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This paper concerns the use of neural networks for predicting the residual life of 

machines and components. In addition, the advantage of using condition-monitoring data 

to enhance the predictive capability of these neural networks was also investigated. A 

number of neural network variations were trained and tested with the data of two 

different reliability-related datasets. The first dataset represents the renewal case where 

the failed unit is repaired and restored to a good-as-new condition. Data was collected in 

the laboratory by subjecting a series of similar test pieces to fatigue loading with a 

hydraulic actuator. The average prediction error of the various neural networks being 

compared varied from 431 to 841 seconds on this dataset, where test pieces had a 

characteristic life of 8,971 seconds. The second dataset was collected from a group of 

pumps used to circulate a water and magnetite solution within a plant. The data therefore 

originated from a repaired system affected by reliability degradation. When optimized, 

the multi-layer perceptron neural networks trained with the Levenberg-Marquardt 

algorithm and the general regression neural network produced a sum-of-squares error 

within 11.1% of each other for the renewal dataset. The small number of inputs and 

poorly mapped input space on the second dataset meant that much larger errors were 
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recorded on some of the test data. The potential for using neural networks for residual life 

prediction and the advantage of incorporating condition-based data into the model was 

nevertheless proven for both examples. 
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1 Introduction 

The advent of preventive maintenance has increased the need for reliable information, 

leading to the development of data analysis techniques for the purpose of estimating 

residual life. The traditional approach, described by Coetzee [1], involved the use of 

probabilistic models which were only a function of failure time, but more recently, 

researchers such as Pijnenburg [2] have investigated the use of regression models which 

allow explanatory variables to be incorporated. Condition-based data is commonly 

available and Vlok [3,4] found that its use enhanced the accuracy of the predictions made 

by regression models. Accurate residual life estimates have a number of benefits for 

tactical maintenance planning, apart from the selection of an optimal replacement 

strategy and the flexibility offered to the maintenance manager. Such information allows 

the advanced planning of shut-downs, resource allocation and the optimal holding of 

spares.  

A different approach is required for renewal and repaired systems, which are not returned 

to a good-as-new condition after failure. In the renewal case, it is assumed that, once 

repaired, the system is returned to its original state. If a system is not repaired to its 



3 

original condition, this assumption does not hold and system deterioration due to 

imperfect repair has to be taken into account. Reinertsen [5] states that a considerable 

number of papers have explored the estimation of residual life for renewal systems 

through the use of statistical methods, but no corresponding work has been done on 

repaired systems that do not conform to the assumption that they have been returned to 

their original state. Pijnenburg [2] comments on the extreme rarity, in the literature he 

reviewed, of datasets on repaired systems, in which failure times are listed in the original 

chronological order. Ascher and Feingold [6] could find only four such datasets. Pham 

and Wang [7] commented in their 1996 review that most research on imperfect repair was 

for single-unit systems. Despite noting a shift towards maintenance policies and models 

for multi-component systems, the survey of Wang [8] published in 2002 again focused 

mostly on single-unit systems. Langseth and Lindqvist [9] worked with a dataset of a 

compressor unit subject to imperfect repair. It was found that the items which caused the 

failure were easy to identify, but the effect of repair on the system could not always be 

established from the recorded information. 

The research studies using condition-monitoring data for residual life estimation include 

the work of Jantunen [10] who fitted a polynomial curve to vibration data, Vlok [3,4] 

who used regression curves and vibration data to estimate the residual life of pumps, and 

Wang and Zang [11] who used spectrographic oil analysis data to predict the residual life 

of aircraft engines. Vlok [3,4] found that regression models offered a significant 

advantage over parametric models because of their ability to take into account the 

information relating to the failure of a system. Condition-monitoring data could therefore 

be used to improve the accuracy of the estimates made with these models.  
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Research has been done to investigate the use of neural networks in applications related 

to maintenance and reliability. A wide variety of methods, network architectures and data 

combinations were used in these cases. Amjady and Ehsan [12] evaluated the reliability 

of power systems using an expert system based on neural networks. Luxhøj and Shyur 

[13] compared the performance of traditional reliability modeling techniques with neural 

networks for the fitting of a reliability curve to the data of helicopter components. 

Luxhøj [14] researched the prospect of providing Federal Aviation Administration (FAA) 

safety inspectors with a means to evaluate and control the appropriate surveillance levels 

for aircraft operators through the use, among other things, of neural networks. Liang, Xu 

and Shun [15] applied multi-layer perceptron (MLP) neural networks to the field of 

condition monitoring, whereas Xu et al. [16] attempted to forecast reliability by using 

neural network techniques to analyze the data on past historical failures. Neural networks 

have therefore been employed for maintenance-related applications, but their use has not 

yet been fully explored in the context of residual life prediction. As these networks have 

the capacity to learn about the underlying relationship between various inputs and 

outputs, they are ideally suited to making predictions about complex systems.  

This research builds upon the work done by others who employed regression models for 

predicting failure. As an alternative to traditional statistical methods, this study 

investigates the suitability of neural networks for making reliability predictions in the 

cases of both renewal and repair. The incorporation of covariates containing historical 

information and condition data into the training process is explored with the aim of 

improving the accuracy of the predictions that can be made. The performance of different 

neural network types when trained with reliability data is also of interest, and the results 
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achieved by a selected group of networks are compared. Based on these results, 

conclusions can be drawn on the suitability of using neural networks in conjunction with 

condition-monitoring data for reliability predictions as part of the tactical planning done 

by the maintenance practitioner. 

2 Problem description 

2.1 Renewal dataset 

The first dataset represents the renewal case where the system is returned to a good-as-

new condition by replacing the failed component. A series of laboratory tests were 

conducted, using a 630kN Schenck Hydropuls hydraulic actuator (see Figure 1), which 

simulated an actual maintenance situation encountered in industry. A number of similar 

notched test pieces were manufactured with the same cross-sectional shape as a 

component which serves as an overload protection in jaw crushers. This toggle plate 

(Figure 2) is designed to fail when foreign objects become wedged between the crusher 

jaws, thereby preventing damage to the machine. The test pieces were placed under a 

cyclic loading in the hydraulic test rig until they failed as a result of fatigue. The cyclic 

loading was applied according to a sinusoidal pattern, where the mean and amplitude 

were varied by means of the actuator’s control system, in this way generating different 

operating conditions for the series of test runs and producing a varied dataset. Though the 

actuator is capable of exerting a maximum force of 630 kN, the actual applied load 

pattern was selected to ensure that the components had a finite fatigue life.  
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The actuator of the test rig was set to maintain constant amplitude in the oscillation of its 

jaws for the duration of each test run. The amplitude was varied for the different test runs, 

thus altering the operating conditions to which each test piece was subjected. A specific 

initial load could be applied by increasing the displacement of the jaws at the start of a 

test run until the required load cell reading was attained. As the cracking of the test piece 

in the notch area caused weakness, the force required to maintain the amplitude was 

reduced and this could be observed in the corresponding drop in the magnitude of the 

load cell measurements that were taken. The reduction in applied force resulting from the 

use of displacement control provides a measurable indication of deterioration in the 

condition of the test piece. 

The loading pattern was applied at a frequency of 3Hz which was close to the upper limit 

of what could be achieved while still allowing the actuator to apply a suitably high load. 

Measurements were recorded over periods of three seconds at three-minute intervals. The 

testing proved that the time interval between the taking of measurements and the duration 

of the recording window were both satisfactory. The data for a total of nine complete 

actuator cycles was captured in each measurement window, in which a sequence of 1,800 

samples was taken during the three-second period. 

Four different sensors were selected and used for taking the measurements during each 

such measurement window. The choice of sensors was not only aimed at tracking the 

deterioration in the test piece deterioration, but also at providing a measure of the 

operating conditions that influenced the life of the test piece.  
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Measurements were taken with the load cell forming part of the test equipment, as well as 

with a strain gauge attached to the test piece. These sensors provided information on the 

nature of the applied load. An accelerometer was mounted on the opposite side of the 

location of the notch. The purpose of this measurement was to measure the movement 

due to the deflection of the test piece under loading. 

The temperature on the surface of the test piece was measured by means of a 

thermocouple mounted on the side of the test piece. For convenience, the thermocouple 

was positioned halfway along the cross-section and aligned with the center of the notch. 

It was found that the temperature measured at this position rose dramatically once crack 

propagation started. The temperature measurement was therefore found to be a useful 

indicator of test piece condition and gave a good indication of imminent failure. The 

magnitude of the rise in temperature compared with the initial measured temperatures 

was dependent on the applied loads and therefore also served as an indicator of the 

rapidity with which failure was occurring. 

2.2 Repaired system dataset 

As an example of a repaired system, a dataset was used which had been obtained by 

Vlok [3,4] from the Sasol Twistdraai mine plant. Measurements were taken on eight 

identical Warman pumps used to circulate a water and magnetite solution within the 

plant. Four main failure modes were identified for these particular pumps, namely 

bearing seizure, broken or defective impellers, damaged or severely eroded pump 

housings, and broken drive shafts. The measurements taken on the pumps were solely 

vibration readings, for which a spectral analysis was performed and a number of fault 
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frequency bands were monitored. The frequency bands 0.4×RPM, 1×RPM, 2×RPM, and 

5×RPM were monitored for both the bearings of these pumps. Condition-based 

suspensions were made on the basis of these measurements, but the reasons for 

intervention and the cause of failure were not recorded. Measurements were also only 

taken sporadically and the dataset is therefore sparse.  

During the 791-day window from the initial installation of the eight pumps, pump 

operation was suspended eight times due to condition-based warnings, and 11 failures 

were recorded. The surprisingly high percentage of failures might be attributed to the 

inconsistent application of the condition-based policy and the long measurement 

intervals. For the purpose of life prediction, the suspensions due to condition-based 

intervention were classified as failures. Although the data was collected from the start of 

each pump’s life, the vibration measurements were taken extremely infrequently. Vlok 

[3,4] does note that some of the failures occurred suddenly, with deterioration occurring 

in a matter of hours. Obviously, it would be difficult to predict such a sudden 

deterioration with the information that was available. From the random nature of the 

measurements, it appears that the final measurement ahead of the suspension of a pump’s 

operation may have been prompted by clearly observable external signs of pump 

deterioration.  

Three of the eight pumps experienced only one failure, two of the pump units failed 

twice, and three units each failed four times. On average the pumps lasted 469 days to the 

first failure or preventive intervention. This can be compared with an average of 134 

days, 103 days and 137 days to the second, third and fourth failures or preventive 

interventions, respectively. Reliability therefore deteriorated dramatically after the first 
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failure, indicating imperfect repair. A further pattern was observed with regard to the 

time to the first failure, and this pattern allowed the pumps to be subdivided into two 

groups. Pumps which failed for the first time after more than 500 days, tended to fail only 

once or twice during the period in question. The remaining units averaged 357 days to 

first failure and each failed four times within the time window.  

3 Neural network application 

The MATLAB neural network toolbox was used to build and train the neural networks 

for the purpose of residual life prediction. A number of network variations in terms of 

architecture and training algorithms are available in this programming environment.  

3.1 Network testing 

The usefulness of a neural network in a practical application depends on the degree to 

which it can generalize when confronted with data which was not seen during training. 

Methods have been developed to test and compare the performance of different networks 

with this aim in mind. Schenker and Agarwal [17] identify the three most common 

methods for testing the relative performance of neural networks:  

 A subdivision of the available data into a training and test set, termed a static 

split.  

 Cross-validation, which can be described as a dynamic split of the data.  

 Statistical evaluation without splitting the data.    
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Testing through the use of statistical methods, according to Schenker and Agarwal [17], 

is only meaningful when the data represents a true process. It can therefore be 

successfully applied in cases involving reliable physically based models. Schenker and 

Agarwal [17] identify the subdivision of the dataset into separate training and test sets as 

the approach that is most commonly used, even though only part of the dataset can be 

used for training which limits this method’s application to larger datasets. Schenker and 

Agarwal [17], in their comparison of the performance of the different testing methods, 

point out that a strategy of cross-validation generally outperformed such a static split in 

the search for an optimal network for a particular application. 

For the purposes of comparing different neural network variations by cross-validation, 

the dataset is broken into a number of smaller groups which do not overlap. These groups 

are cyclically allocated to the training and the test sets. Each cycle in the cross-validation 

process represents a completely independent training run, so that the networks are not 

tested with data used for training at a previous stage. The error on the test data is recorded 

for each of the network variations at the completion of each cycle. Several partially 

overlapping portions of the available data are therefore used for training the neural 

networks, but each group of data is used only once for testing. The recorded error values 

are added once the process has been completed, and this result is the basis for comparing 

the different neural networks. 

The greatest advantage of using cross-validation is that the entire dataset can eventually 

be used for training the neural network once the optimal neural network layout has been 

found. The loss of information due to a static split of data is therefore avoided, which is 
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important in cases where the dataset is limited in size. Training does unfortunately 

become more cost-intensive due to the repetition required for cross-validation.  

3.2 Neural network for renewal dataset 

The first-order gradient descent learning algorithm serves here as the basis for comparing 

the different neural networks due to its historical significance. Adjustments were made to 

the learning rate, and a momentum term was introduced that increased the rate of 

convergence of this algorithm. The performance of the gradient descent algorithm was 

compared with the much faster second-order Levenberg-Marquardt algorithm which, 

according to the findings of Hagan and Menhaj [18], outperformed other fast techniques. 

Bayesian regularization (see Bishop [19]) was applied in conjunction with the 

Levenberg-Marquardt algorithm to investigate the effect of this method which is aimed at 

improving generalization. The general regression neural network (GRNN), which was 

also used by Luxhøj [14] in his research, has the advantage of rapid unsupervised 

training. It is also of interest because it is a network with radial basis function (RBF) 

architecture, in contrast to the MLP architecture of the networks mentioned so far. 

A static split was chosen as the method for comparing network performance on the 

renewal dataset. This was feasible because of the simplicity of the simulated maintenance 

setup in the laboratory, for which there was only one failure mode. The lab data collected 

during testing was split into two groups: nine of the datasets were used for training and 

the remaining three comprised the testing set. 
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Each network was constructed with five inputs and generated a single output which 

represented an estimate of remaining life to failure, measured in seconds. The MLP 

networks were each constructed with five nodes in the hidden layer, so that the basic 

network structure was similar for each of these networks. The size of the hidden layer 

was optimized through an empirical process where the number of nodes in the hidden 

layer was varied. 

The inputs used for network training were the elapsed time of the specific test at the time 

of the measurement, initial average load, initial load range, change in load range, and 

change in temperature. (Table 1) The network inputs and outputs were normalized and 

transformed into values between zero and one. 

Elapsed time gives the network an indication of the component’s age and allows the 

network to differentiate between new samples, and samples that already show fatigue. 

Therefore the network can differentiate between two samples which are subjected to the 

same loading but do not yet exhibit measurable signs of deterioration. 

The network is given a longer-term predictive capability by providing it with information 

about the operating conditions to which the test piece is subjected. The initial load 

average and range define the conditions to which the test sample was subjected during 

testing. The network is therefore trained to differentiate between test pieces subjected to 

higher and lower loading, which is the main factor contributing to the rapidity with which 

failure occurs. The initial load conditions can be used in this case because the loading is 

kept constant for the duration of each test run. In cases where the load varies, an input 

reflecting aggregated load would be required instead. 
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The changes from initial load and temperature give an indication of deterioration in the 

condition of the test piece and impending failure. Due to the setting of the machine, 

displacement remained constant and therefore the load dropped when cracking started. 

Temperature increased substantially as fatigue damage worsened and the crack 

propagated through the test piece. Therefore the network can make adjustments to its 

prediction once overt signs of impending failure become apparent. This adjustability 

allows the network to cope more easily with unexpected events and changing conditions.  

3.3 Neural network for repaired system 

As the sparseness of the pump dataset (see Table 2) did not allow for the use of a separate 

test set, it was decided that cross-validation should be used to test the performance of 

different network designs. To this end, the dataset was divided into eight groups, each 

representing the data from one of the pumps. In their work, Schenker and Agarwal [17] 

assert that individual runs should not be split when using cross-validation, as this would 

violate the assumption that the test and training sets are independent. The total life of 

each pump was therefore deemed to be one run and the data was grouped accordingly.  

On the basis of the performance of the neural networks that were trained with the renewal 

dataset, it was decided that the focus should be on the network types that could be trained 

more rapidly, as cross-validation involves the time-consuming repetition of network 

training. Accordingly, the standard Levenberg-Marquardt algorithm, the Levenberg-

Marquardt algorithm with Bayesian regularization, and the GRNN were chosen for 

comparison. 
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The actual data was pre-processed in a similar way to the renewal dataset. It was found 

that the high values measured at an advanced stage of deterioration led to a distortion in 

the normalized data inputs used to train the neural networks. The neural networks became 

insensitive to the small changes occurring in the initial stages of deterioration. As the aim 

of this work is not to prove the usefulness of condition-based maintenance, but to 

improve longer-term predictions of expected life, the readings taken during the last week 

before the occurrence of failure were discarded. This decision led to an improvement in 

the accuracy of predictions at earlier stages of deterioration.  

The use of a greater number of network inputs representing condition-based information 

is expected to improve the network’s ability to make accurate predictions. To test this 

hypothesis, each of the neural network layouts was trained with three, four and five 

inputs. The first set of training runs was done by using the elapsed time since installation, 

the elapsed time since the last failure, and a covariate that can be described as a risk 

variable dependent on the history of the pump. The risk variable served to compensate for 

the lack of historic information on pump loading and failure severity. Two further 

training runs were completed, first with one and then with two additional inputs, each of 

which represented the average value of the vibration response amplitude in a chosen 

frequency band for the measurements on the two bearings. Using the findings of Vlok 

[3,4] as basis, additional inputs based on condition related measurements should improve 

the accuracy of failure predictions. 

The dataset originates from a repaired system and its reliability is therefore affected by 

previous failures and repair. The influence of these factors has to be taken into account, 

even though not much of this information was recorded. Vlok [3,4] states that alarm 
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levels were used as prescribed by the pump manufacturer, but these values are not given 

and the cause of failure or the reason for a condition-based suspension and overhaul was 

not indicated. An empirical risk variable was consequently based on the observed pattern 

which indicates that pumps that required an early repair tended to fail more frequently. 

For the data collected before the occurrence of the first failure, the risk variable R is set 

equal to 1. After the first failure, Equation 1 is used to calculate the value of R. 

2

1
2
1 








T

T
R          (1) 

The risk variable R is therefore reduced to 0.5 immediately after the first failure and its 

value decreases at a rate dependent on T1 which is the time to the first failure. T is the 

elapsed time since the initial installation of the pump unit. A large value of R therefore 

corresponds to a low risk of failure, whereas a small value indicates a high risk. It takes 

into account the significant reduction in reliability after the first failure and the 

characteristic of a high failure rate in cases where an early first failure is recorded. 

The hidden nodes of the MLP networks were varied according to the number of inputs 

presented to the networks to test the effect of such changes in network structure on 

network performance. Training was firstly done for networks with the same number of 

inputs and hidden nodes. Then a second training run was done with a hidden layer that 

had one node more than the input layer. Due to ill-conditioning, however, MLP networks 

with six hidden nodes could not be trained with five inputs. The dataset size used for 

cross-validation contained 53 data points. Once this had been subdivided into groups, the 

largest group contained 13 data points, which meant that the smallest training set would 
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contain 40 data points. The maximum number of hidden nodes in an MLP network with 

five inputs was therefore limited to five, in order to prevent ill-conditioning as discussed 

by McKeown et al. [20], because the number of variables in the network exceeded the 

number of inputs. The networks all generated a single output, namely a prediction of the 

remaining life until the next failure of the pump.  

4 Neural network results 

4.1 Neural network results for renewal data 

The traditional way of conducting a data analysis on the reliability data originating from a 

renewal system is to fit a statistical distribution to such data. This technique, described by 

Coetzee [1], was accordingly chosen to form the basis of comparison to illustrate the 

advantage of using neural networks.  

A Weibull distribution was fitted to the data of the training set and the parameters of the 

two-parameter Weibull distribution were found to be β = 1.7522 and η = 8971. The 

Weibull parameter η is the scale parameter, which is also referred to as the characteristic 

life. Coetzee [1] notes that 63.2% of components fail before this time and 36.8% survive. 

The use of a statistical distribution means that no specific prediction can be made about 

an individual test piece. The estimated life is therefore taken as the characteristic life of 

the whole population of the training set. The actual residual life for the test sets differed 

by between 11.2% and 55.4% from the characteristic life of 8,971 seconds, that was 

calculated using this statistical method. The results achieved by fitting the Weibull 
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distribution show the disadvantages of this method when comparing them with the 

residual life results obtained by using neural networks, which are discussed in the 

following paragraphs. Table 3 shows accuracy of the life predictions on the test set, using 

the different methods with the data available at the start of the various test runs. 

 

The standard back-propagation algorithm was used to train the same network architecture 

with nine different combinations of the learning rate (α), and momentum parameter (β). 

Figure 3 illustrates the rate of convergence of the gradient descent back-propagation 

algorithm with a different combination of training parameters. Oscillations become much 

more pronounced when a higher learning rate is used and training clearly becomes much 

more rapid. If the learning rate is increased even more, the training process becomes 

unstable, overshoots the target and no convergence on a minimum is achieved. The 

training process must therefore balance the rate of convergence with the requirement of 

stability. 

It was found that a learning rate of 0.75 and a momentum constant of 0.9 gave good 

results, so these constants were used for the comparison with other network types and 

training algorithms. The training algorithm was stopped early and could not 

accommodate some of the more isolated data points in the training set. It was therefore 

possible to maintain improved properties of generalization.  

Training with the Levenberg-Marquardt algorithm proved much more rapid and a far 

better fit was achieved after less than 300 training epochs. The neural network’s 

estimated residual life for the training data was within 5% of the actual remaining life of 
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each component, when presented with the first recorded inputs after the start of the test 

run. The largest error was 449 seconds, which compares very favorably with the 180-

second interval between measurements, which is the band within which the failure 

occurred. The network performance on the training data is therefore a satisfactory result. 

The accuracy of the prediction obtained by the neural network on data that had not 

previously been seen during training, was similar in two of the cases. The largest error on 

the test set was 20%, which indicates some degree of overfit, as the data from this 

particular test piece was most isolated in input space when compared against the training 

data. 

It was expected that the use of Bayesian regularization would address the problem with 

overfitting encountered with the network trained with a standard Levenberg-Marquardt 

algorithm. The neural network that was trained with Bayesian regularization did not 

produce as close a fit for some parts of the training set as the fit achieved with the 

standard Levenberg-Marquardt algorithm. In particular, the estimates generated for some 

of the isolated data points on the training set displayed a large error. This was expected, 

as the regularization technique penalized training in order to maintain the network’s 

capability of providing acceptable results for new data. The two test pieces in question 

had a significantly shorter life than the other test pieces and were therefore isolated from 

the rest of the data. The benefit of this regularization technique regarding improved 

generalization becomes clear when examining the results obtained for the test set. (see 

Figure 4) The largest error in a network prediction for the data of the test set was 5.1 %. 

The prediction of the neural network in this case was only 513 seconds adrift of the actual 
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recorded life of 10,102 seconds. The results achieved for all three of the test pieces in the 

test set were therefore very satisfactory and indicated a good generalization.  

Setting up the GRNN is an almost instantaneous process. The input vectors are used as 

the weights in the hidden layer and the target vectors as the weights in the output layer. 

No supervised training is therefore required in its construction. Network performance can 

be influenced only by changing the value of the bias of the radial basis function nodes in 

the hidden layer.  

The bias of a radial basis function in MATLAB is set by defining a parameter, called the 

spread value. Every bias in the first layer of the network is set to 0.8326 divided by this 

spread value. The radial basis functions in these neurons therefore have an output of 0.5 

when the absolute value of the distance between the input and weight vectors is equal to 

the spread. The area of the input space to which each neuron responds is thereby set 

where the spread alters the radius of the basis functions, and therefore determines the 

amount of overlap and consequently the smoothness of the fit. 

When designing an RBF network, it must be ensured that the spread of the RBF neurons 

is large enough. If the radial basis function neurons overlap enough, several radial basis 

function neurons will generate significant outputs at any time. The resulting network 

function is smoother and a better generalization is achieved for new input vectors that fall 

between the input vectors used in the design of the network. If the overlap is too large, 

however, too many neurons will then react to every input, and accuracy will be forfeited. 

A number of different spread values were tested, and the results are tabulated in Table 4. 
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Figure 5 illustrates that the larger the spread chosen for the network, the smoother the fit. 

The quality of the fit on the training set is reduced, as a number of hidden layer neurons 

start to influence the output for any given input. But an increase in spread improves 

network generalization until an optimal balance is reached. Any further increase in spread 

is detrimental to network performance.  

The estimated residual life for the training data when using a small spread value was 

closer to the actual life than was achieved with any of the other networks, when using the 

MLP architecture and supervised training. This can be attributed to the way in which the 

GRNN is trained and the insignificant overlapping of nodes with a small radius. An exact 

fit is expected in this particular case, as the network should respond with the expected 

target vector if provided with a training vector. As was the case with the standard 

Levenberg-Marquardt algorithm, overfitting occurred during the design of the GRNN and 

a large error in the residual life estimate was observed for one of the test pieces.  

When comparing the performance of the different networks (see Table 5), it was found 

that the MLP network trained with a Levenberg-Marquardt algorithm using Bayesian 

regularizations had a clear advantage over the other models. The gradient descent 

algorithm was found to be significantly slower than the Levenberg-Marquardt algorithm. 

The advantage of an unsupervised training process, which was mentioned in the 

literature, was proven by the speed with which the GRNN could be trained. Network 

learning in this case proved instantaneous. 

Table 6 shows the average prediction error whereas Table 7 gives the maximum 

prediction error of the networks being compared. Though the GRNN has a lower average 
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error than the other networks, it has the highest maximum error. This may explain why 

the MLP network trained with the Levenberg-Marquardt algorithm with Bayesian 

regularization outperformed it in terms of the mean squared error. The early stopping of 

the gradient descent back-propagation algorithm meant that higher maximum and average 

errors were recorded for the training set. This phenomenon can be ascribed to the 

sparseness of the dataset, which led to isolated data in the problem space. As the training 

algorithm was stopped before it could accommodate this data, the network performed 

well on the test data. 

When considering these results, it should be borne in mind that the measurements were 

taken at intervals of 180 seconds, and that the time of first measurement after failure was 

used as failure time for training the neural networks. The actual failure took place within 

the band spanning the last measurement cycle. All the neural networks performed very 

well on the data in the test set that was closest to the training data.  The data for the test 

piece, showing the greatest variation from anything the network had seen before, proved 

to be the greatest test of each network’s ability to generalize. The advantage of using 

Bayesian regularization to improve the network’s ability to generalize is clearly 

illustrated when comparing the graphs (Figure 6) of the results relating to this series of 

data. 



22 

The results for the GRNN are not as smooth as those obtained with MLP networks. The 

jagged shape of the prediction graphs illustrates the “local” nature of RBF networks, 

compared with the “global” nature of MLP networks. This property may adversely affect 

network performance, if the information for one set of the data points used for training, 

are corrupt. A greater overlap of the RBF nodes would counteract this situation by 

smoothing the transition between kernels. 

The results prove that neural networks can be successfully employed to make reliability 

predictions for a renewal system. When presented with the first set of measurements 

collected after the start of a test run, all the neural networks generated predictions which 

were more accurate than the results obtained through the traditional statistical method of 

fitting a Weibull distribution to the failure data. In particular, the accuracy of the 

predictions made by the MLP trained with the Levenberg-Marquardt algorithm with 

Bayesian regularization would be suitable for making maintenance decisions in the 

context of the simulated situation. 

4.2 Results for the Repaired System 

The neural networks trained with the Levenberg-Marquardt algorithm used nodes with 

the log-sigmoid transfer function in both the hidden and output layers. During initial 

training with a small mean-squared-error training target of 1×10-5, it was found that 

overfitting occurred and the neural networks failed to generalize the test data. A series of 

training runs with a range of different training targets were consequently performed in 

order to improve generalization by terminating the training process at an earlier stage. 
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The training targets used for this purpose were the values 1×10-5, 5×10-3, 1×10-2, 2.5×10-2 

and 5×10-2. 

Table 8 shows that the best results obtained with the smallest error on the test data, were 

achieved with the larger target values 5×10-2 and 2.5×10-2. The comparatively small error 

on the training data indicates that the training algorithm was stopped before the 

overfitting characterizing the worst results (shown in Table 9) could occur. The target 

values refer to the normalized output values, whereas the sum-of-squares error is 

calculated from an error value in days. 

As the network error usually did not reach the smaller target values of 1×10-2, 5×10-3 and 

1×10-5, the training process was terminated once the pre-set limit of 100 epochs had been 

reached. These networks consequently suffered from overfitting and failed to perform 

well on the test data.  

Changing the size of the hidden layer and the number of inputs was affected by the early 

stopping of the training process, so that no clear pattern emerged. Though an additional 

node in the hidden layer was beneficial when training towards an error target of 2.5×10-2, 

it seemed to be detrimental when training with a target value of 5×10-2. It did appear that 

a greater number of inputs generally improved the performance of these networks, but the 

results were not conclusive. 

The MLP neural networks trained with the Levenberg-Marquardt algorithm with 

Bayesian regularization (LMBR) yielded similar results to the networks trained for the 

optimal duration with the standard Levenberg-Marquardt algorithm. In this case the 

Bayesian regularization prevented overfitting during training, thereby improving the 
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network’s ability to generalize. Figure 7 gives a comparison of actual and predicted 

failure times. 

The log-sigmoid transfer function was used for the nodes in the hidden layer of these 

networks, whereas two different transfer functions were utilized in the output layer. 

Table 10 summarizes the results achieved with the neural networks trained with the 

Levenberg-Marquardt algorithm with Bayesian regularization. 

The results shown in Table 10 indicate that the choice of transfer function of the output 

node had a far greater influence on the performance of the network than the variation in 

the number of nodes in the hidden layer. Another observation is that in this case, 

additional input information clearly leads to more accurate predictions.  

The GRNN networks were trained with RBF neurons with different sensitivities so as to 

select an optimal value for this parameter. Table 11 lists the results for the networks with 

values of 0.1 and 0.05 for the spread parameter.  

In contrast to the other network types, the best results with GRNN were achieved with 

four inputs but an increase in input space to five inputs led to overfitting. The 

consequence of an increase in the number of inputs into such a network is that the outputs 

of the nodes are influenced by a greater number of variables, hence making them more 

sensitive to a particular combination of input values. Once this sensitivity becomes too 

great, the network starts to lose its ability to generalize. For this reason, the general 

regression neural networks did not respond well when presented with five inputs. 
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Two different values were used for the spread in the GRNNs. It was found that the less 

sensitive networks with a spread of 0.1 generally achieved better results. The decreased 

sensitivity achieved with a larger radius for the basis function led to a reduced degree of 

overfitting in the network. 

The ease of implementation of the GRNN was again illustrated. The construction of this 

type of network is instantaneous, as no weight adjustments are made by implementing a 

back-propagation algorithm. By varying the sensitivity of the RBF neurons, adjustments 

can be made to optimize the network’s ability to generalize. An optimal network can 

therefore be rapidly found by employing cross-validation. 

In summary, when testing network generalization by means of cross-validation, the best 

results obtained with the various neural networks were very similar, once these networks 

had been optimized in respect of this particular dataset. Table 12 gives a comparison of 

the best results achieved with each network type.  

The comparison of the different networks by cross-validation was based solely on the 

relative size of the sum-of-squares error obtained on the test data. If the suitability of the 

applied method should be judged, the results should also be viewed in the context of the 

practical application. It was found that number of very large prediction errors were made 

by the networks on isolated points, which far exceeded the actual remaining time to 

failure of a specific pump. When the ten worst predictions were excluded, the average 

prediction error of the networks was 39.8% for the LMBR network, 33.2% for the GRNN 

and 41.7% for the LM network.   
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The nature of this result indicates that the networks were able to model some but not all 

of the significant properties of these complex pump systems. When seen in the context of 

the intended application, the results represent a positive point of departure. An average 

prediction error of 40% is too large and does not allow these networks to be used in their 

current form for making decisions about maintenance. It can therefore be said that the 

complexity of the problem requires a larger and more descriptive dataset for training the 

neural networks, if more accurate results are to be obtained. 

A key element in the successful practical application of neural networks is to find suitable 

covariates which will allow the network to distinguish among different scenarios and 

failure modes. The smallness of the dataset also has the result that part of the data in the 

test set will in some cases differ significantly from the data with which the network was 

trained. The network is therefore unable to deal with some of the data correctly, and 

produces a spurious result. The dataset used by Vlok [3,4] is not ideal for this purpose 

owing to its sparseness, and it is unlikely that more can be achieved regarding failure 

prediction with the given data.  

Despite these deficiencies, it was proved that it is possible to combine the advantages of 

failure time data analysis and condition monitoring in a neural network platform to make 

more accurate predictions.  

One should bear in mind the limitations imposed on residual life predictions by the 

unpredictability of operations in an actual plant. The covariates chosen as inputs into a 

neural network have to reflect the failure modes of the system. If a failure cannot be 

traced by one of these inputs, it will be impossible for the network to predict more 
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accurately when the machine will fail. The results achieved in this study can therefore be 

seen as a conditional success in terms of the use of neural networks for this application. 

5 Conclusion 

The use of neural networks for making failure predictions for both renewal and repaired 

cases was investigated. The estimates that the networks made regarding the simulated 

renewal system proved highly accurate, with the average error varying between 431 

seconds and 841 seconds for the different types of neural networks. This compares well 

with the measurement interval of 180 seconds which was used. It was shown that much 

greater accuracy could be achieved with neural networks than with the use of the 

common probabilistic technique that involves fitting a Weibull distribution to the failure-

time data. The performance of the neural networks was compared with this statistical 

method on the basis of the predictions made when the networks were presented with the 

first set of values, measured on the test pieces allocated to the test set. The MLP neural 

network trained with the Levenberg-Marquardt algorithm using Bayesian regularization 

did not exceed a prediction error of 5.1%. By comparison, the error of the residual life 

estimates made using the Weibull distribution, ranged between 11.2% and 55.4%.   

The failure predictions for the repaired systems were hampered by the combination of the 

system’s complexity and the sparseness of the dataset, however. The sparseness of the 

dataset limits the number of inputs that can be used for MLP networks and also means 

that the input space is poorly mapped. Repaired systems have multiple life intervals that 

are not independent and are subject to numerous failure modes, posing a severe challenge 
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to the analyst. The small number of inputs and poorly mapped input space meant that the 

explanatory information proved insufficient for the network to model the system 

accurately, and large errors were recorded on some of the test data.  

With respect to the comparison between different neural network methods, the use of 

Bayesian regularization proved very effective in the prevention of overfitting.  The use of 

a second-order method, such as the Levenberg-Marquardt training algorithm, produced a 

significant reduction in training time in comparison to the gradient descent method. It 

was found that the optimization of network parameters was an important part of the 

training process and that the performance of different network types was very closely 

matched once their design had been adjusted to suit a specific application. GRNN are 

simple, easily generated neural networks and proved a close match with the MLP 

networks, giving a difference of 11.1% on the sum-of-squares error for the repaired 

system dataset. 

The ease with which neural networks can be trained and the quality of the results 

achieved for the two datasets indicate that neural networks should become a useful tool 

for the analysis of reliability data in future. Clearly the approach outlined in this paper is 

not suitable for every application in the maintenance field, but the results indicate the 

potential that neural networks have as a powerful tool for the analysis of reliability data 

and the prediction of residual life.  
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Figure 1: The equipment used for performing the laboratory work. 
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Figure 2: Crusher layout showing the position of the notched toggle plate. 
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Figure 3: Comparison of the rate of convergence of the gradient descent back-propagation method, 

using a different combination of training parameters. 
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Figure 4: Comparison of actual remaining life and the prediction of the neural network trained with 

the Levenberg-Marquardt algorithm with Bayesian regularization. 
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Load Amplitude vs Expected Life
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Figure 5: GRNN response when varying the load amplitude input. 
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Figure 6: A comparison of predictions made by the networks trained with the Levenberg-Marquardt 

and Levenberg-Marquardt with Bayesian regularization algorithms. The load conditions of this 

particular case differed most from the examples in the training set, highlighting the advantage of the 

latter algorithm. 
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Figure 7: The actual failure times of the repaired system compared with the predictions made by a 

multi-layer perceptron neural network trained with the Levenberg-Marquardt algorithm with 

Bayestian regularization. 



39 

Table 1: Typical data collected over the life of one test piece during lab testing. 

Time 
[sec.] 

Load Range 
[kN] 

Temperature 
[°C] 

Load Mean 
[kN] 

180 231 18.0 -33 

361 231 18.1 -33 

541 230 18.3 -33 

721 230 18.4 -33 

902 230 18.4 -33 

1082 229 18.5 -33 

1262 228 18.4 -33 

1443 226 18.3 -33 

1623 226 18.5 -33 

1803 226 18.3 -33 

1984 225 18.2 -33 

2164 226 18.2 -33 

2344 225 18.2 -33 

2525 225 18.2 -33 

2705 225 18.2 -33 

2886 225 18.2 -33 

3066 225 18.3 -33 

3246 225 18.2 -33 

3427 225 18.3 -33 

3607 223 18.6 -33 

3787 223 18.4 -33 

3968 223 18.7 -33 

4148 222 18.6 -33 

4329 221 18.7 -33 
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Time 
[sec.] 

Load Range 
[kN] 

Temperature 
[°C] 

Load Mean 
[kN] 

4509 220 18.8 -33 

4689 219 19.1 -33 

4870 218 19.3 -33 

5050 217 19.8 -33 

5230 215 20.4 -33 

5411 212 21.4 -33 

5591 205 22.9 -33 
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Table 2: Extract showing the data collected from the pump PC1131. Failures occurred at the global 

age of 554 and 765 days, while condition based interventions were made after 397 and 690 days. 

Global 
Age 

(Days) 

Date of 
Measurement 

RF043H 
[mm/s] 

RF044H 
[mm/s] 

RF053H 
[mm/s] 

RF054H 
[mm/s] 

159 07/02/97 0 0.05 0.8 0.1 

295 23/06/97 0.15 0.2 0.55 0.12 

387 23/09/97 0.3 0.1 8 6.2 

394 30/09/97 0.8 2.3 12.3 5 

397 03/10/97 250 4 17 6 

530 13/02/98 0.1 0.1 11 5.5 

533 16/02/98 0.3 0.2 13 7 

554 09/03/98 0.5 0.3 16 10 

578 02/04/98 1 0.7 2 3 

597 21/04/98 0.3 0.5 1.6 5 

639 02/06/98 0.5 0.5 4 5 

689 22/07/98 0 0 0.8 1.2 

690 23/07/98 0 0 0.67 1.08 

703 05/08/98 0.05 0.2 0.2 0.4 

712 14/08/98 0.05 0.05 1.4 0.41 

765 06/10/98 0.05 0.05 2.7 0.6 

791 01/11/98 0.5 0.2 12 7 
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Table 3: Accuracy of predictions for the test data with initial measurements recorded at the start of 

the experiments. 

Approach Type 
Results for the test 

data 

Statistical Weibull 11.2% – 55.4% 

Neural network GDBP with M 4.0% - 34.9% 

Neural network LM 1.9% - 20% 

Neural network LM with BR 3.1% - 5.1% 

Neural network GRNN 1.6% - 68.9% 
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Table 4: Performance of the GRNN for different spread values. 

Spread MSE training MSE test 

0.01 9.9  10-7 0.0030 

0.02 3.8  10-6 0.0027 

0.03 8.3  10-5 0.0022 

0.04 8.5  10-4 0.0026 

0.05 2.3  10-3 0.0034 
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Table 5: Comparison of the mean squared error (MSE) on the training and test sets of the different 

networks. 

Network MSE training MSE test 

LM with BR 5.7  10-5 0.0014 

GRNN 8.3  10-5 0.0022 

LM 8.1  10-5 0.0030 

GDBP with M 1.9  10-2 0.0061 
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Table 6: Comparison of the average error in the predictions made by the networks. 

Network Training data Test data 

LM with BR 64 sec. 455 sec. 

GRNN 87 sec. 431 sec. 

LM 84 sec. 616 sec. 

GDBP with M 1370 sec. 841 sec. 
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Table 7: Largest error in the predictions made by the networks being compared. 

Network Training data Test data 

LM with BR 513 sec. 1065 sec. 

GRNN 411 sec. 3085 sec. 

LM 652 sec. 2185 sec. 

GDBP with M 3997 sec. 1271 sec. 
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Table 8: The best results achieved with the Levenberg-Marquardt training algorithm. 

Network 

architecture 
Inputs Target  (error)² 

5 hidden nodes 5 0.05 2.70105 

5 hidden nodes 4 0.025 2.85105 

4 hidden nodes 4 0.025 2.90105 

3 hidden nodes 3 0.05 2.92105 

4 hidden nodes 4 0.05 2.92105 
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Table 9: The network results with the largest error after training with the Levenberg-Marquardt 

algorithm. 

Network 

architecture 
Inputs Target  (error)² 

3 hidden nodes 3 0.00001 4.32105 

4 hidden nodes 3 0.00001 4.45105 

4 hidden nodes 3 0.01 4.49105 

5 hidden nodes 5 0.01 4.99105 

5 hidden nodes 5 0.00001 5.31105 
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Table 10: Levenberg-Marquardt algorithm with Bayesian regularization. 

Network architecture Inputs  (error)² 

5 hidden nodes, linear output node 5 2.81105 

5 hidden nodes, sigmoid output node 5 2.90105 

5 hidden nodes, linear output node 4 2.95105 

4 hidden nodes, sigmoid output node 4 3.06105 

5 hidden nodes, sigmoid output node 4 3.07105 

4 hidden nodes, linear output node 4 3.15105 

4 hidden nodes, linear output node 3 3.26105 

3 hidden nodes, linear output node 3 3.35105 

3 hidden nodes, sigmoid output node 3 3.52105 

4 hidden nodes, sigmoid output node 3 3.52105 
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Table 11: Cross-validation for GRNN 

Network architecture Inputs  (error)² 

Spread = 0.1 4 3.00105 

Spread = 0.05 4 3.32105 

Spread = 0.1 3 3.56105 

Spread = 0.05 3 3.72105 

Spread = 0.1 5 3.72105 

Spread = 0.05 5 4.17105 
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Table 12: Comparison of the best results achieved by the different network types. 

Network 

architecture 
 (error)² 

LM 2.70105 

LMBR 2.81105 

GRNN 3.00105 

 


