 
pavement surface motion being simultaneously monitored. These devices are not only 
rapid, cheap and non-destructive, but also offer the opportunity to measure the pavement’s 
in-situ response under a load closely simulating actual moving traffic loads. Different 
factors affect the measurements taken with these devices. On the other hand, the 
measurements of each non-destructive device differ from others in terms of magnitude and 
unit and in most cases there is no direct comparison between these different devices. This 
paper reports on the statistical correlation study done on measurements taken with the 
Clegg Impact Soil Tester (CIST) also known as “Clegg Hammer”, the Rapid Compaction 
Control Device (RCCD), the Light weight deflectometer (LWD), the Falling Weight 
Deflectometer (FWD) and the Portable Seismic Pavement Analyzer (PSPA) during the 
monitoring of the curing process of the Soil Treated with Emulsion (commonly known as 
Bitumen Stabilised Material, BSM-emulsion) research sections in Mozambique. In the 
past, no correlations between these devices have been developed and only correlations 
with CBR are reported. The finding of this study was that there is a reasonably good 
correlation between the CIV values, which is the CIST measurement, and the RCCD 
penetration although the RCCD measures the in situ shear resistance characteristics while 
the CIV measures elastic properties of materials. Fair to good correlations were found 
between the LWD and FWD bowl parameters of similar nature. The correlations between 
the PSPA with other devices were in general poor. The conclusions drawn in this study are 
specific to the BSM-emulsion and no moisture control was carried out during the testing 
which limits wider use of the correlations developed. 
 
1 INTRODUCTION 

 
In recent years there has been an increase in the number of Non-Destructive Testing 
(NDT) tools utilized in field characterization of structural pavement systems.  These non-
destructive devices utilize either static or dynamic loading mechanisms and they are not 
only rapid, cheap and non-destructive, but also offer the opportunity to measure the 
pavement’s in-situ response under a load closely simulating actual moving traffic loads 
(Rohde, 1994). Most of these devices impart an impact or vibratory load to the road 
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surface with the applied force and the induced pavement surface motion being 
simultaneously monitored (Hoffmann et al., 2004).  
 
Some of these devices were used during the monitoring of the curing process of Soil 
Treated with Emulsion (BSM-emulsion) research sections built in Marracuene area, north 
of Maputo in Mozambique.  These were the Clegg Impact Soil Tester (CIST), Rapid 
Compaction Control Device (RCCD), Light Falling Weight Deflectometer (LWD), the 
conventional Falling Weight Deflectometer (FWD) and the Portable Seismic Pavement 
Analyzer (PSPA). These testing devices can be divided into three categories as follows:   
 
a) Devices that measure the Shear Strength of the pavement layer, 

• RCCD 
 
b) Devices that measure the effective elastic modulus of the pavement layer, 

• LWD 
• FWD  
• CIST 

 
c) Devices that measures the Seismic modulus of the pavement layer, 

• PSPA 
 
Thus the various non-destructive in-situ testing devices measure different parameters. The 
difference is in terms of magnitude of the measurements and unit, and in most cases there 
is no direct comparison between these different devices.  
 
This paper reports on the statistical correlation study done on measurements taken with 
these devices. To achieve this, an extensive series of tests on BSM-emulsion were carried 
out at regular intervals of 50 m, in the middle of each traffic lane. The testing was 
conducted as per schedule indicated in Table 1 but it was not always possible to have all 
of the equipment on site. Special attention is called to the fact that during the execution of 
these tests no moisture control was performed. 
 
Table 1: Testing schedule of the BSM-emulsion sections 

Device Test setup Frequency Time after construction 

CIST 4.5 kg hammer, five blows 
at each station 50 m 24 hrs, 2 days, 1 week, 2 weeks, 

4 weeks, 3 months and 6 months 

RCCD Single blow at each station 50 m 24 hrs, 2 days, 1 week, 2 weeks, 
4 weeks, 3 months and 6 months 

LWD 
10 kg and 200 mm plate 
diameter setup, three 
readings at each station 

50 m 24 hrs, 2 days, 1 week, 2 weeks, 
4 weeks, 3 months and 6 months 

FWD  
40 kN and 300 mm plate 
diameter setup, two 
readings at each station 

50 m Every six months 

PSPA 
Four readings at each 
station at 0º, 90º, 180º and 
270º 

50 m Every three months 
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2 PREVIOUS CORRELATION STUDIES 
 
Few correlation studies between the different devices indicated above are reported. Most 
of these devices were correlated with the CBR of the sand soil material used. This may be 
due to the fact that current criteria for evaluating and designing pavements rely on 
characterizing  soils and unbound pavement structural layers with either California Bearing 
Ratio (CBR) values or effective elastic modulus. 
 
2.1 Rapid Compaction Control Device 
 
The research carried out on labour-based projects in the sub-Saharan region by Paige-
Green (1998) pointed out that the RCCD penetration can be correlated with CBR through 
Equation (1) for material complying with specifications indicated in Table 2 below: 
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Table 2: Material specifications for unpaved rural roads (CSRA, 1990; Paige-Green, 1998) 

Maximum size (mm) 37.5 

Oversize Index (Io) 5 % 

Shrinkage product (Sp) 100 – 365 

Grading coefficient (Gc) 16 – 34 

Soaked CBR (%) 15 at 95 % Modified AASHTO density 

Treton Impact value (%) 20 – 65 
 

The laboratory study conducted by De Beer et al. (1993) to define the relationship between 
the RCCD and the well known DCP/CBR relationship by Kleyn (1975) resulted in the 
Equation (2).  
  
CBR = 804*(DNRCCD)-1.29         (2) 
 
2.2 LWD and FWD 
 
Fleming et al., (2000) conducted field tests to correlate the moduli determined with the 
LWD with that of the FWD. Their results showed that the resilient surface modulus, E(FWD) 
correlated well with resilient surface moduli obtained from the LWD as illustrated by 
Equation (3). However they found that the correlation coefficients are LWD instrument 
specific and should first be established before being used with confidence.  Fleming (2001) 
reported that a number of factors influence the measured moduli of the LWD including 
differences in mass, transducer type and software analysis (which records the maximum 
deflection as that at the time of the peak force). 
 
E(FWD) = 1.031*E(LWD)              (3) 
 
Nazzal (2003) found that the best model to predict the FWD back-calculated resilient 
surface moduli, E(FWD) in MPa from the LWD surface modulus, E(LWD) in MPa is: 
 
E(FWD)= 0.97*E(LWD)       for 12.5 MPa < E(LWD) < 865 MPa      (4) 
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With R2 = 0.94, significance level < 99.9% and standard error = 33.1 
 
In comparing his studies with those of Fleming (2000), Nazzal (2003) found that his 
correlations agreed with those of Fleming (2000) for a variety of material types.  
 
According to Rahimzadeh et al., (2004) the relationship between FWD and LWD was 
found to be material type and thickness dependent. The FWD is regarded as the most 
appropriate device for setting the standard, because not only is the loading most 
representative of real traffic loading, but it can also be used for assessment of all 
pavement layers as construction proceeds.  Either the FWD or the LWD can be used for 
measurement of stiffness as long as the same plate rigidity factor is assumed (π/2 for a 
flexible plate). If the LWD default setting (rigid plate, rigidity factor of 2) is assumed, then a 
correction factor must be applied, such that: 
 
E(LWD) = 1.273*E(FWD)                    (5)            
 
Steinert et al. (2005) concluded that LWD surface moduli were comparable with surface 
moduli derived from the traditional FWD. Regression analyses comparing surface moduli 
from both devices yielded correlation coefficients ranging from 0.34 to 0.95. In general, 
LWD surface moduli were slightly less than FWD surface moduli. Correlation coefficients 
tended to increase with decreasing pavement thickness. The paved roads showed a 
strong correlation between LWD and FWD derived surface moduli with a regression 
coefficient of 0.81. The regression coefficient increased when the pavement thickness 
decreased. Regression analyses comparing surface and subbase moduli yielded 
correlation coefficients ranging from 0.16 to 0.81. Again, correlation coefficients tended to 
increase as pavement thickness decreased. The LWD had a reasonable correlation with 
FWD derived subbase moduli, suggesting that the LWD surface moduli are influenced in 
part by the subbase layer. 
 
A pilot study with various combinations of FWD and LWD settings was carried out by 
Horak and Khumalo (2006). Although the sample size was small, correlation of the FWD 
surface moduli and LWD surface moduli showed that E(FWD) with average contact pressure 
of 566 kPa and the E(LWD), with average contact pressure of 535 kPa had the best 
correlation. The regression model was as follows: 
 
E(FWD) = 1.29*E(LWD) - 42.0     with R2 = 0.84              (6) 
 
The study also yielded the regression models between six of deflection bowl parameters 
defined in Table 3. The obtained regression models are summarised in Table 4 with a 
significance level of 95% for the deflection bowl parameters measured with LWD and FWD 
on granular base pavement road.  
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Table 3: Deflection Bowl Parameters (Horak et al, 1989) 
Parameter Formula Structural indicator 

1. Maximum 
deflection 

D0 or Ymax as measured D0 gives an indication of all structural 
layers with about 70% contribution by 
the subgrade 

2. Radius of 
Curvature 
(RoC) 

 
RoC= (200)2/[2D0 (1- D200/D0)] 

RoC gives an indication of the 
structural condition of the surfacing and 
base condition 

3. Base Layer 
Index (BLI) 

 
BLI=D0-D300 

BLI gives an indication of primarily the 
base layer structural condition 

4. Middle Layer 
Index (MLI) 

 
MLI=D300-D600 

MLI gives an indication of the subbase 
and probably selected layer structural 
condition 

5. Lower Layer 
Index (LLI) 

 
LLI=D600-D900 

LLI gives an indication of the lower 
structural layers like the selected and 
the subgrade layers 

6. Spreadability, S S={[(D0 +D1 +D2+D3)/5]100}/D0 
Where D1, D2, D3 spaced at 
300mm 

Supposed to reflect the structural 
response of the whole pavement 
structure, but with weak correlations 

7.  Area, A A=6[1+2(D1/D0) +2(D2/D0) + 
D3/D0] 

The same as above 

8. Shape factors F1=(D0-D2)/D1 
F2=(D1-D3)/D2 

The F2 shape factor seemed to give 
better correlations with subgrade 
moduli while  F1 gave weak 
correlations 

9. Slope of 
Deflection 

SD= tan-1(D0-D600)/600 Weak correlations observed 

 
Table 4: Deflection Bowl Parameters regression summary (Horak and Khumalo, 2006) 

Deflection 
bowl 

parameter 
FWD 

settings 
LWD 

settings Correlation formula 
Correlation 
Coefficient 

(R2) 

Ymax 40 kN 20 kg, 
200 mm Ymax (FWD) = -127.43 + 2.08 Ymax (LWD) 0.58 

MLI 25 kN 10 kg, 
200 mm MLI (FWD) = 22.62 + 1.58 MLI (LWD) 0.97 

BLI 25 kN 20 kg, 
200 mm BLI (FWD) = 103.1 + 0.3 BLI (LWD) 0.28 

RoC 25 kN 20 kg, 
200 mm RoC(FWD) = 76.2 + 0.55 RoC (LWD) 0.78 

SD 40 kN 20 kg, 
200 mm SD (FWD) = 0.82 + 1.3 SD (LWD) 0.37 

F1 25 kN 20 kg, 
200 mm F1 (FWD) = 0.4 + 0.15 F1 (LWD) 0.96 

 
2.3 Clegg Impact Soil Tester 
 
There has been considerable interest in correlating the Clegg Impact Value, (CIV), 
determined with the Clegg Impact Soil Tester (CIST), with the CBR of the material. Clegg 
(1980) presented the first correlation, Equation (7), which was based on tests carried out in 
the laboratory. With availability of more data from different sources (Australia, New 
Zealand and United Kingdom) which covered a wider range of soils for both laboratory and 
in-situ conditions, the Equation (7) was confirmed but slightly adjusted yielding Equation 
(8) (Clegg, 1986). 

479



CBR = 0.07*(CIV)2          (7)                
 
CBR = 0.06*(CIV)2 + 0.52*(CIV) + 1,  R2 = 0.92       (8) 
 
Mathur and Coghlan (1987) reported the following relationship: 
 
CBR = 0.11*(CIV)1.86, R2 = 0.79        (9) 
 
Al-Amoudi et al. (2002) conducted a study on a typical eastern Saudi Arabian calcareous 
soil that consisted firstly of laboratory tests over a wide range of density, moisture content, 
and compactive effort and secondly focused on the performance of in situ CBR and CIST 
tests on various types of soils. The data developed from both the laboratory and field tests 
were combined to arrive at the best statistically reliable model which could predict the CBR 
values from CIST results.  Equations (10) and (11) show the best fitting model yielded from 
the laboratory and field respectively.  
 
CBR = 0.1977*(CIV)1.535 , R2 = 0.81        (10)              
 
CBR = 1.349*(CIV)1.012, R2 = 0.85.       (11)               
 
Al-Amoudi et al. (2002) went further by analyzing statistically all of the data developed in 
the laboratory and the field as well as the data reported by Clegg and Mathur and Coghlan 
(1987) simultaneously which resulted in the following general best-fit model: 
 
CBR = 0.1691*(CIV)1.695, R2 = 0.85       (12)               
 
Both Clegg (1986) and Al-Amoudi et al. (2002) indicated that although Equations (8) and 
(12) were developed from many different types of soils, it is recommended to conduct a 
few trial CBR-CIST tests to verify the reliability of these models for any proposed soil to be 
used in construction. 
 
2.4 Portable Seismic Pavement Analyzer  
 
The Portable Seismic Pavement Analyzer (PSPA) is still a relatively new instrument in 
pavement engineering, therefore no correlation study between this device with other NDT 
has been reported. The study carried out by Nazarian et al., (2002) focussed on the 
relationship between the seismic modulus and design modulus. The research on three 
dozen specimens with a large variation in stiffness and material type (from clayey 
subgrade to high quality base) resulted in the relationship illustrated in Figure 1. This 
relationship offers a several advantages, being first a mean of estimating the resilient 
modulus from the seismic modulus. In that manner, the seismic modulus can be readily 
converted to the design modulus. In addition, the need for extensive resilient modulus 
testing is substantially reduced. The quality control can be carried out much more rapidly 
as well (Nazarian et al., 2002). 
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Figure 1: Relationship between Seismic and Resilient Moduli (Nazarian et al., 2002) 

 
2.5 BSM – emulsion derived correlations 
 
The correlations were developed based on the measurements taken on the same day. The 
best fit was based on the best coefficient of determination (R2) and Standard Error of 
Estimate (SEE). A RAG (red, amber, green) system was used to rate the regressions 
correlations. For R2, the red colour was used for values of 0 to 0.5, amber for values of 
0.51 to 0.8 and green for values of 0.81 to 1. For SEE, the red colour was used for values 
of 10.01 upward, amber for values of 1.01 to 10.00 and green for values of 0 to 1. 
 
2.5.1 CIST and RCCD 
Reasonably good correlation between the CIST and the RCCD was found as shown in 
Table 5. Although the RCCD measures the in situ shear resistance characteristics while 
the CIST measures elastic properties of materials, both devices have a shallow depth of 
influence. The derived power model matches with the expected model from the 
combination of Equation (2) with Equations (7) to (11). 
 
 
Table 5: Correlations between CIST and RCCD 

Parameters 
y 

[CIST] 
x 

[RCCD] 
Regression Equation R2 SEE Best fit type 

CIV RCCD pen 
(mm/blow) y = 551.072x-1.004 0.705 0.25 Power 

 
2.5.2 LWD and FWD 
For the LWD, only deflection measurements and bowl parameters were used to develop 
the correlations with others devices while for the FWD, maximum deflection (Ymax) and 
three bowl parameters (BLI, MLI and LLI) were used. Table 6 summarizes the correlation 
models found. 
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Table 6: Correlations between LWD and FWD 
Parameters 

Y 
[LWD] 

X 
[FWD] 

Regression Equation R2 SEE Best fit type 

Ymax (μm) y = 0.361x0.983 0.619 0.27 Power 
BLI (μm) y = 1.617x0.823 0.609 0.27 Power 
MLI (μm) y = 2.450x0.888 0.569 0.29 Power 

D0 

(μm) 
LLI (μm) y = 10.19x0.735 0.307 0.36 Power 

Ymax (μm) y = 0.158x0.928 0.817 0.15 Power 
BLI (μm) y = 1.104x0.683 0.622 0.22 Power 
MLI (μm) y = 0.667x0.916 0.897 0.11 Power 

D300 

(μm) 
LLI (μm) y = 1.129x + 1.963 0.849 6.06 Linear 

Ymax (μm) y = 0.235x0.742 0.666 0.18 Power 
BLI (μm) y = 1.377x0.508 0.438 0.24 Power 
MLI (μm) y = 0.911x0.690 0.647 0.19 Power 

D600 

(μm) 
LLI (μm) y = 0.873x0.874 0.818 0.13 Power 

Ymax (μm) y = -553,579ln(x) + 3.770,280 0.564 169.81 Logarithmic 
BLI (μm) y = -472,625ln(x) + 2.976,631 0.576 167.44 Logarithmic 
MLI (μm) y = -487,031ln(x) + 2.628,986 0.490 183.47 Logarithmic 

RoC 
(m) 

LLI (μm) y = -332,566ln(x) + 1.579,526 0.180 232.73 Logarithmic 
Ymax (μm) y = 0.164x1.045 0.459 0.39 Power 
BLI (μm) y = 0.609x0.925 0.505 0.38 Power 
MLI (μm) y = 1.498x0.907 0.390 0.42 Power 

BLI 
(μm) 

LLI (μm) y = 10.17x0.630 0.148 0.50 Power 
Ymax (μm) y = 0.026x1.109 0.769 0.21 Power 
BLI (μm) y = 0.221x0.855 0.641 0.26 Power 
MLI (μm) y = 0.126x1.131 0.900 0.14 Power 

MLI 
(μm) 

LLI (μm) y = 0.373x1.130 0.707 0.24 Power 
 
The maximum deflections determined with LWD (D0) and the FWD (Ymax) yielded a fair 
correlation. This can be ascribed to the difference in contact pressure, the shallow depth of 
influence of the lighter LWD weight as well as the thin BSM-emulsion layer.  
 
The LWD deflection at 300mm (D300) shows good correlations with the FWD set of 
deflection bowl parameters. The correlations between deflection bowl parameters of the 
same nature of LWD and FWD were found to be fair to good, and the correlations were 
power model instead of linear as expected and proposed by Horak and Khumalo (2006) on 
a light granular base pavement. 
 
2.5.3 RCCD, LWD and FWD 
Poor correlations between the RCCD and LWD were found as shown on Table 7 below. 
This is to be expected as the RCCD measures the in situ shear resistance characteristics 
while the LWD measure elastic properties of materials.  
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Table 7: Correlations between RCCD and LWD 
Parameters 

Y 
[RCCD] 

X 
[LWD] 

Regression Equation R2 SEE Best fit type 

D0 (μm) y = 0.049x + 10.32 0.198 8.86 Linear 
D300 (μm) y = 10.433x0.141 0.01 0.38 Power 
D600 (μm) y = 6.853x0.295 0.036 0.38 Power 
RoC (m) y = -6,49ln(x) + 56,15 0.133 9.22 Logarithmic 
BLI (μm) y = 0.058x + 12.09 0.227 8.70 Linear 

RCCD 
pen 

(mm/blow) 

MLI (μm) y = 16.92045x0.02633 0.001 0.39 Power 
 
Due to its shallow depth of influence, the correlation between RCCD penetration and D0, 
RoC and BLI did show some improvement in coefficient of determination, R2. A similar 
pattern was found between the RCCD and FWD. 
 
2.5.4 CIST, LWD and FWD 
Poor correlations between the CIST and LWD were found as shown in Table 8 below. This 
is similar to the weak correlation found with the RCCD, due to its shallow depth of 
influence. The correlation between CIV and D0, RoC and BLI did show some improvement 
in coefficient of determination, R2. A similar pattern was found between the CIST and FWD 
with significant improvement of SEE values.  
 
Table 8: Correlations between CIST and LWD 

Parameters 
y 

[CIST] 
X 

[LWD] 
Regression Equation R2 SEE Best fit type 

D0 (μm) y = -15.604ln(x) + 113.193 0.307 10.20 Logarithmic 
D300 (μm) y = -13.8ln(x) + 88.59 0.096 11.65 Logarithmic 
D600 (μm) y = -14.4ln(x) + 80.70 0.085 11.72 Logarithmic 
RoC (m) y = 12,59ln(x) - 37,58 0.326 10.06 Logarithmic 
BLI (μm) y = -12.6ln(x) + 92.28 0.326 10.06 Logarithmic 

CIV 

MLI (μm) y = -10.1ln(x) + 66.12 0.081 11.75 Logarithmic 
 
2.5.5 PSPA with other devices 
The PSPA was only available twice after construction of part of the BSM-emulsion 
sections for measurements. As shown in Tables 9 and 10, no significant correlations were 
obtained. 
  
Table 9: Correlations between PSPA, CIST and RCCD 

Parameters 
y 

[PSPA] 
x 

[Others] 
Regression Equation R2 SEE Best fit 

type 

CIV y = 22.57x + 1909.281 0.074 655.22 Linear E  
(MPa) RCCD pen 

(mm/blow) y = -905.192ln(x) + 5351.763 0.049 654.82 Logarithmic 
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Table 10: Correlations between PSPA and LWD 
Parameters 
y 

[PSPA] 
X 

[LWD] 
Regression Equation R2 SEE Best fit type 

D0 (μm) y = 2403.846e0.001x 0.027 0.24 Exponential 
D300 (μm) y = 1375.269x0.173 0.04 0.24 Power 
D600 (μm) y = 1148.072x0.261 0.05 0.24 Power 
RoC (m) y = 0.585x + 2532 0.022 663.59 Linear 
BLI (μm) y = 2527.911e0.001x 0.016 0.24 Exponential 

E  
(MPa) 

MLI (μm) y = 1889.436x0.115 0.031 0.24 Power 
 
This lack of correlation between the two devices may be due to the limited number of tests 
performed or it may be a result of the lack of a clear testing protocol for PSPA at the time 
the tests were carried out.   
 
3 CONCLUSIONS AND RECOMMENDATIONS 
 
The conclusions drawn in this study are specific to the BSM-emulsion material. Note that 
no moisture control was carried out during the testing. Previous studies reported good 
correlations between elastic modulus determined with the LWD and the FWD but such 
correlations are material type and pavement structure dependent. This study focused on 
correlations between the LWD deflection bowl parameters with that of the FWD. Fair to 
good correlations were found between the LWD and the FWD deflection bowl parameters 
of the similar nature, although the expected models were linear, it was found a power 
model in general gave the best correlation. Reasonably good correlation was determined 
between the CIV values, which is the CIST measurement, and the RCCD penetration. The 
RCCD measures the in situ shear resistance characteristics while the CIV measures 
elastic properties of materials which may explain the low correlation. Correlations between 
the PSPA and other devices were found to be generally poor. 
 
Further investigation should be carried out, including pavement structures with a wider 
stiffness modulus range, to confirm whether the findings of this study are not material 
specific. Additionally in situ parameters such as temperature and moisture should be 
monitored to confirm and quantify their influence on the correlations that have been 
developed. 
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