
THE CONVERGENCE SPACE OF MINIMAL USCO MAPPINGS
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Abstract. A convergence structure generalizing the order convergence struc-

ture on the set of Hausdorff continuous interval functions is defined on the set
of minimal usco maps. The properties of the obtained convergence space are
investigated and essential links with the pointwise convergence and the order
convergence are revealed. The convergence structure can be extended to a

uniform convergence structure so that the convergence space is complete. The
important issue of the denseness of the subset of all continuous functions is
also addressed.

1. Introduction

The aim of this paper, a first in the literature, is to define a topological structure
on the space M(X,Y ) of minimal usco maps of X into Y , where X,Y are topolog-
ical spaces. We recall that such maps f ∈ M(X,Y ) are set-valued, thus we have
f(x) ⊆ Y , for x ∈ X. In the usual case of spaces of point valued functions, there
has for longer been a large variety of useful topological structures on such spaces.
Yet, in spite of the enormous development in set-valued analysis during the last
few decades, there have only been few topological structures established on spaces
of set-valued functions. And as seen next, there is at the present stage a manifest
need for such topological structures. This paper, therefore, introduces a conver-
gence structure on the space M(X,Y ) of minimal usco maps, and does so with
the following three features : (i) it brings forth many new useful properties of the
spaces M(X,Y ), (ii) it allows natural embeddings into M(X,Y ) of classical spaces
of point valued functions, among them the space C(X,Y ) of continuous functions
from X to Y , (iii) when Y = R then M(X,Y ) becomes the space H(X,R) of Haus-
dorff continuous interval valued maps, and remarkably, the convergence structure
defined in this paper on M(X,Y ) becomes the well known order convergence on
H(X,R), see [4], thus M(X,Y ) is a natural generalization of the space H(X,R).
Here it should be mentioned that the space H(X,R) has recently proved to play im-
portant role in several directions, among them, Approximation Theory, regularity
of solutions for very large classes of nonlinear systems of PDEs, and as containing
the Dedekind order completion of the space C(X,R) of real valued continuous func-
tions on X. The latter result solves a long outstanding basic problem, see [1, 2, 3].
It can therefore be expected that the convergence structure on the space M(X,Y )
of minimal usco maps introduced and studied in this paper can further facilitate
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the development of the study of set valued functions. Also, it can further improve
the regularity of solutions for the mentioned very large classes of nonlinear systems
of PDEs.

The paper is organized as follows.
For completeness of the exposition we recall in the next section the definitions of

usco and minimal usco maps and give some of their basic properties. We also define
the notion of a quasiminimal usco map which is quite important for the topic.

In Section 3 we define convergence of filters on the space M(X,Y ) and we prove
it satisfies the axioms of a convergence structure. Some basic properties together
with characterizations of the convergent sequences and nets are also presented. It
is shown that in general the convergence is not topological. Hence M(X,Y ) is a
convergence space but not a topological space.

The relationship of the convergence in M(X,Y ) and the pointwise convergence
is studied in Section 4. It is shown through examples that in general neither conver-
gence implies the other. Nevertheless a strong connection exists. In particular, for
X a Baire space and Y a metric space any filter convergent in M(X,Y ) converges
pointwise on a residual subset of X.

In Section 5 we consider the special case when the target space Y is the real
line. Then M(X,R) can be ordered similarly to the way interval functions are
ordered and we show that the convergence in M(X,R) is equivalent to the order
convergence. Hence M(X,R) is isomorphic to the convergence space of Hausdorff
continuous functions on X equipped with the order convergence structure.

Section 6 contains the definition of a uniform convergence structure on M(X,Y )
for the case when X is a Baire space and Y a metric space. We show that this
uniform convergence structure induces our convergence structure and thatM(X,Y )
is complete.

In Section 7 we consider the set C(X,Y ) of all continuous functions. The concept
of minimal usco generalizes the concept of continuity while retaining some of its
essential properties. It is interesting from both theoretical and practical points
of view when the set C(X,Y ) is dense in M(X,Y ). We give a partial answer
formulating some open questions as well.

2. Usco and minimal usco maps

Let X and Y be topological spaces. A set-valued map g : X → Y is called upper
semicontinuous compact valued (shortly usco) if

• g(x) is a nonempty compact subset of Y for each x ∈ X;
• {x ∈ X : g(x) ⊂ U} is open in X for each open subset U of Y .

We will always assume that the range space Y is Hausdorff. For the domain
space X we require no separation axioms.

A set-valued map g : X → Y is canonically identified with its graph, i.e. with
the set

{(x, y) ∈ X × Y : y ∈ g(x)}.
Using this identification we will consider unions, intersections and inclusions of set-
valued mappings. Hence, for example, if g : X → Y and h : X → Y are two
set-valued mappings, then g ⊂ h means that the graph of g is a subset of the graph
of h, i.e., g(x) ⊂ h(x) for each x ∈ X.

If g : X → Y is a set-valued mapping and A ⊂ X we use, following the standard
convention, the symbol g(A) to denote

∪
{g(x) : x ∈ A}.
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Some basic properties of usco maps needed in the sequel are given in the next
two lemmata. The proofs are easy exercises on usco maps.

Lemma 1.

(i) Let gj : X → Y , j = 1, . . . , n, be usco maps. Then g1 ∪ · · · ∪ gn is usco as
well.

(ii) Let G be a family of usco maps from X to Y such that for each finite
subfamily K ⊂ G the intersection

∩
K is a nonempty-valued mapping. Then∩

G is usco.

Lemma 2. Let g : X → Y be a usco map.

(i) Let h ⊂ g be a set-valued mapping. Suppose there is an open set U ⊂ X
such that

• h(x) = g(x) for x ∈ X \ U ;
• h|U : U → Y is usco.

Then h is usco.
(ii) Let U ⊂ X be open and F ⊂ Y be closed. Then the mapping h : X → Y

defined by

h(x) =

{
g(x) ∩ F, x ∈ U,

g(x), x ∈ X \ U,
is usco provided it is nonempty-valued.

A usco map g : X → Y is called minimal if it is minimal with respect to
inclusion, i.e., if g = h whenever h : X → Y is usco satisfying h ⊂ g. It is a
well-know consequence of Zorn’s lemma (and of Lemma 1(ii)) that for each usco
map g : X → Y there is a minimal usco h ⊂ g, [6].

The following characterization of minimal usco maps can be found in [7, Lemma
3.1.2].

Lemma 3. Let g : X → Y be a usco map. The following assertions are equivalent.

(i) g is minimal.
(ii) Whenever V ⊂ X and U ⊂ Y are open sets such that g(V ) ∩ U ̸= ∅, there

is a nonempty open set W ⊂ V with g(W ) ⊂ U .

We will denote by M(X,Y ) the set of all minimal usco maps from X to Y . The
minimal usco maps generalize the concept of continuous function and retain some
of its properties. For example, a minimal usco map is completely determined by its
values on a dense subset of the domain as stated in the next lemma. The proof is
trivial and hence it is omitted.

Lemma 4. Let f and g be usco mappings from X to Y such that f is minimal. If
f ̸⊂ g, then there is a nonempty open set U ⊂ X such that f(U) ∩ g(U) = ∅.

In particular, if f, g ∈ M(X,Y ) are such that there exists a dense subset D of
X such that f(x) ∩ g(x) ̸= ∅ for each x ∈ D, then f = g.

Let g be an usco map from X to Y . We associate with g the following subset of
M(X,Y ):

(1) [g] = {f ∈ M(X,Y ) : f ⊂ g}
By the above the set [g] is not empty. If g is a minimal usco map then we have
[g] = {g}. On the other hand, if [g] contains only one element, it need not be
minimal. Since such usco maps will be important for us, we call them quasiminimal.
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The following lemmata present some properties of quasiminimal usco maps which
we will need in the sequel.

Lemma 5. Let g be an usco map from X to Y . If there exists a dense subset D of
X such that g(x) is a singleton for all x ∈ D then g is quasiminimal.

The proof is an easy consequence of Lemma 4.

Lemma 6. Let g1 and g2 be quasiminimal usco maps with [g1] = [g2]. Then g1∪g2
is quasiminimal, too. (And [g1 ∪ g2] = [g1].)

Proof. The map g1 ∪ g2 is usco by Lemma 1. Let f be the unique element of [g1].
Then clearly f ∈ [g1 ∪ g2]. We will show it is the unique element with the latter
property.

Let h ∈ [g1∪g2]. If h∩g1 is nonempty-valued, then it is usco by Lemma 1. Then
it follows from the fact that [g1] = {f} that f ⊂ h∩ g1. By the minimality of h we
get f = h.

Therefore, if h ̸= f , there is x ∈ X such that h(x) ∩ g1(x) = ∅. Using the
Hausdorff property of Y we get an open set V ⊂ X containing x such that h(V ) ∩
g1(V ) = ∅. Define a map h̃ : X → Y by the formula

h̃(x) =

{
g2(x), x ∈ X \ V,
h(x), x ∈ V.

Then h̃ ⊂ g2 and by Lemma 2 it is usco. Hence f ⊂ h̃, a contradiction. �

Lemma 7. Let X be a Baire topological space, Y a metrizable space and g : X → Y
a quasiminimal usco mapping. Then g(x) is a singleton for all x in a residual subset
of X.

The proof can be done by a minor modification of the proof of [7, Proposition
3.1.4].

3. Convergence structure on M(X,Y )

In this section we will define convergence of filters on M(X,Y ) and show that
it defines a convergence structure.

Definition 8. A filter F on M(X,Y ) converges to f ∈ M(X,Y ) and we write
F → f if

{f} =
∩

{[g] : g is a usco map, [g] ∈ F}.

Remarks 9.

1. If F → f , then there is at least one usco map g : X → Y with [g] ∈ F . If
the filter F is such that there exists an usco map g : X → Y with [g] ∈ F
it is called usco-bounded. Since this is the only concept of boundedness
considered in the paper we call the usco-bounded filters simply bounded.

2. If g1 and g2 are two usco maps such that both [g1] and [g2] belong to a
filter F , then [g1] ∩ [g2] ∈ F as well. Thus g1 ∩ g2 is nonempty-valued and
therefore it is a usco map by Lemma 1. Further, clearly [g1∩g2] = [g1]∩[g2].
It follows that the family

(2) {[g] : g is a usco map, [g] ∈ F}
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is closed to finite intersections and hence it is a filter base provided it is
nonempty. For any bounded filter F on M(X,Y ) we denote by GF the
filter which is generated by the family (2). Obviously, GF is coarser then
F and we have from the definition that

(3) F → f ⇐⇒ GF → f

3. Let F be a bounded filter. Set

gF =
∩

{g : g is a usco map, [g] ∈ F}.

Then gF is a usco map (by the previous remark and Lemma 1) and we have∩
F∈GF

F = [gF ].

Further, F → f if and only if [gF ] = {f}.
4. It is obvious from the definition that one filter cannot converge to more

than one element of M(X,Y ).
5. If the domain space X is a singleton, then M(X,Y ) can be canonically

identified with Y . Then a filter F on Y converges to y ∈ Y in M(X,Y )
if and only if it contains a compact subset of Y and converges to y in the
topology of Y .

According to Definition 8 with every point f ∈ M(X,Y ) we associate a set of
filters λ(f) which converge to f . The mapping λ from M(X,Y ) into the power set
of the set of filters on M(X,Y ) is called a convergence structure and (M(X,Y ), λ)
is called a convergence space if the following conditions are satisfied for all f ∈
M(X,Y ), see [5]:

• ⟨f⟩ ∈ λ(f), where ⟨f⟩ denotes the filter generated by {{f}}.(4)

• If F1,F2 ∈ λ(f) then F1 ∩ F2 ∈ λ(f).(5)

• If F1 ∈ λ(f) then F2 ∈ λ(f) for all filters F2 on M(X,Y )

which are finer than F1.(6)

Theorem 10. The mapping λ is a convergence structure on M(X,Y ).

Proof. We need to show that for every f ∈ M(X,Y ) conditions (4)–(6) are satisfied.
Conditions (4) and (6) follow immediately from Definition 8. We will show that
condition (5) also holds. Let F1,F2 ∈ λ(f). We define the following set of usco
mappings:

Φ = {g(1) ∪ g(2) : g(1), g(2) are usco maps, [g(1)] ∈ F1, [g
(2)] ∈ F2}.

By Lemma 1 the family Φ consists of usco maps. As

[g(1) ∪ g(2)] ⊃ [g(1)] ∪ [g(2)],

we get {[h] : h ∈ Φ} ⊂ F1 ∩ F2. Set g =
∩

Φ. It is easy to check that

g = gF1 ∪ gF2 .

As [gF1 ] = [gF2 ] = {f}, it follows by Lemma 6 that [g] = {f} as well. From the
inclusion [gF1∩F2 ] ⊆ [g] it follows that [gF1∩F2 ] = {f}. Hence F1 ∩ F2 → f , which
completes the proof. �
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Let (fν)ν∈I be a net in M(X,Y ) indexed by a directed set I. Following the
general theory of convergence spaces the net (fν)ν∈I converges to f ∈ M(X,Y ) if
the filter generated by {{fν : ν ≥ ν0} : ν0 ∈ I}, converges to f in the convergence
structure λ. In particular, a sequence (fn)n∈N converges to f ∈ M(X,Y ) if its
Fréchet filter, that is, the filter generated by {{fm : m ≥ n} : n ∈ N}, converges
to f in the convergence structure λ. The following theorem gives an alternative
characterization of the convergent nets and sequences.

Theorem 11.

a) A net (fν)ν∈I converges to f ∈ M(X,Y ) if and only if there is some ν0 ∈ I
and usco mappings gν , ν ≥ ν0 such that
(i) fν ⊂ gν for ν ≥ ν0;
(ii) gν ⊂ gν′ for ν ≥ ν′ ≥ ν0;
(iii) f is the unique minimal usco contained in

∩
ν≥ν0

gν .

b) A sequence (fn)n∈N converges to f ∈ M(X,Y ) if and only if there exists a
sequence of usco maps (gn)n∈N such that
(i) fn ⊂ gn for n ∈ N;
(ii) gm ⊂ gn for each m ≥ n;
(iii) f is the unique minimal usco contained in

∩
n∈N

gn.

Proof. a) Let (fν)ν∈I converge to f ∈ M(X,Y ). Denote by F the filter generated
by {{fν : ν ≥ ν0} : ν0 ∈ I}. For ν ∈ I set

gν =
∩

{g : g is a usco map, fν′ ⊂ g for ν′ ≥ ν}.

As F → f , there is a usco map g such that [g] ∈ F . Then there is some ν0 such
that fν ⊂ g for ν ≥ ν0. Therefore gν0 is a well defined usco map (by Lemma 1).
Hence gν is a well defined usco for each ν ≥ ν0. The conditions (i) and (ii) are
satisfied by the definition. To see that the condition (iii) is satisfied too, it suffices
to observe that for any usco map g with [g] ∈ F there is ν ≥ ν0 with gν ⊂ g.

Assume now that there exists a net of usco maps (gν)n≥ν0 satisfying conditions
(i), (ii) and (iii). It follows from (i) and (ii) that [gν ] ∈ F for each n ≥ n0. Thus,
due to (iii), F → f .

b) Suppose that fn → f . It follows from (1) that there is n0 ∈ N and usco maps
gn, n ≥ n0, satisfying a), b) and c). For n < n0 we take

gn = fn ∪ ... ∪ fn0−1 ∪ gn0 .

Then the usco maps gn, n ∈ N, fulfil the conditions (i), (ii) and (iii).
The inverse implication follows from that in a). �

Remark 12. The preceding theorem indicates a relation of the convergence on
M(X,Y ) to the order convergence on a lattice. We will examine the relationship
in more detail in Section 5.

The preceeding theorem enables us to show that the convergence on M(X,Y )
is not in general generated by a topology.

Example 13. If X = Y = [0, 1], then the convergence in M(X,Y ) is not generated
by any topology.
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Proof. Let qn, n ∈ N be an enumeration of rational numbers from [0, 1]. We define
continuous functions fn : [0, 1] → [0, 1] by the formula

fn(x) =

{
1− n|x− qn|, x ∈ (qn − 1

n , qn + 1
n ) ∩ [0, 1],

0, otherwise.

Then the sequence fn does not converge in M(X,Y ). Indeed, if F is the Fréchet
filter of this sequence, it is easy to check that

gF (x) = [0, 1], x ∈ [0, 1],

which is obviously not quasiminimal.
On the other hand, if a subsequence qnk

converges to some q ∈ [0, 1], the sequence
fnk

converges to 0. Indeed, if we set

gk(x) =

{
{fnl

(x) : l ≥ k}, x ∈ [0, 1] \ {q},
[0, 1], x = q,

we get a decreasing sequence of usco maps such that gk ⊃ fnk
for each k. Further,∩

k∈N

gk(x) =

{
[0, 1], x = q,

{0}, x ∈ [0, 1] \ {q}.

This usco map is clearly quasiminimal and the only minimal usco contained in it is
the constant zero function. Thus fnk

converges to 0 by Theorem 11.
As each subsequence of qn has a further convergent subsequence, we get that each

subsequence of fn has a further subsequence converging to 0. If the convergence
were a topological one, it would imply that fn converge to 0 as well. But it is not
the case by the first paragraph, hence the convergence is not a topological one. �

Theorem 14. The convergence given in Definition 8 is stable with respect to re-
strictions to open sets, that is, if a filter F on M(X,Y ) converges to f ∈ M(X,Y )
then for any open subset D of X the filter F|D generated by the restrictions {F |D :
F ∈ F}, where F |D = {h|D : h ∈ F} ⊂ M(D,Y ), converges on D to the restriction
of the limit f |D.

Proof. The restriction of a minimal usco to an open set is also a minimal usco, [10,
Lemma 2]. Therefore F|D is a filter on M(D,Y ) and f |D ∈ M(D,Y ).

Set

Φ = {g|D : g is a usco map, [g] ∈ F}.
Then Φ is a family of usco maps from D to Y . Further,

[Φ] = {[h] : h ∈ Φ} ⊂ F|D.
Indeed, we have

[g]|D = {h|D : h ∈ [g]} ⊂ [g|D]
for any usco map g. Obviously f |D ∈

∩
[Φ]. It remains to show that

∩
[Φ] has no

more elements. Let h ∈
∩
[Φ] be any element. Set

ψ(x) =

{
h(x), x ∈ D,

gF (x), x ∈ X \D.

Then ψ is usco by Lemma 2. Further, ψ ⊂ gF , and hence f ⊂ ψ. It follows that
f |D ⊂ h, hence f |D = h. This completes the proof. �
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4. Relationship to pointwise convergence

In this section we give some relations of the convergence in M(X,Y ) to the
pointwise convergence.

Theorem 15. Let X be a Baire space, fn be a bounded sequence in M(X,Y ) and
φ : X → Y be a quasiminimal usco with [φ] = {f}. Suppose that for each x ∈ X
the sequence of compact sets fn(x) cumulates at φ(x), i.e. for each open set U ⊂ Y
containing φ(x) there is some n0 ∈ N such that fn(x) ⊂ U for n ≥ n0. Then the
sequence fn converges to f in M(X,Y ).

Proof. Let gn be the intersection of all usco maps containing fk for k ≥ n and let
g be the intersection of all gn’s. As the sequence fn is bounded, gn’s and g are
well-defined usco maps. By Theorem 11 it suffices to prove that [g] = {f}.

Choose h ∈ [g] arbitrary. Suppose that h ̸= f . Then there is some x0 ∈ X such
that h(x0)∩φ(x0) = ∅. Indeed, otherwise h∩φ would be a usco map contained in
h and hence we would have h ∩ φ = h, i.e. h ⊂ φ. But then necessarily h = f .

As Y is Hausdorff, there are disjoint open sets V1 ⊃ φ(x0) and V2 ⊃ h(x0).
Further, there is an open neighborhood U of x0 such that φ(U) ⊂ V1 and h(U) ⊂ V2.
For each n ∈ N set

Fn = {x ∈ X : (∀k ≥ n)(fk(x) \ V2 ̸= ∅)}.

Then each Fn is a closed subset of X. Moreover, the sets Fn cover U . Indeed, if
x ∈ U , then φ(x) ⊂ V1. Hence there is some n such that for each k ≥ n we have
fk(x) ⊂ V1. Thus x ∈ Fn. As X is a Baire space, U is non-meager and hence there
is some n ∈ N such that Fn ∩ U has nonempty interior. It means that there is a
nonempty open set W ⊂ U such that fk(x) \ V2 ̸= ∅ whenever k ≥ n and x ∈ W .
Hence, by the minimality of fk we get (using Lemma 3) that fk(W ) ∩ V2 = ∅ for
each k ≥ n. Therefore, if we define

g̃n(x) =

{
gn(x) \ V2, x ∈W,

gn(x), x ∈ X \W,

we get a usco map containing fk for k ≥ n. Thus g̃n = gn. As g ⊂ gn, we get that
g(x)∩V2 = ∅ for each x ∈W , which is a contradiction with the assumption h ∈ [g].
This completes the proof. �

As a corollary we get the following assertions on sequences of continuous func-
tions.

Corollary 16. Let X be a Baire space, fn be a sequence of continuous functions
bounded in M(X,Y ).

(i) If fn pointwise converges to a continuous function f , then fn converges to
f in M(X,Y ).

(ii) If f ∈ M(X,Y ) is such that the sequence fn(x) converges to an element of
f(x) for each x ∈ X, then fn converges to f in M(X,Y ).

The following example shows that all assumptions in Theorem 15 are needed.
Namely, one can drop neither the assumption that the sequence is bounded (even
if X is compact), nor the assumption that X is a Baire space (even if Y is compact
and hence all filters are bounded). Further, Theorem 15 is not true for nets, even
if both X and Y are compact.
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Example 17.

1. There is a sequence of continuous functions fn : [0, 1] → R pointwise con-
verging to 0 which is unbounded in M([0, 1],R).

2. There is a sequence of continuous functions fn : Q → [0, 1] pointwise con-
verging to 0 which is not convergent in M(Q, [0, 1]).

3. There is a net of continuous functions fν : [0, 1] → [0, 1] pointwise converg-
ing to 0 which is not convergent in M([0, 1], [0, 1]).

Proof. 1. It is sufficient to take the sequence

fn(x) =

{
n(1− 2n|x− 1

2n |), x ∈ [0, 1
n ],

0 otherwise.

2. Let qn, n ∈ N, be an enumeration of Q. For each n ∈ N choose a continuous
function fn : Q → [0, 1] such that

fn(x) =

{
0 x ∈ {q1, . . . , qn},
1 x ∈ Q \

∪n
k=1(qk −

1
n2 , qk +

1
n2 ).

Then fn pointwise converge to 0. Further, fix n ∈ N and a usco map g : Q → [0, 1]
containing fm for m ≥ n. Then 0 ∈ g(x) for each x ∈ Q. Moreover, 1 ∈ g(x) for
each

x ∈
∪
m≥n

(
Q \

m∪
k=1

(
qk −

1

m2
, qk +

1

m2

))
= Q \

∩
m≥n

m∪
k=1

(
qk −

1

m2
, qk +

1

m2

)
.

As
∩
m≥n

∪m
k=1[qk −

1
m2 , qk +

1
m2 ] is a closed subset of R of Lebesgue measure zero,

its complement is an open dense set. Therefore 1 ∈ g(x) for all x from a dense
subset of Q, and thus for all x ∈ Q.

It follows that {0, 1} ⊂ g(x) for each x ∈ Q and hence the sequence fn is not
convergent in M(Q, [0, 1]) by Theorem 11.

3. For any nonempty finite set A ⊂ [0, 1] choose a continuous function fA :
[0, 1] → [0, 1] such that

fA(x) =

{
0 x ∈ A,

1 x ∈ [0, 1] \
∪
a∈A

(
a− 1

|A|2 , a+
1

|A|2

)
,

where |A| denotes the cardinality of A. If we consider finite subsets of [0, 1] ordered
by inclusion, the net fA pointwise converges to 0. Moreover, the net fA is not
convergent in M([0, 1], [0, 1]). Indeed, let B ⊂ [0, 1] be a nonempty finite set and
g : [0, 1] → [0, 1] be a usco map containing fA for each A ⊃ B. Then 0 ∈ g(x) for
each x ∈ [0, 1]. Further, 1 ∈ g(x) for each

x ∈
∪
A⊃B

(
[0, 1] \

∪
a∈A

(
a− 1

|A|2
, a+

1

|A|2

))

= [0, 1] \
∩
A⊃B

∪
a∈A

(
a− 1

|A|2
, a+

1

|A|2

)
Again,

∩
A⊃B

∪
a∈A(a−

1
|A|2 , a+

1
|A|2 ) is a set of Lebesgue measure zero, hence the

complement is dense in [0, 1]. Therefore, 1 ∈ g(x) for all x from a dense subset of



10 R. ANGUELOV AND O. F. K. KALENDA

[0, 1] and thus for all x ∈ [0, 1]. It follows that {0, 1} ⊂ g(x) for all x ∈ [0, 1] and so
the net fA does not converge by Theorem 11. �

In the next theorem we give a characterization of the convergence for the case
whenX is a Baire space and Y a metric space. To formulate it we need the following
natural notation.

Let F ⊂ M(X,Y ). For a given x ∈ X, F (x) is the set

F (x) =
∪

{f(x) : f ∈ F}

Let F be a filter on M(X,Y ). Then for every x ∈ X

{F (x) : F ∈ F}
is a filter base on Y . Denote by F(x) the filter it generates.

Recall that GF denotes the filter generated by the family

{[g] : g is a usco map, [g] ∈ F}
(see Remark 9.2).

Theorem 18. Let X be a Baire space and Y be a metric space with metric ρ. Let
F be a filter on M(X,Y ). Then F converges to f ∈ M(X,Y ) if and only if there
exists a dense (equivalently residual) subset D of X such that for every x ∈ D

(i) f(x) is a singleton, that is, f(x) ∈ Y ;
(ii) GF (x) converges to f(x) with respect to the metric ρ.

Proof. As F → f , the usco map gF is quasiminimal and [gF ] = {f}. By Lemma 7
there is a residual (and hence dense) set D ⊂ X such that gF (x) = f(x) is a
singleton for each x ∈ D.

Fix x ∈ D. By the previous paragraph we have

{f(x)} =
∩

{g(x) : g is a usco map, [g] ∈ F}.

If g is a usco map such that [g] ∈ F , then

g(x) ⊃
∪

{h(x) : h ∈ [g]} = [g](x) ∈ GF (x).

As these g(x)’s are compact subsets of Y belonging to GF (x) and their intersection
is just {f(x)}, we get GF (x) → f(x).

Conversely suppose that D ⊂ X is dense and for each x ∈ D the conditions
(i) and (ii) hold. It follows from the condition (ii) that F is bounded in M(X,Y )
and hence the mapping gF is well-defined. It follows easily from (i) and (ii) that
gF (x) = f(x) for x ∈ D. Therefore gF is quasiminimal (Lemma 5) and [gF ] = {f}
(Lemma 4), i.e. F → f . This completes the proof. �

5. Convergence in M(X,R) and the order convergence

In this section we show that the convergence in M(X,R) is equivalent to the
order convergence with respect to the natural partial order on M(X,R). Before
giving the definitions and stating the equivalence we show a natural correspondence
of the space M(X,R) and the space H(X,R) of Hausdorff continuous functions (see
[12, 1]).

We start by the following obvious lemma.

Lemma 19.
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• Let g : X → R be a usco map. Then the map x 7→ max g(x) is upper
semicontinuous on X and the map x 7→ min g(x) is lower semicontinuous
on X.

• Let f1 : X → R be a lower semicontinuous function and f2 : X → R be an
upper semicontinuous function such that f1 ≤ f2 on X. Then the set-valued
map x 7→ [f1(x), f2(x)] is usco.

Let f ∈ M(X,R). We define the following two real functions on X:

f(x) = min f(x)

f(x) = max f(x)

By the previous lemma f is lower semicontinuous and f is upper semicontinuous.
Further, we define a map fC : X → R by

fC(x) = [f(x), f(x)].

By Lemma 19 it is a usco map. Moreover, we have the following.

Lemma 20.

(i) If f, g ∈ M(X,R) are distinct, then fC(x) ∩ gC(x) = ∅ for some x ∈ X.
(ii) For each f ∈ M(X,R) we have [fC ] = {f}.
(iii) For each f ∈ M(X,R) the usco map fC is minimal within the convex valued

(i.e., interval-valued) usco maps.

Proof. (i) Let f and g be distinct elements of M(X,R). Then there is some x0 ∈ X
with f(x0)∩g(x0) = ∅ (otherwise f∩g would be a usco contained both in f and g and
hence we would have f = g = f ∩ g). Let a = max g(x0) and b = max f(x0). Then
a ̸= b, we can suppose without loss of generality that a < b. Choose some c ∈ (a, b).
As g is usco, there is an open neighborhood U of x0 such that g(U) ⊂ (−∞, c).
We have f(U)∩ (c,+∞) ̸= ∅, and hence by Lemma 3 there is a nonempty open set
V ⊂ U with f(V ) ⊂ (c,+∞). It follows that fC(x) ∩ gC(x) = ∅ for any x ∈ V .

(ii) This follows immediately from (i).
(iii) Let g ⊂ fC be an interval-valued usco. By (ii) we have f ∈ [g]. Hence it

follows from the definition of fC that fC ⊂ g. �
It is easy to check that the minimal interval-valued usco maps are exactly the

Hausdorff continuous functions in the sense of [12]. Hence, due to the previous
lemma the mapping f 7→ fC is a bijection of M(X,R) onto H(X,R). On the set
H(X,R) there is a natural partial order (see [1]). We define a partial order on
M(X,R) using the correspondence f 7→ fC :

For f, g ∈ M(X,R) we have

(7) f ≤ g ⇐⇒ f(x) ≤ g(x), f(x) ≤ g(x), x ∈ X.

Using the minimality of f and g it is easy to see that either one of the inequalities
on the right hand side above will suffice, that is, we have

(8) f ≤ g ⇐⇒ f(x) ≤ g(x), x ∈ X ⇐⇒ f(x) ≤ g(x), x ∈ X.

Indeed, let f ≤ g on X. The function h(x) = min{f(x), g(x)} is upper semicontin-
uous and clearly

f ≤ h ≤ f

on X. Hence the map x 7→ [f(x), h(x)] is an interval-valued usco (see Lemma 19)

contained in fC . Then it is equal to fC by Lemma 20. Hence h = f , which means
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f ≤ g on X. This proves one implication, the inverse one can be proved in the
same way.

Since the mapping f 7→ fC is an order isomorphism ofM(X,R) onto H(X,R) the
set M(X,R) has the same order properties as H(X,R). For example, since H(X,R)
is Dedekind order complete, see [1], M(X,R) is also Dedekind order complete. In
particular this implies that M(X,R) is a lattice.

The following theorem shows an essential similarity between the the mappings
in M(X,R) and the usual continuous real valued functions on X. It follows from
the respective statement for Hausdorff continuous functions, see [1, Theorem 4].

Theorem 21. Let f, g ∈ M(X,R) and let D be a dense subset of X. Then

f |D ≤ g|D =⇒ f ≤ g

Next we will establish a link between the order convergence on M(X,R) with
respect to the order (7) and the convergence structure λ. Let us recall the definition
for order convergence of filters. For a filter F on M(X,R) we consider the set of
lower bounds

F− = {ϕ ∈ M(X,R) : ∃F ∈ F : ϕ ≤ h for all h ∈ F}

and the set of upper bounds

F+ = {ψ ∈ M(X,R) : ∃F ∈ F : ψ ≥ h for all h ∈ F}.

We say that the filter F order converges to f ∈ M(X,R) if F− ̸= ∅, F+ ̸= ∅ and

(9) f = supF− = inf F+.

Remark 22. Let us notice that ϕ ∈ F− and ψ ∈ F+ if and only if the order
interval [ϕ, ψ] belongs to F . Hence a filter F order converges to f if and only if

{f} =
∩

{[ψ, ϕ] : ψ, ϕ ∈ M(X,R), [ψ, ϕ] ∈ F}

Theorem 23. A filter F on M(X,R) order converges to f ∈ M(X,R) iff F ∈
λ(f).

Proof. Let F order converge to f . For arbitrary ϕ ∈ F− and ψ ∈ F+ we have
ϕ ≤ ψ. Hence the usco map hψ,ϕ : x 7→ [ϕ(x), ψ(x)] is well defined on X and
[hψ,ϕ] ∈ F . Due to (9) we have that f is the only minimal usco contained in the
map

φ =
∩

{hϕ,ψ : ϕ ∈ F−, ψ ∈ F+} : x 7→
∩

ϕ∈F−, ψ∈F+

[ϕ(x), ψ(x)], x ∈ X.

Since gF ⊂ φ the map gF is quasiminimal and contains f . Therefore F ∈ λ(f).
For the inverse implication assume that F ∈ λ(f). It is easy to see that

(10) gF (x) = sup{g(x) : g is a usco map, [g] ∈ F}.

For a given usco map g, denote by αg the unique minimal usco contained in the
map x 7→ [g(x), g∗(x)], where g∗ is the upper semicontinuous envelope of g, i.e.
g∗ is the pointwise infimum of all upper semicontinuous functions greater then g.

Clearly αg is a lower bound of [g]. Hence the set F− is not empty. Furthermore
f = αgF . Then it follows from (10) that

(11) f = sup{αg : g is a usco map, [g] ∈ F} ≤ supF−.
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In a similar way we prove that F+ is not empty and that

(12) f ≥ inf F+.

Using that supF− ≤ inf F+ and the inequalities (11) and (12) we obtain (9). Hence
F order converges to f . �

Remark 24. Let us note that the infimum and the supremum in (9) are not the
pointwise ones. More precisely, we have that f is the unique minimal usco map
contained in the quasiminimal usco map

x 7→ [ sup
ϕ∈F−

ϕ(x), inf
ψ∈F+

ψ(x)] , x ∈ X.

Furthermore, if X is a Baire space there exists a residual subset D of X such that
for all x ∈ D the value of f is a singleton and

f(x) = sup
ϕ∈F−

ϕ(x) = inf
ψ∈F+

ψ(x)

Remark 25. The concept of order convergence is better known in the context of
sequences, [9]. Let us recall that a sequence (fn) on M(X,R) order converges to
f ∈ M(X,R) if there exist an increasing sequence (αn) and a decreasing sequence
(βn) on M(X,R) such that

αn ≤ fn ≤ βn,(13)

supαn = inf βn = f.(14)

Using the Dedekind completeness of M(X,R) it is easy to see that the order con-
vergence of filters given through (9) induces the order convergence of sequences
defined above. Therefore, the class of order convergent sequences coincides with
the class of convergence sequences in λ.

Remark 26. It was shown in [4] that the sequential order convergence on H(X,R)
cannot be induced by topology. Using that the mapping f 7→ fC is an order iso-
morphism from M(X,R) to H(X,R), this also holds true for the order convergence
on M(X,R). Since the convergence structure λ induces the sequential order con-
vergence on M(X,R), see Theorem 23 and Remark 25, the convergence structure
λ on M(X,R) is not topological.

6. Uniform convergence structure on M(X,Y ).

In this section we assume that X is a Baire space and Y is a metric space with
a metric ρ. In this case a usco mapping f : X → Y is quasiminimal if and only if
it is singlevalued at points of a dense (equivalently residual) set (Lemma 5 and 7).
We will need the following lemma on product mappings.

Lemma 27. Let f and g be usco mappings from X to Y and f × g : X → Y × Y
be defined by (f × g)(x) = f(x)× g(x). Then the following is true.

(i) f × g is usco.
(ii) If f and g are quasiminimal then f × g is quasiminimal as well.
(iii) f × g need not be minimal even if f and g are minimal.

Proof. The assertion (i) is well-known and easy to see. To show (ii) it is enough to
notice that f × g is singlevalued at points of a residual set whenever both f and g
have that property.



14 R. ANGUELOV AND O. F. K. KALENDA

To show (iii) set X = [0, ω], Y = [0, 1] and define

f(x) = g(x) =


{0}, x < ω even,

{1}, x < ω odd,

{0, 1}, x = ω.

Then f and g are minimal but f × g is not minimal. �

In particular, if f, g ∈ M(X,Y ) the product mapping f × g is quasiminimal. So
we can define a mapping χ : M(X,Y )×M(X,Y ) → M(X,Y ×Y ) by the formula

{χ(f, g)} = [f × g].

Now we are ready to define a uniform convergence structure on M(X,Y ). Let
us recall that such a uniform convergence structure is a collection Υ of filters on
M(X,Y )×M(X,Y ) satisfying the following conditions (see [5]):

• ⟨f⟩ × ⟨f⟩ ∈ Υ for all f ∈ M(X,Y ).(15)

• U ∩ V ∈ Υ whenever U ,V ∈ Υ.(16)

• If U ∈ Υ , then V ∈ Υ for each filter V on

M(X,Y )×M(X,Y ) such that V ⊇ U .(17)

• If U ∈ Υ then U−1 ∈ Υ.(18)

• For all U ,V ∈ Υ one has U ◦ V ∈ Υ whenever

the composition U ◦ V exists.(19)

Recall that ⟨f⟩ denotes the filter generated by {{f}} and that if F1 and F2 are
filters on M(X,Y ), F1 × F2 denotes the filter on M(X,Y ) × M(X,Y ) which is
generated by {F1 × F2 : F1 ∈ F1, F2 ∈ F2}.

In (18) above we use the common notation: If U is a subset of M(X,Y ) ×
M(X,Y ) then

U−1 = {(f, g) : (g, f) ∈ U}.
For any filter U on M(X,Y ) × M(X,Y ) we have U−1 = {U−1 : U ∈ U}. The
operation composition used in (19) is defined as follows. For any two subsets U
and V of M(X,Y )×M(X,Y )

U ◦ V = {(f, g) ∈ M(X,Y )×M(X,Y ) :

∃h ∈ M(X,Y ) : (f, h) ∈ V, (h, g) ∈ U}.

If U and V are filters on M(X,Y )×M(X,Y ) and U ◦ V ̸= ∅ for all U ∈ U and all
V ∈ V then the filter generated by {U ◦V : U ∈ U , V ∈ V} is denoted by U ◦V and
called the composition filter of U and V. In this case one says that the composition
U ◦ V exists.

Denote by ∆ the diagonal in Y × Y and set

D = {ϕ ∈ M(X,Y × Y ) : ϕ(X) ⊂ ∆}.
Let Υ be the family of all filters U on M(X,Y )×M(X,Y ) such that

[gχ(U)] ⊂ D.
Let us remark that by χ(U) we denote the filter generated by {χ(U) : U ∈ U}.
Further recall that gχ(U) is the intersection of all usco maps g such that [g] ∈ χ(U)
(see Remark 9.3). It follows that χ(U) is bounded whenever U ∈ Υ.
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We will show that Υ is a uniform convergence structure on M(X,Y ) which
induces the convergence structure defined in Definition 8. To do this we need two
lemmata.

Lemma 28. Let F1 and F2 be filters on M(X,Y ).

(i) The filter χ(F1 × F2) is bounded in M(X,Y × Y ) if and only if both F1

and F2 are bounded in M(X,Y ).
(ii) Gχ(F1×F2) ⊂ χ(GF1 × GF2).

Proof. (i) Suppose that F1 and F2 are bounded in M(X,Y ). Then there are usco
maps g1 and g2 such that [g1] ∈ F1 and [g2] ∈ F2. Then

[g1 × g2] ⊃ χ([g1]× [g2]) ∈ χ(F1 ×F2),

hence χ(F1 ×F2) is bounded, too.
Conversely, let χ(F1 × F2) be bounded. Then there is a usco map ϕ with [ϕ] ∈

χ(F1×F2). Denote by p1 and p2 the projections of Y ×Y onto the first and second
coordinates, respectively. Then gj = pj ◦ ϕ is a usco mapping from X to Y for
j = 1, 2. Moreover, ϕ ⊂ g1 × g2. Hence [g1 × g2] ∈ χ(F1 × F2). It means that
there are Fj ∈ Fj for j = 1, 2 such that χ(F1 × F2) ⊂ [g1 × g2]. We claim that
F1 × F2 ⊂ [g1]× [g2]. Let (h1, h2) ∈ F1 × F2. By Lemma 7 there is a dense subset
D of X such that for each x ∈ D both h1(x) and h2(x) are singletons. Hence, for
each x ∈ D we have

h1(x)× h2(x) = χ(h1, h2)(x) ⊂ g1(x)× g2(x),

so hj(x) ⊂ gj(x) for j = 1, 2. It follows from Lemma 4 that fj ⊂ gj for j = 1, 2.
Hence, for i = 1, 2 we have Fj ⊂ [gj ]. Denote by fj the set-valued mapping

obtained as the closure of
∪
Fj in X × Y . By [7, Lemma 3.1.1] it is usco. Now,

clearly Fj ⊂ [fj ] and so Fj is bounded.
(ii) Let U ∈ Gχ(F1×F2). Then there is a usco mapping ϕ with [ϕ] ∈ χ(F1 × F2)

such that [ϕ] ⊂ U . Further, there are Fj ∈ Fj for j = 1, 2, such that χ(F1 × F2) ⊂
[ϕ].

Denote by fj the set-valued mapping obtained as the closure of
∪
Fj in X × Y .

In the same way as in the proof of (i) we can show that fj is a usco map. As
Fj ⊂ [fj ], we have [fj ] ∈ Fj . Therefore we will be done if we show that

χ([f1]× [f2]) ⊂ [ϕ].

Let h ∈ χ([f1] × [f2]). Then h is a minimal usco and h ⊂ f1 × f2. Suppose that
h ̸⊂ ϕ. Choose x0 ∈ X and (y0, z0) ∈ h(x0) \ϕ(x0). Let V1 and V2 be disjoint open
subset of Y × Y with ϕ(x0) ⊂ V1 and (y0, z0) ∈ V2. Choose W1, W2 open subsets
in Y such that (y0, z0) ∈W1 ×W2 ⊂ V2.

As ϕ is usco, there is U0, a neighborhood of x0 such that ϕ(U0) ⊂ V1. As h
is minimal, there is (by Lemma 3) a nonempty open set U1 ⊂ U0 with h(U1) ⊂
W1 × W2. Choose some x1 ∈ U1 and (y1, z1) ∈ h(x1). Then y1 ∈ f1(x1). By
the definition of f1 there is some g1 ∈ F1, x2 ∈ U1 and y2 ∈ g1(x2) ∩ W1. As
g1 is minimal, there is (again by Lemma 3) a nonempty open set U2 ⊂ U1 with
g1(U2) ⊂ W1. Similarly there is some g2 ∈ F2 and a nonempty open set U3 ⊂ U2

such that g2(U3) ⊂W2. Thus (g1×g2)(U3) ⊂W1×W2, so (g1×g2)(U3)∩ϕ(U3) = ∅.
Therefore χ(g1, g2) /∈ [ϕ], a contradiction. �
Lemma 29. Let f ∈ M(X,Y ) and F be a filter on M(X,Y ). Then ⟨f⟩ × F ∈ Υ
if and only if F → f in M(X,Y ).
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Proof. Suppose that F → f . Then F is bounded. Moreover, ⟨f⟩ is also bounded,
hence χ(⟨f⟩ × F) is bounded as well by Lemma 28.

Moreover, if g is a usco map such that [g] ∈ F , then [f × g] ∈ χ(⟨f⟩ × F). Thus

gχ(⟨f⟩×F) ⊂
∩

{f × g : g is usco, [g] ∈ F} = f × gF .

As [gF ] = {f}, we have
[gχ(⟨f⟩×F)] = [f × f ].

As the diagonal ∆ is closed in Y × Y and (f × f)(x) ∩∆ ̸= ∅ for each x ∈ D, the
mapping x 7→ (f × f)(x)∩∆ is usco (by Lemma 2). Hence χ(f, f)(x) ⊂ ∆ for each
x ∈ D, i.e. χ(f, f) ∈ D. This completes the proof that χ(⟨f⟩ × F) belongs to Υ.

Conversely, suppose that ⟨f⟩ × F belongs to Υ. Then the filter χ(⟨f⟩ × F) is
bounded, and hence F is bounded as well by Lemma 28. We have

[gχ(⟨f⟩×F)] ⊂ D.
Moreover, by Lemma 28(ii) we get

[gχ(⟨f⟩×F)] ⊃
∩

{χ({f} × [g]) : g is usco, [g] ∈ F}

⊃ χ
(∩

{{f} × [g] : g is usco, [g] ∈ F}
)
= χ({f} × [gF ]),

hence
χ({f} × [gF ]) ⊂ D.

If h ∈ [gF ] is different from f , then f(x)∩ h(x) = ∅ for some x ∈ X (by Lemma 4).
But this implies that χ(f, h) /∈ D, a contradiction. Hence [gF ] = {f}, i.e. F →
f . �
Theorem 30. The collection of filters Υ is a uniform convergence structure in-
ducing the convergence structure on M(X,Y ).

Proof. To prove that Υ is a uniform convergence structure we need to show that
Υ satisfies the properties (15)–(19). The fact that Υ generates the convergence
structure on M(X,Y ) then follows immediately from Lemma 29.

The properties (17) and (18) are obvious. The property (15) follows immediately
from Lemma 29 as ⟨f⟩ → f .

Let us show the property (16). Let U and V belong to Υ. First we show that

χ(U ∩ V) = χ(U) ∩ χ(V).
Indeed, the inclusion ⊂ is obvious. To prove the inverse let us choose an element
S in the set on the right-hand side. Then there are U ∈ U and V ∈ V such that
χ(U) ⊂ S and χ(V ) ⊂ S. Then U ∪ V ∈ U ∩ V and

χ(U ∪ V ) = χ(U) ∪ χ(V ) ⊂ S,

hence S ∈ χ(U ∩ V). Now, in the same way as in the proof of Theorem 10 one can
easily show that χ(U ∩ V) is bounded and, moreover,

gχ(U∩V) ⊂ gχ(U) ∪ gχ(V).

Therefore it is enough to prove the following claim:

(20) ϕ, ψ : X → Y × Y usco maps, [ϕ] ∪ [ψ] ⊂ D ⇒ [ϕ ∪ ψ] ⊂ D.
Suppose that h ∈ [ϕ∪ψ]\D. Choose x0 ∈ X and (y1, y2) ∈ h(x0) such that y1 ̸= y2.
Find disjoint open sets V1, V2 ⊂ Y such that y1 ∈ V1 and y2 ∈ V2. By Lemma 3
there is a nonempty open set U0 ⊂ X such that h(U0) ⊂ V1 × V2.
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We claim that there is a nonempty open set U1 ⊂ U0 such that either h|U1 ⊂ ϕ|U1

or h|U1 ⊂ ψ|U1 . Indeed, suppose that h|U0 ̸⊂ ϕ|U0 . As h|U0 is minimal ([10, Lemma
2]) by Lemma 4 we get a nonempty open set U1 ⊂ U0 with ϕ(U1) ∩ h(U1) = ∅. As
h ⊂ ϕ ∪ ψ, it follows h|U1 ⊂ ψ|U1 which proves our claim.

So suppose, say, that h|U1 ⊂ ϕ|U1 . Define a mapping ϕ̃ by

ϕ̃(x) =

{
ϕ(x), x ∈ X \ U1,

h(x), x ∈ U1.

By Lemma 2 it is a usco map. Further, [ϕ̃] ⊂ [ϕ] and [ϕ̃]∩D = ∅ (as ϕ̃(U1) ⊂ V1×V2),
a contradiction completing the proof of (20).

It remains to prove the condition (19). Let U and V be elements of Υ such that
U ◦ V exists.

First let us show that χ(U◦V) is bounded. We know that both χ(U) and χ(V) are
bounded, and hence χ(U ∩ V) is bounded as well (by the already proved condition
(16)). Hence there is a usco map ϕ such that [ϕ] ∈ χ(U ∩ V). Let α = p1 ◦ ϕ and
α = p2◦ϕ (where p1 and p2 are projections of Y ×Y , see the proof of Lemma 28(i)).
Then α and β are usco maps and [α×β] ∈ χ(U ∩V). Hence there is some U ∈ U ∩V
such that χ(U) ⊂ [α× β]. We will show that χ(U ◦ U) ⊂ [α× β] as well.

Let (f, g) ∈ U ◦ U . Then there is h ∈ M(X,Y ) such that (f, h) ∈ U and
(h, g) ∈ U . Thus both χ(f, h) and χ(h, g) are contained in α×β. By Lemma 7 there
is a dense set D ⊂ X such that for each x ∈ D all the values f(x), h(x) and g(x) are
singletons. Hence for x ∈ D we have f(x) ⊂ α(x) and g(x) ⊂ β(x). In particular,
χ(f, g)(x) = f(x) × g(x) ⊂ (α × β)(x) for x ∈ D. Therefore χ(f, g) ⊂ α × β by
Lemma 4.

This completes the proof that χ(U ◦U) ⊂ [α×β] and hence χ(U ◦V) is bounded.
To finish the proof that U◦V belongs to Υ choose α ∈ M(X,Y ×Y )\D arbitrary.

Find x0 ∈ X and distinct points y0, z0 ∈ Y such that (y0, z0) ∈ α(x0). Let c > 0 be
such that c < ρ(y0, z0). By the minimality of α and Lemma 3 there is a nonempty
open set U0 ⊂ X such that

α(U0) ⊂ {(y, z) ∈ Y × Y : ρ(y, z) > c}.
By the already proved condition (16) we know that [gχ(U∩V)] ⊂ D. Thus there is
some x1 ∈ U0 such that

gχ(U∩V)(x1) ∩ {(y, z) ∈ Y × Y : ρ(y, z) ≥ c
2} = ∅.

Indeed, otherwise

h(x) =

{
gχ(U∩V)(x) ∩ {(y, z) ∈ Y × Y : ρ(y, z) ≥ c

2}, x ∈ U0,

gχ(U∩V)(x), x ∈ X \ U0,

would be a usco mapping (by Lemma 2) contained in gχ(U∩V) but not containing
any element of D, a contradiction. Now, by the definition of gχ(U∩V) there is some
usco map ϕ with [ϕ] ∈ χ(U ∩ V) such that

ϕ(x1) ∩ {(y, z) ∈ Y × Y : ρ(y, z) ≥ c
2} = ∅.

As ϕ is usco, there is an open set U1 with x1 ∈ U1 ⊂ U0 such that

ϕ(U1) ∩ {(y, z) ∈ Y × Y : ρ(y, z) ≥ c
2} = ∅.

There is some M ∈ U ∩ V such that χ(M) ⊂ [ϕ]. Then we have

(21) χ(M ◦M) ⊂ [ϕ ⋆ ϕ],
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where ϕ ⋆ ϕ is the usco mapping defined by

(ϕ ⋆ ϕ)(x) = ϕ(x) ◦ ϕ(x).
Let us show first that ϕ ⋆ ϕ is a usco mapping. We will use [7, Lemma 3.1.1]. Let
xτ be a net in X converging to some x ∈ X and let (yτ , zτ ) ∈ (ϕ ⋆ ϕ)(xτ ). For
each τ there is some uτ ∈ Y such that (yτ , uτ ) ∈ ϕ(xτ ) and (uτ , zτ ) ∈ ϕ(xτ ). As
ϕ is usco, there is a subnet (yν , uν) of (yτ , uτ ) converging to some (y, u) ∈ ϕ(x).
Using once more that ϕ is usco, we obtain a subnet (uµ, zµ) of (uν , zν) converging
to some (u, z) ∈ ϕ(x) (note that uν converges to u, and hence the limit of uµ is also
u). Then (xµ, zµ) converges to (x, z) and (x, z) ∈ ϕ(x) ◦ ϕ(x).

Let us proceed to the proof of (21). Pick (f, g) ∈ M ◦ M . Then there is
h ∈ M(X,Y ) such that both (f, h) and (h, g) belong to M . Hence both χ(f, h)
and χ(h, g) are contained in ϕ. By Lemma 7 there is a dense set D ⊂ X such that
all the mappings f, g, h are singlevalued on D. Let x ∈ D. Then f(x)×h(x) ⊂ ϕ(x)
and h(x)× g(x) ⊂ ϕ(x), hence

f(x)× g(x) ⊂ ϕ(x) ◦ ϕ(x) = (ϕ ⋆ ϕ)(x).

Therefore χ(f, g)(x) ⊂ (ϕ ⋆ ϕ)(x) for each x ∈ D. It follows from Lemma 4 that
χ(f, g) ⊂ ϕ ⋆ ϕ which completes the proof of (21).

Hence ϕ⋆ϕ is a usco map and [ϕ⋆ϕ] ∈ χ(U◦V). Let x ∈ U1 and (y, z) ∈ (ϕ⋆ϕ)(x).
Then there is u ∈ Y such that both (y, u) and (u, z) belong to ϕ(x). Then

ρ(y, z) ≤ ρ(y, u) + ρ(u, z) < c.

Thus (ϕ⋆ϕ)(U1)∩α(U1) = ∅. Therefore α /∈ [ϕ⋆ϕ] which completes the proof. �

An important question associated with uniform convergence spaces is their com-
pleteness, that is, the convergence of Cauchy filters. Let us recall that a filter F on
M(X,Y ) is called Cauchy if F × F ∈ Υ.

Theorem 31. The uniform convergence space (M(X,Y ),Υ) is complete.

Proof. Assume that the filter F on M(X,Y ) is Cauchy, that is, F×F ∈ Υ. Then F
is bounded by Lemma 28(i). Hence the usco map gF is well defined and nonempty
valued on X. Moreover, by Lemma 28(ii) we have

D ⊃ [gχ(F×F)] ⊃
∩

{χ([g]× [g]) : g is usco, [g] ∈ F}

⊃ χ
(∩

{[g]× [g] : g is usco, [g] ∈ F}
)
= χ([gF ]× [gF ]).

If f1, f2 are two different elements of [gF ], by Lemma 4 there is some x ∈ X
with f1(x) ∩ f2(x) = ∅, hence χ(f1, f2) /∈ D. So gF is quasiminimal and hence F
converges to the unique element of [gF ]. �

Remarks 32.

1. Notice that the definition of the uniform convergence structure Υ depends
only on the topology of Y , i.e. is the same for all equivalent metrics on Y.

2. If X is a singleton, then both M(X,Y )×M(X,Y ) and M(X,Y × Y ) can
be canonically identified with Y × Y . In this case Υ consist of those filters
U on Y × Y such that there is a compact set K ⊂ Y such that the filter
generated by the neighborhoods of the diagonal in K ×K is contained in
U . In particular, if Y is compact, Υ coincide with the (unique) uniformity
on Y .
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7. The subspace of continuous functions

The space of minimal usco maps M(X,Y ) contains a natural subspace C(X,Y )
consisting of continuous functions from X to Y . In the previous section we have
shown that the convergence space M(X,Y ) is complete for the natural uniform
convergence structure whenever X is a Baire space and Y is a metric space. There-
fore the closure of C(X,Y ) in M(X,Y ) could be viewed as a completion of C(X,Y ).
In this section we study the question when C(X,Y ) is dense in M(X,Y ).

Let us recall the definition of a closed subset of a convergence space and related
notions. A subset A of a convergence space is closed if f ∈ A whenever there is a
filter F converging to f and satisfying A ∈ F . The closure of a set A is the smallest
closed set containing A. And a set is dense if its closure is the whole space.

First we note that C(X,Y ) is not always dense in M(X,Y ).

Example 33. C(R, {0, 1}) is a proper closed subset of M(R, {0, 1}).
Proof. The mapping g defined by

g(x) =


{0}, x < 0,

{0, 1}, x = 0,

{1}, x > 0,

belongs to M(R, {0, 1}) \ C(R, {0, 1}).
Further, let us show that C(R, {0, 1}) is closed. Let F be a filter on M(R, {0, 1})

converging to some f ∈ M(R, {0, 1}) satisfying C(R, {0, 1}) ∈ F . Let g be a usco
map such that [g] ∈ F . Then [g] contains an element of C(R, {0, 1}). As C(R, {0, 1})
has only two elements (constant function 0 and constant function 1), there is one
of them contained in [g] for every g satisfying [g] ∈ F . Therefore [gF ] contains an
element of C(R, {0, 1}), which implies f ∈ C(R, {0, 1}). �

This example shows that in order to have C(X,Y ) dense in M(X,Y ), some
assumptions on Y are needed. A natural assumption of this kind is that Y is a
convex subset of a normed linear space. A partial positive result is the following
one.

Theorem 34. Let X be a Baire metric space and Y be a closed convex subset of a
Banach space. Then C(X,Y ) is dense in M(X,Y ).

Proof. Let g ∈ M(X,Y ). It follows for example from [8] that g has a selection of
the first Baire class, i.e., there is a (single-valued) function f : X → Y which is of
the first Baire class (i.e., the pointwise limit of a sequence of continuous functions)
such that f(x) ∈ g(x) for each x ∈ X.

By [13, Theorem 1.2] there is a usco map h : X → Y and a sequence of continuous
functions fn : X → Y which pointwise converges to f and fn ⊂ h for each n. (If Y
is a closed convex subset of Rd, the proof is easier and can be found in [11, Theorem
3.3].)

Note that the sequence fn is bounded in M(X,Y ). It follows from Corollary 16
that the sequence fn converges to g in M(X,Y ). This completes the proof. �

We do not know whether the result on density is valid in more general situations.
Let us formulate some of these problems.

Question 35. Let X be a Baire metric space and Y a convex subset of a normed
linear space. Is C(X,Y ) dense in M(X,Y )?
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Note that in this situation every g ∈ M(X,Y ) has a selection of the first Baire
class (this follows for example from [14, Theorem 2.2]) and Corollary 16 could be
applied as well. The missing ingredient is the analogue of [13, Theorem 1.1]. It
seems to be unknown whether such an analogue holds.

Another problem is whether we can drop the assumption of metrizability of X.

Question 36. Let X be a Baire topological space and Y a convex subset of a normed
linear space. Is C(X,Y ) dense in M(X,Y )?

In this case sequences are not enough as we can see from the following example.
However, to prove the density of C(X,Y ) we are not obliged to use sequences. Nets
or filters are allowed as well. But then some other technics should be used, as
Theorem 15 (and Corollary 16) is true only for sequences (due to Example 17).

Example 37. There is a compact Hausdorff space X and a proper subset A ⊂
M(X, [0, 1]) which contains C(X, [0, 1]) and is closed to taking limits of sequences.
Moreover, in this case C(X, [0, 1]) is dense in M(X, [0, 1]).

Proof. Let X be the ordinal interval [0, ω1] and

A = {g ∈ M(X, [0, 1]) : g(ω1) is a singleton}.
Then clearly A ⊃ C(X, [0, 1]). Further, A is a proper subset of M(X, [0, 1]) as the
mapping g : [0, ω1] → [0, 1] defined by

g(α) =


{0}, α odd non-limit ordinal,

{1}, α even non-limit ordinal,

{0, 1}, α limit ordinal,

is minimal usco and does not belong to A.
Next we shall show that A is closed to limits of sequences. Let fn be a sequence

from A converging to some f ∈ M(X, [0, 1]). It follows from Lemma 7 and Theo-
rem 18 that there is a residual subset D of X such that for all x ∈ D the values
f(x) and all fn(x)’s are singletons and, moreover, fn(x) → f(x) in the topology of
[0, 1]. Note that the set D must contain all the isolated ordinals.

Further note, that for any h ∈ A there is α < ω1 such that h(x) = h(ω1) for all
x ∈ [α, ω1]. Hence, to each fn we can associate such an αn. Let α be the supremum
of αn’s. Then for each isolated ordinal x ∈ [α, ω1] we have

f(x) = lim
n→∞

fn(x) = lim
n→∞

fn(ω1).

Therefore f assumes for each isolated x ∈ [α, ω1] the same singleton value, and
hence f(ω1) is a singleton as well. This completes the proof that A is closed to
taking limits of sequences.

Now we will prove that C(X, [0, 1]) is dense in M(X, [0, 1]).
Take any g ∈ M(X, [0, 1]). For each α < ω1 define the mapping

gα(x) =

{
g(x), x ∈ [0, α],

{0}, x ∈ (α, ω1].

Then each gα is a minimal usco belonging to A. Moreover, the net gα converges to
g. To see this we use Theorem 11. We define usco maps hα by the formula

hα(x) =

{
g(x), x ∈ [0, α],

g(x) ∪ {0}, x ∈ (α, ω1].
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Then gα ⊂ hα and hβ ⊂ hα for each α ≤ β < ω1. Further, the intersection of all
hα’s is the usco map

h(x) =

{
g(x), x ∈ [0, ω1),

g(x) ∪ {0}, x = ω1.

It is clear that h is quasiminimal and [h] = {g}.
This shows that A is dense in M([0, α], [0, 1]). We conclude by showing that

C(X, [0, 1]) is dense in A. Let g ∈ A. Then there is α < ω1 such that g(x) = g(ω1)
for each x ∈ (α, ω1]. Then g|[0,α] belongs toM([0, α], [0, 1]). As [0, α] is a metrizable
compact space, there is (by the proof of Theorem 34) a sequence of continuous
functions fn : [0, α] → [0, 1] converging to g|[0,α] in M([0, α], [0, 1]). Extend the
functions fn to functions hn : X → [0, 1] by defining h(x) = g(ω1) for x > α. Then
hn are continuous and clearly converge to g in M(X, [0, 1]). This completes the
proof. �

In fact, although the assumption that the domain space X is Baire is quite
natural, we do not know the answer to the following question.

Question 38. Is there a topological space X and a convex subset Y of a normed
linear space such that C(X,Y ) is not dense in M(X,Y )?
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