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Abstract

It is well known that the standard finite element method based on the space Vh of
continuous piecewise linear functions is not reliable in solving singular perturbation
problems. It is also known that the solution of a two-point boundary-value singular
perturbation problem admits a decomposition into a regular part and a finite linear
combination of explicit singular functions. Taking into account this decomposition,
first, we design a finite element method (which we call Singular Function Method)
where the space of trial and test functions is the direct sum of Vh and the space
spanned by these singular functions. The second method, based on the finite element
discretization on a suitably refined mesh, is referred to as Mesh Refinement Method.
Both of these methods are proved to be ε-uniformly convergent. Numerical examples
which confirm the theory are presented.
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1 Introduction

We consider the self-adjoint singularly perturbed two-point boundary value problem

−ε (p(x)y′)′ + q(x)y = f(x) on (0, 1)
y(0) = 0, y(1) = 0

(1.1)

where ε is a small positive parameter. Further, f(x), p(x) and q(x) are sufficiently smooth
functions satisfying the boundedness and positivity conditions

p̃ ≥ p(x) ≥ p∗ > 0 and q̃ ≥ q(x) ≥ q∗ > 0. (1.2)
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Due to (1.2) and to the Lax-Milgram lemma, the problem (1.1) has a unique variational
solution. That is, there exists a unique yε ≡ y ∈ H1

0 ≡ H1
0 (0, 1) such that

a (y, v) = (f, v) ∀ v ∈ H1
0 (0, 1) (1.3)

where the bilinear and the linear forms are given by

a (y, v) =

∫ 1

0

[εp(x)y′(x)v′(x) + q(x)y(x)v(x)] dx (1.4)

and

(f, v) =

∫ 1

0

f(x)v(x)dx. (1.5)

Here, Hm(0, 1) denotes the Sobolev space ([1]) of order m equipped with its usual norm
whereas Hm

0 (0, 1) is the closure in Hm(0, 1) of the space D(0, 1) of infinitely differentiable
functions on (0, 1) with compact support contained in (0, 1).

Problems in which a small parameter is multiplied to the highest derivative arise in various
fields of science and engineering, such as fluid mechanics, fluid dynamics, elasticity, quantum
mechanics, chemical reactor theory, hydrodynamics, etc. It is this feature of the differential
equations that explains theoretically the physical phenomenon of boundary layers. Indeed,
the main concern with singularly perturbed problems is the rapid and large variation of
their solutions in one or more narrow “layer region(s)” where the solutions jump from one
stable state to another or to prescribed boundary values. Such situations occur in many
applications as highlighted in [10]. For instance, in physics, this happens in viscous gas
flows in the zones near the boundary layers where the viscous flow jumps from the boundary
values prescribed by the condition of adhesion to the inviscid flow or in the zones near
the shock wave where the flow jumps from a subsonic to a supersonic state. Likewise, in
chemical reactions, the rapid transition from one state to another is typical for solution
processes, whereas population genetics in biology undergoe sudden changes. Apart from the
concrete examples (e.g. diffusion-type problems, momentum conservations laws, etc), which
are depicted in [10], we refer to [16] for further account on singular perturbation problems
that arise in science and engineering.

The specific singular perturbation problem (SPP) (1.1) considered in this paper is dissi-
pative in the sense that the rapidly varying component of the solution decays exponentially
away from a localized breakdown or discontinuity point in the layer region(s) as ε → 0.
Consequently, classical methods always fail in providing reliable numerical results (in the
sense that the parameter ε and the mesh size h cannot vary independently).

There are essentially two strategies to design schemes which have small truncation errors
inside the layer region(s). The first approach, which forms the class of fitted mesh methods,
consists in choosing a fine mesh in the layer region(s). The second approach is in the context
of the fitted operator methods in which the mesh remains uniform but the difference schemes
reflect the qualitative behavior of the solution(s) inside the layer region(s). A discussion using
one or both of the above strategies can be found in in Miller et al. [17]. Some other relevant
works may be found in the survey paper [8].

While finite difference methods that fall under both of the above categories have been
discussed by the authors in [12, 13, 14, 15, 18, 19], this paper deals with the finite element
method (FEM). However, the FEMs proposed here are specific in several respects, compared
to the approach in for example [6, 9, 11, 21]. Indeed based on the decomposition of the
solution into a regular and a singular components given in [4], we construct more appro-
priate singular functions. Then we consider the direct sum of the space spanned by these
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singular functions with the usual space of piecewise continuous linear basis functions. The
finite element method thus obtained is termed as Singular Function Method (SFM). It falls
under the category of fitted operator methods. On the other hand, we use the Galerkin
discretization on a non-uniform mesh which is suitably refined. This second finite element
method is termed as Mesh Refine Method (MRM). Both of these methods are proved to be
ε-uniformly convergent.

The advantage of the finite element method is the better possibilities of its extensions to
higher dimensional problems. In this regard, the papers [7, 23] can be mentioned. Notice
also that the initial setting that Babuska [2] and Strang and Fix [22] considered for the
MRM and the SFM was that of domain with corners. The extension of the MRM and
SFM to the singular perturbation problems considered in this paper has, to the authors’
best knowledge, not been done in the literature. It is worthwhile undertaking this study
because the nature of singularities of SPPs is completely different from those of problems
with corners. However, we have restricted the study to the one-dimensional situation in order
to simplify the exposition of the methods and to have explicit results. Another advantage of
the finite element method over the finite difference method is that the latter is a particular
case of the former whenever suitable quadrature formulae are used for the computation of
the entries of the stiffness matrix and of the load vector (see [3, 20]).

The rest of the paper is organized as follows. In Section 2, we describe the qualitative
propeties of the solution of (1.1) in terms of the singular functions which are the founding
stones for the SFM derived in Section 4. Section 3 deals with the standard finite element
discretization. Using suitable interpolation error estimates, the MRM is derived in Section 5.
The numerical implementation of the methods is described in Section 6. Finally in Section
7, we draw some conclusions and indicate our future plans.

2 Qualitative Behavior of the Solution

The numerical methods in this paper are based on the following qualitative behavior of the
solution y(x):

Theorem 2.1 Assume that f(x) ∈ C0[0, 1] and q(x) ∈ C2[0, 1] so that y(x) is of class
C2[0, 1]. Then the solution y(x) admits the decomposition

y(x) = γ0S0(x) + γ1S1(x) + g(x)

where:

• γ0 and γ1 are real numbers

• g(x) is the regular part which satisfies

∣∣g(k)(x)
∣∣ ≤ C

(
1 + ε1− k

2

)
, for k = 0, 1, 2,

and C denotes here and after various constants, which are independent of ε and the
mesh size h.

• The functions

S0(x) = exp

(
−x

√
q(0)

ε

)
− 1 + x− x exp

(
−

√
q(0)

ε

)
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and

S1(x) = exp

(
−(1− x)

√
q(1)

ε

)
− x− (1− x) exp

(
−

√
q(1)

ε

)

are the singular functions in the sense that

sup
0<ε≤1

sup
x∈[0,1]

∣∣∣S(k)
i (x)

∣∣∣ = ∞ for k = 1, 2 and i = 0, 1.

Proof. It is shown in [4] that the solution of (1.1) admits the representation

y(x) = γ0S̃0(x) + γ1S̃1(x) + g̃(x) (2.1)

with constants γ0 and γ1, the singular functions

S̃0(x) = exp

(
−x

√
q(0)

ε

)
,

S̃1(x) = exp

(
−(1− x)

√
q(1)

ε

)

and the regular part g̃(x) satisfying

∣∣g̃(k)(x)
∣∣ ≤ C

(
1 + ε1− k

2

)
, for k = 0, 1, 2.

Since we are dealing with a homogeneous boundary value problem, we modify the decompo-
sition (2.1) into another one, with singular functions that take the values 0 at the end points
of the interval. To this end, we consider the linear Lagrange interpolations

P0(x) = 1− x + x exp

(
−

√
q(0)

ε

)

and

P1(x) = x + (1− x) exp

(
−

√
q(1)

ε

)

of the functions S̃0(x) and S̃1(x) at the nodes 0 and 1. Now, adding and subtracting the
functions P0(x) and P1(x) in (2.1), we obtain the desired decomposition.

Remark 2.2 Theorem 2.1 shows that the solution y(x) is singular in the sense that

sup
0<ε≤1

sup
x∈[0,1]

∣∣y(k)(x)
∣∣ = ∞ for k = 1, 2.

Moreover, it is proved in [17] that

|y(k)(x)| ≤ C

(
1 +

exp(−x
√

q∗/ε) + exp(−(1− x)
√

q∗/ε)
εk/2

)
, k = 0, 1, 2. (2.2)
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3 The Standard Finite Element Method

Consider a uniform partition:

0 = x0 < x1 < . . . < xn−1 < xn = 1

and denote by h the mesh width of a single element, i.e.,

h = xj+1 − xj, ∀ j = 0(1)n−1.

Let Vh ⊂ H1
0 be the classical finite element space defined by

Vh =
{
yh ∈ C0[0, 1], yh|[xi,xi+1] is linear , yh(0) = yh(1) = 0

}
. (3.1)

We refer to [3, 20] for details on finite elements. Then the standard finite element method
(FEM), i.e., the Galerkin discrete formulation corresponding to (1.3) reads: seek yh ∈ Vh

such that
a (yh, vh) = (f, vh) ∀ vh ∈ Vh. (3.2)

From Céa’s lemma, we have

‖y − yh‖H1 ≤
√

M

α
inf

vh∈Vh

‖y − vh‖H1 (3.3)

where
M = p̃ max{ε, q̃/p̃}

is an upper bound of the norm of a(., .) and

α = p∗ min{ε, q∗/p∗}
is the coercivity constant for a(., .). As ε is very small, we note that the constant M does
not depend on ε whereas α = p∗ε. This fact will be implicitly used in what follows.

Denoting by Πh the global Vh-interpolation operator, it follows from (3.3) and by the inter-
polation theory in Sobolev spaces that

‖y − yh‖H1 ≤ C√
ε
‖y − Πhy‖H1 ≤ Ch√

ε
‖y′′‖L2 . (3.4)

Now since C0[0, 1] is continuously embedded in L2(0, 1), ( 3.4) along with (2.2) yield

‖y − yh‖H1 ≤ Ch√
ε

sup
x∈[0,1]

(
1 +

exp(−x
√

q∗/ε) + exp(−(1− x)
√

q∗/ε)
ε

)
. (3.5)

For convenience, we write (3.5) as

‖y − yh‖H1 ≤ CGal
ε h, (3.6)

where
CGal

ε = CGal
I,ε + CGal

II,ε

with

CGal
I,ε =

C√
ε

, CGal
II,ε = C sup

x∈[0,1]

exp(−x
√

q∗/ε) + exp(−(1− x)
√

q∗/ε)
ε
√

ε
. (3.7)

The part CGal
I,ε is inherent to the singular perturbation problem itself whereas the part CGal

II,ε

is due to the numerical method.

As is seen from the above estimate, the part CGal
II,ε is the main cause of worry. This part will

keep on dominating since ε ¿ 1. As a result, for the successful implementation of the finite
element method, one will require that h ≤ ε

√
ε, which is a severe restriction. To deal with

this situation, we propose two new methods in the next two sections.
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4 Singular Function Method

This particular finite element method has augmented space of trial and test functions. In
order to capture the singular nature of the solution y(x) into the numerical method, we
follow an idea which was first introduced by Strang and Fix [22] in the context of boundary
value problems with corner singularities. More precisely, we replace the space Vh by the
augmented finite dimensional subspace of H1

0 defined by

V +
h = Vh ⊕ span{S0, S1}. (4.1)

The singular function method (SFM) reads as follows: find y+
h ∈ V +

h such that

a
(
y+

h , v+
h

)
=

(
f, v+

h

) ∀ v+
h ∈ V +

h . (4.2)

The discrete problem (4.2) is well-posed due to the Lax-Milgram lemma.

We have the following result:

Theorem 4.1 The SFM has the asymptotic error estimate

‖y − y+
h ‖H1 ≤ C√

ε
h‖g′′‖L2 ≡ CGal

I,ε h,

where g(x) is the regular part of y(x) in Theorem 2.1.

Proof. Since V +
h is a subspace of H1

0 (0, 1) , the analogue of (3.3) holds for the problem
(4.2). Thus, we have

‖y − y+
h ‖H1 ≤ C√

ε
inf

v+
h ∈V +

h

‖y − v+
h ‖H1 . (4.3)

Having the singular decomposition of y(x) given in Theorem 2.1, it follows from (4.3) and
from the choice

v+
h := γ0S0 + γ1S1 + Πhg ∈ V +

h

that

‖y − y+
h ‖H1 ≤ C√

ε
‖g − Πhg‖H1 . (4.4)

But the interpolation theory in Sobolev spaces and the regularity of g(x) in Theorem 2.1
yield

‖g − Πhg‖H1 ≤ Ch‖g′′‖L2 ≤ Ch‖g′′‖C0 . (4.5)

This combined with (4.4) completes the proof of the theorem.

Clearly, the space of trial and test functions V +
h is advantageous over the standard space Vh

as it gives the above improved error estimates where we got rid of the part CGal
II,ε that arose

from the standard FEM. However, the story is still not appealing in terms of getting the
uniform convergence, because of the part CGal

I,ε . One way of looking into this aspect is to
work with different norms, namely, the norm ‖.‖L2 and the energy norm ‖.‖a.

The energy norm is inherent to the problem (1.3) and is given by

‖v‖a :=

√∫ 1

0

[εp(x)(v′(x))2 + q(x)(v(x))2] dx. (4.6)

In this framework, we have the following ε-uniform convergence result:



SINGULAR FUNCTION AND MESH REFINEMENT METHODS 7

Theorem 4.2 The SFM is ε-uniformly convergent of order one and two in the energy-norm
and L2-norm, respectively. That is

‖y − y+
h ‖a ≤ Ch

and
‖y − y+

h ‖L2 ≤ Ch2.

Proof. If we take v = v+ ∈ V +
h in (1.3) and subtract the resulting equation from (4.2), we

obtain
a

(
y − y+

h , v+
h

)
= 0.

Consequently,
a

(
y − y+

h , y − y+
h

)
= inf

v+∈V +
h

a
(
y − y+

h , y − v+
h

)
.

For v+
h = γ0S0 + γ1S1 + Πhg, we have then

‖y − y+
h ‖2

a ≤ |a (
y − y+

h , y − v+
h

) |
= |a (

y − y+
h , g − Πhg

) |
≤ ‖y − y+

h ‖a ‖g − Πhg‖a (by Cauchy-Schwarz inequality)

≤ C‖y − y+
h ‖a ‖g − Πhg‖H1

≤ Ch‖y − y+
h ‖a ‖g′′‖C0 (by (4.5)).

Thus
‖y − y+

h ‖a ≤ Ch.

On the other hand, with φ ∈ L2, we associate the functions y(φ) ∈ H1
0 and y+

h (φ) ∈ V +
h

which are the unique solutions of the adjoint problems to (1.3) and (4.2):

a(v, y(φ)) = (φ, v) ∀ v ∈ H1
0 (4.7)

and

a
(
v+

h , y+
h (φ)

)
=

(
φ, v+

h

) ∀ v+
h ∈ V +

h . (4.8)

Denote by g(φ) the regular part of y(φ). We now proceed by the Aubin-Nitsche’s duality
argument [3] as follows:

‖y − y+
h ‖L2 = sup

0 6=φ∈L2

| (y − y+
h , φ

) |
‖φ‖L2

= sup
0 6=φ∈L2

|a (
y(φ), y − y+

h

) |
‖φ‖L2

(by (4.7))

= sup
0 6=φ∈L2

a
(
y(φ)− y+

h (φ), y − y+
h

)

‖φ‖L2

since a
(
y+

h (φ), y − y+
h

)
= 0

≤ sup
0 6=φ∈L2

‖y(φ)− y+
h (φ)‖a ‖y − y+

h ‖a

‖φ‖L2

≤ sup
0 6=φ∈L2

Ch‖g′′(φ)‖C0 h‖g′′‖C0

‖φ‖L2

(by (4.5))

≤ Ch2‖g′′‖C0 sup
0 6=φ∈L2

‖g′′(φ)‖C0

‖φ‖L2

≤ Ch2.

The last inequality results from the fact that the adjoint problem is regular.
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5 Mesh Refinement Method

We start with the standard FEM for Eq. (1.3), as defined in Eq. (3.2). We will make the
necessary modifications shortly. In the energy norm, Céa’s lemma, i.e. (3.3), reads as

‖y − yh‖2
a = inf

vh∈Vh

‖y − vh‖2
a. (5.1)

This yields the series of relations

‖y − yh‖2
a ≤ ‖y − Πhy‖2

a

≤ C

n−1∑
i=0

(
ε|y − Πiy|2H1(xi,xi+1)

+ ‖y − Πiy‖2
L2(xi,xi+1)

)

where we recall that Πh is the Vh-global interpolation operator, whereas Πi is the local in-
terpolation operator on the space of polynomials of degree ≤ 1 restricted to the interval
[xi, xi+1]. Thus, estimating the error ‖y− yh‖2

a is reduced to estimating each local interpola-
tion error ε|y − Πiy|2H1(xi,xi+1)

and ‖y − Πiy‖2
L2(xi,xi+1)

. It is convenient to deal with the end
point x0 = 0, the situation of the node xn = 1 being dealt with by symmetry. We consider
the following two cases:

First case: i 6= 0. We are far away from the layer region [0, x1]. We use the decomposition
in Theorem 2.1 (in which we ignore γ1S1 as we work with the end point 0). This yields

‖y − Πiy‖2
L2(xi,xi+1)

≤ C
[
‖g − Πig‖2

L2(xi,xi+1)
+ ‖S0 − ΠiS0‖2

L2(xi,xi+1)

]
(5.2)

and

ε|y − Πiy|2H1(xi,xi+1)
≤ C

[
|g − Πig|2H1(xi,xi+1)

+ ε|S0 − ΠiS0|2H1(xi,xi+1)

]
. (5.3)

For the purpose of obtaining suitable interpolation estimates, it is essential not to get
rid in (5.3) of ε in front of the semi-norm related to the singular function S0. By
interpolation theory in Sobolev spaces applied to g − Πig and to S0 − ΠiS0, we have
the estimates (see [3])

(xi+1 − xi)
−2‖g − Πig‖2

L2(xi,xi+1)
+ ε|g − Πig|2H1(xi,xi+1)

≤ C(xi+1 − xi)
2||g′′||2L2 , (5.4)

‖S0 − ΠiS0‖2
L2(xi,xi+1)

≤ C(xi+1 − xi)
4‖S ′′0‖2

L2(xi,xi+1)
(5.5)

and
ε|S0 − ΠiS0|2H1(xi,xi+1)

≤ Cε(xi+1 − xi)
2||S ′′0 ||2L2(xi,xi+1)

. (5.6)

The expression of the singular function in Theorem 2.1 permits to explicitly compute
the derivative:

S ′′0 (x) = ε−1q(0) exp(−x
√

ε−1q(0)). (5.7)

Thus

‖S ′′0‖2
L2(xi,xi+1)

= 2−1
(
ε−1q(0)

)3/2
[
exp(−2xi

√
ε−1q(0))−

exp(−2xi+1

√
ε−1q(0))

]

≤ 2−1
(
ε−1q(0)

)3/2
exp(−2xi

√
ε−1q(0))

≤ Cx−3
i as

u3

3!
exp(−u3) ≤ 1 with u = 2xi

√
ε−1q(0).
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Consequently, we end up with the following estimates for the solution y :

‖y − Πiy‖2
L2(xi,xi+1)

≤ C(xi+1 − xi)
4
[||g′′||2L2 + x−3

i

]
(5.8)

and
ε|y − Πiy|2H1(xi,xi+1)

≤ C(xi+1 − xi)
2
[||g′′||2L2 + εx−3

i

]
. (5.9)

Second case: i = 0. We are in the layer region [0, x1]. If we write the analogues of (5.2)
and (5.3) and proceed as in the first case above, interpolation theory gives the following
counterparts of the estimates (5.8) and (5.9):

‖y − Π0y‖2
L2(0,x1) ≤ Cx4

1

[||g′′||2L2 + ε−3/2
]

(5.10)

and
ε|y − Π0y|2H1(0,x1) ≤ Cx2

1

[||g′′||2L2 + ε−1/2
]
. (5.11)

The announced modification of the standard FEM is the Mesh Refinement Method
(MRM) obtained as follows. On the nodes (xi), we impose the mesh refinement condition

(xi+1 − xi)
2εx−3

i ≤ Ch2 (5.12)

for i 6= 0, whereas we require
x2

1ε
−3/2 ≤ Ch2 (5.13)

whenever i = 0.

Remark 5.1 The analysis done in the two cases above show that, for the MRM, we could
work with the decomposition (2.1) in which the singular functions do not take the values zero
at the end-points of the interval.

Theorem 5.2 If the finite element space Vh is constructed according to the mesh refinement
conditions (5.12) and (5.13), then the FEM (3.2) is ε -uniformly convergent of order one
and two in the energy and L2-norms, respectively:

‖y − yh‖a ≤ Ch

and
‖y − yh‖L2 ≤ Ch2.

A typical example that meets the mesh refinement requirements (5.12) and (5.13) consists
of the nodes defined by

xi =

(
i

n

)ν

(5.14)

where the parameter ν > 1 is chosen such that it is less than or equal to the optimal value

ν = 1− log
(
Cε3/2

)

2 log n
. (5.15)

Eq. (5.15) is readily derived by using (5.14) in (5.13).

Remark 5.3 We come back to the initial situation where both end-points x = 0 and x = 1
of the interval [0, 1] must be incorporated. We assume that n is an even number: n = 2N .
By symmetry, we obtain from (5.14) the refined mesh given by the nodes

xi :=

{
1
2

(
i
N

)ν
if 0 ≤ i ≤ N

1− 1
2

(
2N−i

N

)ν
if N ≤ i ≤ 2N

for ν > 1 as above.
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Table 1: Values of ν obtained using (5.15) with C = 1

ε n = 100 n = 200 n = 400 n = 800 n = 1600
1.0 1.0000 1.0000 1.0000 1.0000 1.0000

10−1 1.4414 1.3750 1.3259 1.2882 1.2583
10−2 1.8829 1.7500 1.6519 1.5765 1.5167
10−3 2.3243 2.1250 1.9778 1.8647 1.7750
10−4 2.7658 2.5000 2.3038 2.1529 2.0334
10−5 3.2072 2.8750 2.6297 2.4412 2.2917
10−6 3.6487 3.2500 2.9556 2.7294 2.5501
10−7 4.0901 3.6250 3.2816 3.0176 2.8084
10−8 4.5316 4.0000 3.6075 3.3059 3.0668
10−9 4.9730 4.3750 3.9335 3.5941 3.3251

Remark 5.4 To keep the method self-adaptive, it is good to choose the ν according to the
formula (5.15). As is shown in Table 1, the values of ν are ranging from 1 to 4.973. Thus, for
a fixed n, the values of ν given by (5.15) increase for decreasing ε, whereas the lower bound
is always 1 ( ν = 1 gives the uniform mesh throughout the region). However, our numerical
simulations show that ε-uniform convergence is achieved with a fixed value of ν.

6 Numerical Implementation

A basis for V +
h is {φ+

1 , φ+
2 , . . . , φ+

n , φ+
n+1} where φ+

j , j = 1(1)n− 1, are the usual continuous
piecewise linear basis functions whereas φ+

n = S0 and φ+
n+1 = S1.

Setting

y+
h =

n+1∑
j=1

α+
j φ+

j ,

the SFM is equivalent to solving the (n + 1)× (n + 1) system

K+α+ = β+ (6.1)

with

K+ =

[
K11 K12

K21 K22

]
, α+ =




α+
1

αn

αn+1


 , β+ =




β+
1

βn

βn+1


 .

Note that the (n− 1)× (n− 1) system

K11α
+
1 = β+

1

corresponds to the standard FEM part, whereas the other matrices KT
21 = (K12)n−1,2 and

(K22)2,2 are contributed by the singular functions. Although the SFM has a uniform mesh
like the standard FEM, the said-additional contribution of the singular functions destroys
the tridiagonal structure of the stiffness matrix. As a result, special attention is required for
the numerical solution of the system (6.1). (See, for example, [5] for possible techniques).
On the contrary, the algebraic structure of the system involved in the MRM does not change:
the stiffness matrix is tridiagonal, though the mesh is not uniform.
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Numerical results corresponding to problem (1.1) are tabulated for the three methods
FEM, SFM and MRM with

p(x) ≡ 1, q(x) ≡ 1 and f(x) = 1 + 2
√

ε
[
e−x/

√
ε + e−(1−x)/

√
ε
]
.

The exact solution for the corresponding problem is given by

y(x) = 1 + (x− 1)e−x/
√

ε − xe−(1−x)/
√

ε.

In the case of the SFM, the following further aspect is of interest with regard to the
simulation of ε-uniform convergence. The computations corresponding to the matrix entries
K12, K21 and K22 involve singular functions S0 and S1. The k-th order derivatives of this
functions satisfy (cf. (2.2):

S
(k)
J = O(ε−k/2), J = 1, 2.

This means that the numerical integration formulae, used to evaluate the local stiffness
matrices for these parts, have unacceptable remainder terms when ε → 0. This pollutes
the ε-uniform behavior of the numerical solutions in the error tables (see, Tables 3 and 7),
even though theoretically we have ε-uniform convergence. However the SFM behaves better
than the FEM as shown by the numerical results under the severe condition h ≤ ε, which is
needed for the FEM.

Results are tabulated for the errors in the L2 and energy norms for the three methods.

7 Conclusions and Future Directions

We have designed two appropriate finite element methods (the SFM and the MRM) for
the numerical solution of singular perturbation problems. Both methods use the intrinsic
singular feature of the solution. In the SFM, the standard space of trial and test functions
(piecewise linear) is augmented by the space spanned by the singular functions on a uniform
mesh, while the MRM still uses the space of piecewise linear functions but on a refined mesh.
The two methods theoretically provide ε-uniform convergence of second and first order in
the L2 and energy-norms, respectively. Numerically, we find the results consistent with the
theory in the case of MRM. Likewise, this happens to the SFM provided that the numerical
integration errors on the entries of the stiffness matrix and of the load vector involving the
singular functions are taken into consideration.

It should be noted that we have extended the SFM and the MRF, known for boundary
value problems with corner singularities, to singular perturbation problems. Our approach is
innovative in that it has never been considered in the literature for the problems studied here
and that the nature of singularities of SPPs is completely different from those of problems
with corners.

For convenience, we compare our mesh generation strategy with the widely used piecewise
uniform meshes of Shishkin (see, e.g., [17]). Numerical results are presented in Tables 5 and
9. The superiority of our results is due to the fact that the mesh does not have unwanted
grid points like the Shishkin mesh.

Our future research plan includes extending this study to two-dimensional singular per-
turbation problems on rough domains such as polygons. The rough geometry of the domain,
which is the setting in which the MRM and the SFM were initially developed in [2] and
[22], brings into the problem an additional difficulty of having non-smooth solutions. The
hp version of the finite element method for such problems is analyzed in [23].



12 J.M.-S. LUBUMA AND K.C. PATIDAR

Table 2: Standard FEM: Errors in L2-norm
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 3.0917e-06 7.7291e-07 1.9323e-07 4.8306e-08 1.2069e-08
10−2 1.4327e-04 3.5804e-05 8.9498e-06 2.2374e-06 5.5934e-07
10−3 7.6028e-04 1.8985e-04 4.7430e-05 1.1854e-05 2.9633e-06
10−4 4.2260e-03 1.0524e-03 2.6284e-04 6.5643e-05 1.6402e-05
10−5 2.1910e-02 5.9533e-03 1.4741e-03 3.6789e-04 9.1872e-05
10−6 4.5701e-02 2.3853e-02 8.1432e-03 2.0817e-03 5.1671e-04
10−7 5.0564e-02 3.4563e-02 2.1394e-02 9.7987e-03 2.9256e-03
10−8 5.1083e-02 3.5998e-02 2.5111e-02 1.6821e-02 9.6736e-03
10−9 5.1135e-02 3.6145e-02 2.5524e-02 1.7950e-02 1.2420e-02

Table 3: SFM: Errors in L2-norm
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 4.5537e-08 1.1468e-08 2.8721e-09 7.1834e-10 1.7950e-10
10−2 9.8697e-06 2.9408e-06 7.6706e-07 1.9379e-07 4.8574e-08
10−3 1.1035e-04 5.4920e-06 8.0440e-07 2.8469e-07 7.7205e-08
10−4 2.5321e-03 3.2538e-04 2.6746e-05 1.5162e-06 7.0652e-08
10−5 1.9747e-02 4.4155e-03 7.4312e-04 8.2585e-05 6.2894e-06
10−6 5.4347e-02 2.4582e-02 6.8904e-03 1.4030e-03 2.0868e-04
10−7 5.9906e-02 4.1523e-02 2.4721e-02 9.4021e-03 2.3231e-03
10−8 5.9530e-02 4.2298e-02 2.9900e-02 2.0204e-02 1.0622e-02
10−9 5.9223e-02 4.1985e-02 2.9812e-02 2.1175e-02 1.4864e-02

Table 4: MRM: Errors in L2-norm (ν = 4)
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 3.0023e-05 7.8687e-06 2.0120e-06 5.0854e-07 1.2782e-07
10−2 2.9317e-04 7.4092e-05 1.8622e-05 4.6678e-06 1.1685e-06
10−3 2.5619e-04 6.4026e-05 1.6005e-05 4.0012e-06 1.0003e-06
10−4 2.4781e-04 6.1915e-05 1.5476e-05 3.8690e-06 9.6723e-07
10−5 2.4530e-04 6.1259e-05 1.5311e-05 3.8274e-06 9.5683e-07
10−6 2.4473e-04 6.1066e-05 1.5259e-05 3.8143e-06 9.5355e-07
10−7 2.4490e-04 6.1030e-05 1.5244e-05 3.8103e-06 9.5252e-07
10−8 2.4551e-04 6.1062e-05 1.5243e-05 3.8092e-06 9.5221e-07
10−9 2.4634e-04 6.1146e-05 1.5247e-05 3.8092e-06 9.5213e-07

Table 5: Errors in L2-norm (when Shishkin Mesh is used)
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 5.3383e-05 1.3435e-05 3.3698e-06 8.4386e-07 2.1114e-07
10−2 4.8705e-04 1.2961e-04 3.3454e-05 8.4999e-06 2.1423e-06
10−3 8.5324e-04 2.8435e-04 9.3449e-05 2.9786e-05 9.2214e-06
10−4 1.2797e-03 3.6176e-04 9.7827e-05 2.6315e-05 7.1159e-06
10−5 1.3870e-03 5.2455e-04 1.6275e-04 4.4786e-05 1.1807e-05
10−6 1.1842e-03 4.7575e-04 1.8909e-04 6.6336e-05 1.9601e-05
10−7 1.1579e-03 4.4004e-04 1.6557e-04 6.4155e-05 2.4471e-05
10−8 1.1676e-03 4.4324e-04 1.6252e-04 5.8801e-05 2.1745e-05
10−9 1.1731e-03 4.4728e-04 1.6471e-04 5.9289e-05 2.1073e-05
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Table 6: Standard FEM: Errors in Energy-norm
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 3.6095e-02 1.8166e-02 9.1127e-03 4.5638e-03 2.2838e-03
10−2 3.6600e-02 1.9287e-02 9.9045e-03 5.0194e-03 2.5267e-03
10−3 4.8585e-02 2.8136e-02 1.5199e-02 7.9070e-03 4.0337e-03
10−4 4.9915e-02 3.6024e-02 2.2334e-02 1.2545e-02 6.6645e-03
10−5 3.6404e-02 3.1576e-02 2.5473e-02 1.7340e-02 1.0324e-02
10−6 3.7455e-02 2.4831e-02 1.9318e-02 1.6780e-02 1.2779e-02
10−7 3.9116e-02 2.7229e-02 1.8311e-02 1.2453e-02 1.0396e-02
10−8 3.9310e-02 2.7750e-02 1.9495e-02 1.3456e-02 8.9291e-03
10−9 3.9330e-02 2.7806e-02 1.9649e-02 1.3857e-02 9.6981e-03

Table 7: SFM: Errors in Energy-norm
ε n = 100 n = 200 n = 400 n = 800 n = 1600

1.0 4.2759e-04 2.1913e-04 1.1093e-04 5.5810e-05 2.7992e-05
10−2 7.5812e-04 3.8456e-04 1.9704e-04 9.9727e-05 5.0164e-05
10−3 3.3454e-03 5.7559e-04 1.2364e-04 5.3861e-05 2.7243e-05
10−4 1.1153e-02 4.7763e-03 1.0538e-03 1.6416e-04 2.5805e-05
10−5 1.6700e-02 7.6935e-03 5.1052e-03 1.7010e-03 3.2328e-04
10−6 4.2175e-02 1.9550e-02 6.4596e-03 3.9524e-03 2.1434e-03
10−7 4.6117e-02 3.2054e-02 1.9281e-02 7.6381e-03 2.7716e-03
10−8 4.5788e-02 3.2543e-02 2.3031e-02 1.5630e-02 8.3495e-03
10−9 4.5549e-02 3.2292e-02 2.2932e-02 1.6295e-02 1.1460e-02

Table 8: MRM: Errors in Energy-norm (ν = 2)

ε n = 100 n = 200 n = 400 n = 800 n = 1600
1.0 7.0030e-02 3.7828e-02 2.0161e-02 1.0653e-02 5.5943e-03

10−2 3.9317e-02 2.1417e-02 1.1579e-02 6.2096e-03 3.3052e-03
10−3 3.4342e-02 1.8768e-02 1.0209e-02 5.5107e-03 2.9505e-03
10−4 3.1355e-02 1.7089e-02 9.3352e-03 5.0716e-03 2.7333e-03
10−5 2.9340e-02 1.5796e-02 8.6198e-03 4.7060e-03 2.5533e-03
10−6 2.7965e-02 1.4802e-02 7.9955e-03 4.3668e-03 2.3823e-03
10−7 2.6369e-02 1.4097e-02 7.4832e-03 4.0540e-03 2.2152e-03
10−8 2.4356e-02 1.3393e-02 7.1098e-03 3.7873e-03 2.0569e-03
10−9 2.4470e-02 1.2275e-02 6.7849e-03 3.5876e-03 1.9182e-03

Table 9: Errors in Energy-norm (when Shishkin Mesh is used)

ε n = 100 n = 200 n = 400 n = 800 n = 1600
1.0 3.6095e-02 1.8166e-02 9.1127e-03 4.5638e-03 2.2838e-03

10−2 3.6696e-02 1.9300e-02 9.9061e-03 5.0196e-03 2.5268e-03
10−3 3.2241e-02 1.9890e-02 1.1751e-02 6.7289e-03 3.7697e-03
10−4 1.7735e-02 1.0882e-02 6.4150e-03 3.6698e-03 2.0550e-03
10−5 1.0047e-02 6.1085e-03 3.5880e-03 2.0481e-03 1.1453e-03
10−6 5.8788e-03 3.4715e-03 2.0256e-03 1.1558e-03 6.4569e-04
10−7 3.7402e-03 2.0425e-03 1.1544e-03 6.5221e-04 3.6521e-04
10−8 2.7490e-03 1.3093e-03 6.8553e-04 3.7354e-04 2.0573e-04
10−9 2.3519e-03 9.7032e-04 4.4669e-04 2.2466e-04 1.1870e-04
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Another issue of interest which we are investigating is whether the system of equations
obtained in [13] by using non-standard finite difference method coincides with the one ob-
tained via the finite element method with numerical integration. This issue is successfully
addressed in the case of standard finite difference method ([3, 20]) applied to non-singularly
perturbed problems.
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