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Abstract

The LULU operators, well known in the nonlinear multiresolution
analysis of sequences, are extended to functions defined on a contin-
uous domain, namely, a real interval. We show that the extended
operators replicate the essential properties of their discrete counter-
parts. More precisely, they form a fully ordered semi-group of four
elements, preserve the local trend and the total variation.
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1 Introduction

The well known (linear-) Functional Analysis fits in appropriately in the the-
ory of linear smoothers. Typically a smoother is designed to pass sequences
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that are samplings of functions with low frequencies with minimal distortion
(error), but to map high frequencies near to the zero sequence. The least
squares norm is appropriate, for various other reasons, but also that such
smoothers then map a element xi onto weighted averages of sequence ele-
ments in a “window” around xi, say {xi−n, . . . , xi, . . . , xi+n}. The linearity
also ensures that sequences of elements that are generated identically, in-
dependently distributed from a very general symmetrical distribution e, are
rapidly mapped near zero due to the Central Limit Theorem. When we want
to smooth a sequence, we can choose to construct a convenient smoother that
is a ”bandpass” filter, and practically remove high frequencies. The design of
such filters is done in the well established theory of Digital Filters. The book
by Hamming [2] is well known and instructive. The essential background
theory is Fourier Analysis. This works well because the basic trigonometric
functions sin and cos are eigensequences of linear operators, and the “transfer
function” approximates with eigenvalues near one in the frequencies that are
to pass, and eigenvalues near 0 where the frequencies are to be reduced to
near zero.

Low pass filters should therefore marginally distort sequences that are
samplings of functions that have Fourier expansions that converge fast. This
is well known to be related to continuity of lower derivatives. Discontinuities
in low order derivatives result in slowly converging Fourier expansions and
the digital filters will remove the high frequencies, distorting significantly the
sequence of samplings. A typical bad case is isolated impulsive noise added
spuriously. This necessitates the presmoothing by nonlinear smoothers, of
which the median smoothers, popularised by Tukey, are well known. Since
eigensequence analysis is not natural, nor easily justifiable, for nonlinear
operators the lack of a theory for analysis and design was considered to be
difficult, if not impossible [11]. Design was generally essentially considered
to be an art.

Over the last twenty years a theory for Nonlinear (general) Smoothers,
that is based on order structure and min/max operations, has been developed
and demonstrated to be very consistent and useful, even able to explain
most of the “good” behaviour of the (related) median smoothers, as well as
their “enigmatic” behaviour. A monograph presenting the so-called LULU -
theory and its motivation and development appeared in 2005 [7]. The theory
is based on compositions of two types of smoothers Ln and Un. They are
Morphological Filters with special properties.
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One of the powerful ideas resulting from this theory, was the development
of Nonlinear Multiresolution Analysis. This was done using the heuristic
ideas from Fourier Analysis and Wavelet Analysis. It resulted eventually in
Discrete Pulse Transforms [4]. These transforms may turn out to be as useful
for vision as the Fourier Transforms are for hearing [8].

When applications of Wavelet Transforms (and Fourier Transforms) are
under discussion it is natural for understanding to consider samplings of
“band limited” functions as ideal candidates for such decompositions, both
for theoretical derivation and practical applications. For Nonlinear Decom-
position there has been a lack of such a relation between the theory of real
functions and the theory of the sequences that are samplings of these func-
tions. Generalizing LULU -operators and the associated theory and concepts
to functions is the first appropriate attempt towards establishing such a link.

Central in the LULU -theory for sequences are the class of locally monotone
sequences Mn defined as the sets of all sequences x that have
{xi, xi+1, . . . , xi+n+1} monotone for each index i. We need to establish nat-
ural links between these classes and classes of real functions of which the
sequences can be considered as samplings. Also natural to LULU -theory is
the Total Variation as norm [7]. There is a clue to establishing links with
standard Real Analysis, as is typically presented by Royden in the first few
chapters of his book [9]. Total Variation of functions and local monotonicity
are linked to the derivative in this theory. We seek to extend and solidify
these links with established Real Analysis of functions. To do this we, look
at the basic ideas of the LULU -theory for sequences [7]. We start directly
with the definitions of the “atoms” involved.

Given a bi-infinite sequence ξ = (ξi)i∈Z and n ∈ N the operators Ln and
Un are defined as follows

(Lnξ)i =max{min{ξi−n, ..., ξi}, min{ξi−n+1, ..., ξi+1}, ..., min{ξi, ..., ξi+n}}, i ∈ Z,

(Unξ)i =min{max{ξi−n, ..., ξi}, max{ξi−n+1, ..., ξi+1}, ..., max{ξi, ..., ξi+n}}, i ∈ Z.

In analogy with the above discrete LULU operators, for a given δ > 0 the
basic smoothers Lδ and Uδ in the LULU theory are defined for functions on
Ω through the concepts of the so called lower and upper δ-envelopes of these
functions. These definitions are given in Section 2, where it is also shown
that the operators Lδ and Uδ preserve essential properties of their discrete
counterparts. Section 3 deals with the semi-group generated by the operators
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Lδ and Uδ via composition. It is shown that Lδ and Uδ are a Matheron pair.
Hence they generate through composition a fully ordered four element semi-
group, also called a strong LULU structure. In Sections 4 and 5 we discuss
the preservation of the trend and the total variation respectively.

2 The basic smoothers Lδ and Uδ

Let A(Ω) denote the set of all bounded real functions defined on a real
interval Ω ⊆ R. Let Bδ(x) denote the closed δ-neighborhood of x in Ω, that
is, Bδ(x) = {y ∈ Ω : |x− y| ≤ δ}. The pair of mappings I, S : A(Ω) → A(Ω)
defined by

I(f)(x) = sup
δ>0

inf{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (1)

S(f)(x) = inf
δ>0

sup{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (2)

are called lower Baire, and upper Baire operators, respectively, [10]. The
fixed points of these operators are the lower and the upper semi-continuous
functions respectively. Let us recall that a function f ∈ A(Ω) is called lower
semi-continuous on Ω if for every x ∈ Ω and every m < f(x) there exists
δ > 0 such that m < f(y) for all y ∈ Bδ(x). Similarly, a function f ∈ A(Ω)
is called upper semi-continuous on Ω if for every x ∈ Ω and m > f(x) there
exists δ > 0 such that m > f(y) for all y ∈ Bδ(x).

Then the lower and upper Baire operators can be defined in the following
equivalent way. For every f ∈ A(Ω) the function I(f) is the maximal lower
semi-continuous function which is not greater than f . Hence, it is also called
lower semi-continuous envelope. In a similar way, S(f) is the smallest upper
semi-continuous function which is not less than f and is called the upper
semi-continuous envelope of f . In analogy with I(f) and S(f) we call the
functions

Iδ(f)(x) = inf{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (3)

Sδ(f)(x) = sup{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (4)

a lower δ-envelope of f and an upper δ-envelope of f , respectively.

The following operators can be considered as continuous analogues of the

4



discrete LULU operators given in the Introduction:

Lδ = S δ
2
◦ I δ

2
, Uδ = I δ

2
◦ S δ

2
. (5)

The δ-envelopes and the operators Lδ and Uδ have applications in the Ap-
proximation Theory for deriving locally monotone approximation, [1]. How-
ever, they also have roots in Mathematical Morphology. In fact, within this
theory, Iδ and Sδ are called respectively erosion and dilation with a structural
element Bδ, while Lδ and Uδ are called opening and closing with structural
element B δ

2
, e.g [11], [12]. Below are some morphological properties of Lδ

and Uδ which will be useful in what follows:

• increasing

f ≤ g =⇒ Lδ(f) ≤ Lδ(g), Uδ(f) ≤ Uδ(g); (6)

• Lδ is anti-extensive, Uδ is extensive, that is,

Lδ(f) ≤ f ≤ Uδ(f); (7)

• monotonicity with respect to δ

0 < δ1 ≤ δ2 =⇒ (Lδ1(f) ≥ Lδ2(f), Uδ1(f) ≤ Uδ2(f)); (8)

• absorbtion: for every δ1, δ2 > 0 we have

Lδ1 ◦ Lδ2 = Lmax{δ1,δ2} , Uδ1 ◦ Uδ2 = Umax{δ1,δ2}; (9)

• idempotence
Lδ ◦ Lδ = Lδ , Uδ ◦ Uδ = Uδ. (10)

The following identities, which are instrumental in deriving some of the
above properties will be useful in the sequel:

Iδ ◦ Sδ ◦ Iδ = Iδ , Sδ ◦ Iδ ◦ Sδ = Sδ. (11)

Central to the LULU theory for sequences is the concept of separator.
This concept is defined in [7] only for operators on sequences due to the
context of the book. However, it is meaningful in more general settings. In
fact, some of the axioms have been used earlier, e.g. see [11], for functions
on arbitrary domains. We give below the definition of separator within our
current context.
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Definition 1 An operator P : A(Ω) → A(Ω) is called a separator if P is

(i) invariant under horizontal and vertical translations;

(ii) positively invariant: P (αf) = αP (f), α ∈ R, α ≥ 0, f ∈ A(Ω);

(iii) idempotent: P ◦ P = P ;

(iv) co-idempotent: (id − P ) ◦ (id − P ) = id − P , where id denotes the
identity operator on A(Ω).

The operators Lδ and Uδ similarly to their discrete counterparts, are
separators. Indeed, properties (i)–(iii) are satisfied since these are properties
of the morphological opening and closing. We will show that (iv) also holds.
The co-idempotence of the operator Lδ is equivalent to Lδ ◦ (id − Lδ) = 0.
Using the inequalities (6) and (13) one can easily obtain Lδ ◦ (id− Lδ) ≥ 0.
Hence, for the co-idempotence of Lδ it remains to show that Lδ ◦ (id −
Lδ) ≤ 0. Assume the opposite. Namely, there exists a function f ∈ A(Ω)
and x ∈ Ω such that (Lδ ◦ (id − Lδ))(f)(x) > 0. Let ε > 0 be such that
(Lδ ◦(id−Lδ))(f)(x) > ε > 0. Using the definition of Lδ the above inequality
implies that there exists y ∈ B δ

2
(x) such that for every z ∈ B δ

2
(y) we have

(id− Lδ)(f)(z) > ε, or equivalently

f(z) > Lδ(f)(z) + ε, z ∈ B δ
2
(y). (12)

For every z ∈ B δ
2
(y) we also have Lδ(f)(z) ≥ I δ

2
(f)(y) = inf{f(t) : t ∈

B δ
2
(y)}. Hence there exists t ∈ B δ

2
(y) such that f(t) < I δ

2
(f)(y) + ε ≤

Lδ(f)(z) + ε, z ∈ B δ
2
(y). Taking z = t in the above inequality we obtain

f(t) < Lδ(f)(t) + ε, which contradicts (12). The co-idempotence of Uδ is
proved in a similar way. Therefore Lδ and Uδ are separators.

3 The LULU semi-group

In this section we consider the set of the operators Lδ and Uδ and their
compositions. For operators on A(Ω) we consider the point-wise defined
partial order. Namely, for operators P , Q on A(Ω) we have

P ≤ Q ⇐⇒ P (f) ≤ Q(f), f ∈ A(Ω).
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Then the inequalities in (7) can be represented in the form

Lδ ≤ id ≤ Uδ. (13)

By a well known theorem of Matheron [3], in general, two ordered morpho-
logical operators generate via composition a six element semi-group, which
is only partially ordered. However, there is a special case when this semi-
group collapses to a four element totaly ordered semi-group. In this case the
operators are called a Matheron pair, see [8]. We give below the definition
of this concept within our current context.

Definition 2 The operators P : A(Ω) → A(Ω) and Q : A(Ω) → A(Ω) are
called a Matheron pair if

(a) P ≤ Q and

(b) Q ◦ P ≤ P ◦Q.

Theorem 3 For any δ > 0 the operators Lδ and Uδ are a Matheron pair.

Proof. The property (a) follows from (13). We need to show (b), that is,
Uδ ◦Lδ ≤ Lδ ◦Uδ. Let f ∈ A(Ω) and let x ∈ Ω. Denote p = (Lδ ◦Uδ)(f)(x) =
S δ

2
(Iδ(S δ

2
(f)))(x). Let ε be an arbitrary positive. For every y ∈ B δ

2
(x) we

have
Iδ(S δ

2
(f))(y) ≤ p < p + ε. (14)

Case 1. There exists z ∈ B δ
2
(x) such that S δ

2
(f)(z) < p + ε. Then f(t) <

p + ε for t ∈ B δ
2
(z), which implies that I δ

2
(f)(t) < p + ε for t ∈ Bδ(z).

Hence Sδ(I δ
2
(f))(z) ≤ p+ ε. Then (Uδ ◦Lδ)(f)(t) = I δ

2
(Sδ(I δ

2
(f)))(t) ≤ p+ ε

for t ∈ B δ
2
(z). Since x ∈ B δ

2
(z) (see the case assumption), from the above

inequality we have (Uδ ◦ Lδ)(f)(x) ≤ p + ε.
Case 2. For every z ∈ B δ

2
(x) we have S δ

2
(f)(z) ≥ p + ε. Denote

D =
{

z ∈ Ω : S δ
2
(f)(z) < p + ε

}
.

We will show that for every z ∈ Bδ(x) we have

Bδ(z) ∩D 6= ∅ . (15)
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Due to the inequality (14) we have that (15) holds for every z ∈ B δ
2
(x). Let

z ∈ Bδ(x) and let z > x + δ
2
. This implies that x + δ

2
∈ Ω. Using inequality

(14) for y = x + δ
2

as well as the case assumption we obtain that the set(
x + δ

2
, x + 3δ

2

]∩D is not empty. Then Bδ(z)∩D ⊃ (
x + δ

2
, x + 3δ

2

]∩D 6= ∅.
For z < x − δ

2
condition (15) is proved in a similar way. Hence (15) holds

for all z ∈ Bδ(x). Let z ∈ Bδ(x) and v ∈ Bδ(y) ∩ D. Since v ∈ D we have
f(t) < p + ε, for t ∈ B δ

2
(v). Using that B δ

2
(z) ∩ B δ

2
(v) 6= ∅ we obtain that

I δ
2
(f)(z) < p + ε, z ∈ Bδ(x). Therefore Sδ(I δ

2
(f))(x) ≤ p + ε. Then

(Uδ ◦ Lδ)(f)(x) = I δ
2
(Sδ(I δ

2
(f)))(x) ≤ Sδ(I δ

2
(f))(x) ≤ p + ε.

Combining the results of Case 1 and Case 2 we have (Uδ ◦Lδ)(f)(x) ≤ p+ ε.
Since ε is arbitrary this implies that (Uδ ◦ Lδ)(f)(x) ≤ p = (Lδ ◦ Uδ)(f)(x).

The composition table of Lδ and Uδ replicates the composition table of
the operators for sequences and is given below:

Lδ Uδ Uδ ◦ Lδ Lδ ◦ Uδ

Lδ Lδ Lδ ◦ Uδ Uδ ◦ Lδ Lδ ◦ Uδ

Uδ Uδ ◦ Lδ Uδ Uδ ◦ Lδ Lδ ◦ Uδ

Uδ ◦ Lδ Uδ ◦ Lδ Lδ ◦ Uδ Uδ ◦ Lδ Lδ ◦ Uδ

Lδ ◦ Uδ Uδ ◦ Lδ Lδ ◦ Uδ Uδ ◦ Lδ Lδ ◦ Uδ

The smoothing of functions in A(Ω) by the compositions Lδ ◦ Uδ and
Uδ ◦ Lδ can be described through the concept of local δ-monotonicity.

Definition 4 Let δ > 0. A function f ∈ A(Ω) is called locally δ-monotone if
f is monotone (increasing or decreasing) on any interval [x, y] ⊆ Ω of length
not exceeding δ.

The following theorem holds, [1].

Theorem 5 For any given δ > 0 and f ∈ A(Ω) the functions (Lδ ◦ Uδ)(f)
and (Uδ ◦ Lδ)(f) are both locally δ-monotone.
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4 Trend preservation

Definition 6 An operator A is called local trend preserving if for every
f ∈ A(Ω) and interval [x1, x2] ⊂ Ω the function A(f) is monotone in-
creasing on [x1, x2] whenever f is monotone increasing on [x1, x2] and A(f)
is monotone decreasing on [x1, x2] whenever f is monotone decreasing on
[x1, x2].

Definition 7 An operator A is called fully trend preserving if A and
id− A are both local trend preserving.

If A is a local trend preserving operator then the local trend preserving
property of id − A can be equivalently formulated as: if f is monotone
(increasing or decreasing) on an interval [x1, x2] ⊂ Ω then

|A(f)(x1)− A(f)(x2)| ≤ |f(x1)− f(x2)|. (16)

Remark 8 Definition 6 and Definition 7 generalize the concepts of neighbor
trend preserving and fully trend preserving for operators on sequences. In the
context of sequences the property (16) is called difference reducing, [5, 6, 7].

Theorem 9 If the operators A and B are fully (local) trend preserving then
so is their composition A ◦B.

The proof is similar to the proof of the respective statement for sequences,
see [7, Theorem 6.10] and will be omitted.

We will prove that the operators Lδ, Uδ and their compositions, similar
to their discrete counterparts, are all fully trend preserving. To this end, the
following technical lemma is useful.

Lemma 10 Let function f ∈ A(Ω) be given and let δ > 0 be arbitrary.

a) If f is monotone increasing on the interval [x1, x2] ⊆ Ω then the func-
tion Iδ(f) is monotone increasing on [x1 − δ, x2 − δ] ∩ Ω and Sδ(f) is
monotone increasing on [x1 + δ, x2 + δ] ∩ Ω.
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b) If f is monotone decreasing on the interval [x1, x2] ⊆ Ω then the func-
tion Iδ(f) is monotone decreasing on [x1 + δ, x2 + δ] ∩ Ω and Sδ(f) is
monotone increasing on [x1 − δ, x2 − δ] ∩ Ω.

Proof. We will prove only a) since b) is proved in a similar way. Let
y1, y2 ∈ [x1 − δ, x2 − δ] ∩ Ω and y1 < y2. We have

Iδ(f)(y1) = inf{f(x) : x ∈ [y1 − δ, y1 + δ] ∩ Ω} (17)

Since f is increasing on [x1, x2] and [y1+δ, y2+δ] ⊂ [x1, x2] we have f(y1+δ) ≤
f(x) for x ∈ [y1 +δ, y2 +δ]∩Ω. Therefore enlarging the interval [y1−δ, y1 +δ]
to the interval [y1 − δ, y2 + δ] = [y1 − δ, y1 + δ] ∪ [y1 + δ, y2 + δ] is not going
to change the value of the infimum in (17) above. Using that the infimum of
a smaller set is larger we further have

Iδ(f)(y1) = inf{f(x) : x ∈ [y1 − δ, y2 + δ] ∩ Ω}
≤ inf{f(x) : x ∈ [y2 − δ, y2 + δ] ∩ Ω}
= Iδ(f)(y2)

This shows that Iδ(f) is monotone increasing on [x1 − δ, x2 − δ] ∩ Ω. We
prove that Sδ(f) is monotone increasing on [x1 + δ, x2 + δ]∩Ω using a similar
approach. Let y1, y2 ∈ [x1 + δ, x2 + δ] ∩Ω and y1 < y2. By the monotonicity
of f on the interval [y1 − δ, y2 − δ] ⊂ [x1, x2] we have

Sδ(f)(y2) = sup{f(x) : x ∈ [y2 − δ, y2 + δ] ∩ Ω}
= sup{f(x) : x ∈ [y1 − δ, y2 + δ] ∩ Ω}
≥ sup{f(x) : x ∈ [y1 − δ, y1 + δ] ∩ Ω}
= Sδ(f)(y1).

Theorem 11 For an arbitrary δ > 0 the operators Lδ, Uδ and their compo-
sitions are all fully trend preserving.

Proof. We will prove only that Lδ is fully trend preserving since the proof
of the statement for Uδ is done in a similar way. Then the fully trend pre-
serving property of the compositions follows from Theorem 9. Therefore it
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is sufficient to show that if a function f ∈ A(Ω) is monotone increasing or
monotone decreasing on an interval [x1, x2] then so are the functions Lδ(f)
and (id−Lδ)(f). Due to the analogy we will only discuss the situation when
f is increasing.

Let f be monotone increasing on [x1, x2].

A. Proof that Lδ(f) is monotone increasing on [x1, x2].

Applying Lemma 10 a) to the operator I δ
2

we obtain that I δ
2
(f) is monotone

increasing on the interval [x1 − δ
2
, x2 − δ

2
] ∩ Ω.

Case 1. [x1 − δ
2
, x2 − δ

2
] ⊂ Ω

Using again Lemma 10 a) for the operator S δ
2

applied to I δ
2
(f) on the

interval [x1 − δ
2
, x2 − δ

2
] we obtain that Lδ(f) = S δ

2
(I δ

2
(f)) is monotone

increasing on [x1, x2].

Case 2. [x1 − δ
2
, x2 − δ

2
] ∩ Ω = ∅

Let a be the left endpoint of the interval Ω. For clarity of the exposition
we assume that a ∈ Ω but the argument also holds if this is not true. It is
easy to see that for any g ∈ A(Ω) the function S δ

2
(g) is monotone increasing

on the interval
[
a, a + δ

2

]
. Indeed, for x ∈ [

a, a + δ
2

]
we have

S δ
2
(g)(x) = sup

{
g(y) : y ∈

[
a, x +

δ

2

]}
.

where an increase in x enlarges the interval
[
a, x + δ

2

]
resulting in a higher

value of the supremum. The case assumption implies that [x1, x2] ⊂
[
a, a + δ

2

]
.

Since Lδ(f) = S δ
2
(I δ

2
(f)) is increasing on

[
a, a + δ

2

]
, it is also increasing on

the subinterval [x1, x2].

Case 3. If neither of the assumptions in Case 1 and Case 2 hold one obtains
the monotonicity of Lδ(f) on [x1, x2] by applying Case 1 and Case 2 to
suitable subintervals of [x1, x2].

B. Proof that (id− Lδ)(f) is monotone increasing on [x1, x2].

Let y1, y2 ∈ [x1, x2], y1 < y2. It follows from Part A of the proof that

Lδ(f)(y1) ≤ Lδ(f)(y2). (18)
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Case 1. L(f)(y1) = f(y1). Then using that Lδ(f)(y2) ≤ f(y2) we obtain

(id−Lδ(f))(y1) = f(y1)−Lδ(f)(y1) = 0 ≤ f(y2)−Lδ(f)(y2) = (id−Lδ(f))(y2)

Case 2. L(f)(y1) < f(y1). Then we have

I δ
2
(f)(x) ≤ Lδ(f)(y1) < f(y1) for all x ∈

[
y1 − δ

2
, y1 +

δ

2

] ⋂
Ω. (19)

In particular,

I δ
2
(f)

(
y1 +

δ

2

)
= inf{f(x) : x ∈ [y1, y1 +δ]∩Ω} ≤ Lδ(f)(y1) < f(y1). (20)

Considering the monotonicity of f on the interval [x1, x2] the above inequality
implies that y1 + δ > y2. It further follows from (20) that for every ε > 0
there exists yε ∈ [y2, y1 + δ] ∩ Ω such that

f(yε) ≤ Lδ(f)(y1) + ε. (21)

Hence we have

I δ
2
(f)(x) ≤ Lδ(f)(y1) , x ∈

[
y2 − δ

2
, y1 +

δ

2

]⋂
Ω (see (19)),

I δ
2
(f)(x) ≤ f(yε) ≤ Lδ(f)(y1) + ε , x ∈

[
y1 +

δ

2
, y2 +

δ

2

] ⋂
Ω (see (21)).

Therefore

Lδ(f)(y2) = sup

{
I δ

2
(f)(x) : x ∈

[
y2 − δ

2
, y2 +

δ

2

] ⋂
Ω

}

≤ Lδ(f)(y1) + ε. (22)

Since ε in the inequality (22) is arbitrary, using also (18) we obtain Lδ(f)(y2) =
Lδ(f)(y1). Then by the monotonicity of f on [x1, x2] we have

(id−Lδ(f))(y1) = f(y1)−Lδ(f)(y1) ≤ f(y2)−Lδ(f)(y2) = (id−Lδ(f))(y2).
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5 Total variation preservation

The operators Lδ, Uδ and their compositions are smoothers. Therefore, one
can expect that they reduce the Total Variation of the functions. This is
indeed true, but in fact these operators satisfy a much stronger property,
namely, total variation preservation. Denote by BV (Ω) the set of all real
functions with bounded variation defined on Ω and denote by TV (f) the
total variation of a function f ∈ BV (Ω). Consider an operator A : BV (Ω) →
BV (Ω). Since the total variation is a semi-norm on BV (Ω) we have

TV (f) ≤ TV (A(f)) + TV ((id− A)(f)) , f ∈ BV (Ω). (23)

Definition 12 The operator A is called total variation preserving if

TV (f) = TV (A(f)) + TV ((id− A)(f)) , f ∈ BV (Ω). (24)

The above definition implies that for a total variation preserving operator
the decomposition f = A(f) + (id − A)(f) does not create additional total
variation.

Theorem 13 If the operators A : BV (Ω) → BV (Ω) and B : BV (Ω) →
BV (Ω) are both total variation preserving then so is their composition A◦B.

Proof. Using the total variation preserving property of A and B and (23)
we have

TV (f) = TV (B(f)) + TV ((id−B)(f))

= TV (A(B(f))) + TV ((id− A)(B(f))) + TV ((id−B)(f))

≥ TV ((A ◦B)(f)) + TV (((id− A) ◦B + id−B)(f))

= TV ((A ◦B)(f)) + TV ((id− A ◦B)(f))

From (23) we also obtain TV (f) ≤ TV ((A ◦B)(f)) + TV ((id− A ◦B)(f)).
Therefore TV (f) = TV ((A ◦B)(f)) + TV ((id− A ◦B)(f)).

It is easy to see that BV (Ω) ⊆ A(Ω). Hence the operators Lδ, Uδ are
defined on BV (Ω). We will show that Lδ, Uδ and their compositions are total
variation preserving. The proof uses the following technical lemmas:
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Lemma 14 Let a, b ∈ Ω, a ≤ b.

(a) If there exists ε > 0 such that f(x) − Lδ(f)(x) ≥ ε, x ∈ [a, b], then
b− a < δ and Lδ(f)(x) is a constant on [a, b].

(b) If there exists ε > 0 such that Uδ(f)(x) − f(x) ≥ ε, x ∈ [a, b], then
b− a < δ and Uδ(f)(x) is a constant on [a, b].

Proof. We will prove (a). Assume that b− a ≥ δ. Then

B δ
2

(
a + b

2

)
=

[
a + b− δ

2
,
a + b + δ

2

]
⊆ [a, b]

and using Lemma 11 we obtain a contradiction as follows:

I δ
2
(f)

(
a + b

2

)
= I δ

2
(Lδ(f))

(
a + b

2

)
= inf

y∈[a+b−δ
2

, a+b+δ
2 ]

Lδ(f)(y)

≤ inf
y∈[a+b−δ

2
, a+b+δ

2 ]
f(y)− ε = I δ

2
(f)

(
a + b

2

)
− ε

Therefore b − a < δ. Let p = sup
y∈[b− δ

2
,a+ δ

2 ]
I δ

2
(f)(y). Since

[
b− δ

2
, a + δ

2

] ⊆

B δ
2
(x), x ∈ [a, b], we have

p ≤ sup
y∈B δ

2
(x)

I δ
2
(f)(y) = Lδ(f)(x) ≤ f(x)− ε , x ∈ [a, b].

Therefore
p ≤ inf

z∈[a,b]
Lδ(f)(z) ≤ inf

z∈[a,b]
f(z)− ε , x ∈ [a, b]. (25)

We will show next that

I δ
2
(f)(y) ≤ p for all y ∈

[
a− δ

2
, b +

δ

2

]
∩ Ω. (26)

If y ∈ [
b− δ

2
, a + δ

2

]
the inequality (26) follows directly from the definition

of p. Let y > a + δ
2
. Then [b, a + δ] ∩ Ω ⊂ B δ

2
(y) which implies

I δ
2
(f)(y) ≤ inf

z∈[b,a+δ]∩Ω
f(z). (27)

14



Furthermore, using (25), we have

p ≥ I δ
2

(
a +

δ

2

)
= min

{
inf

z∈[a,b]
f(z), inf

z∈[b,a+δ]∩Ω
f(z)

}

≥ min

{
p + ε, inf

z∈[b,a+δ]∩Ω
f(z)

}
.

Hence
inf

z∈[b,a+δ]∩Ω
f(z) ≤ p. (28)

The inequality (26) follows from (27) and (28). The case y < a + δ
2

is
considered in a similar manner.

Since B δ
2
(x) ⊂ [

a− δ
2
, b + δ

2

]
, x ∈ [a, b], using (26) we obtain

Lδf(x) = sup
y∈B δ

2
(x)

I δ
2
(f)(y) ≤ p , x ∈ [a, b]. (29)

The inequalities (25) and (29) imply that Lδ(f)(x) = p for x ∈ [a, b].

Lemma 15 Let a, b ∈ Ω, a ≤ b.

(a) If Lδ(f)(a) 6= Lδ(f)(b) then for every ε > 0 there exists c ∈ [a, b] such
that

(i) f(c) ≤ min{f(a), f(b)}
(ii) Lδ(f)(c) ≤ min{Lδ(f)(a), Lδ(f)(b)}+ ε

(iii) (id− Lδ)(f)(c) ≤ min{(id− Lδ)(f)(a), (id− Lδ)(f)(b)}

(b) If Uδ(f)(a) 6= Uδ(f)(b) then there exists c ∈ [a, b] such that

(i) f(c) ≥ max{f(a), f(b)}
(ii) Uδ(f)(c) ≥ max{Uδ(f)(a), Uδ(f)(b)}

(iii) (id− Uδ)(f)(c) ≥ max{(id− Uδ)(f)(a), (id− Uδ)(f)(b)}

Proof. We will prove (a) when Lδ(f)(a) < Lδ(f)(b). The rest is done in a
similar way.
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Let D = {y ≥ a : infz∈[a,y](f(z)−Lδ(f)(z)) > 0}. It follows from Lemma
14 that for every y ∈ D the function Lδ(f) is a constant on [a, y] and that
y − a ≤ δ. Therefore, b and a + δ are upper bounds of D and we have

d = supD ≤ min{b, a + δ}.
Moreover, for every η > 0 we have

inf
z∈[a,d+η]

(f(z)− Lδ(f)(z)) = 0. (30)

Case 1. There exists c ∈ [a, d) such that

f(c)− Lδ(f)(c) ≤ min{f(a)− Lδ(f)(a), f(b)− Lδ(f)(b)}.
Then (iii) is automatically satisfied. Furthermore, (ii) holds since Lδ(f)(c) =
Lδ(f)(a) < Lδ(f)(b). The inequality (i) is a consequence of (ii) and (iii).
Case 2. For every z ∈ [a, d) we have

f(z)− Lδ(f)(z) ≥ min{f(a)− Lδ(f)(a), f(b)− Lδ(f)(b)}. (31)

According to Lemma 14 Lδ(f) is constant on the interval [a, d). Let Lδ(f)(x) =
p, x ∈ [a, d). Assume that there exists ξ > 0 such that infz∈[d,d+ξ] f(z) >
p. Lemma 14 implies that d + ξ < a + δ. Then, using also (31), ∆ =
infz∈[a,d+ξ] f(z) > p and we have

p = Lδ(f)(a) ≥ I δ
2

(
a +

δ

2

)
= min{ inf

z∈[a,d+ξ])
f(z), inf

z∈[d+ξ,a+δ]
f(z)}

≥ min{p−∆, inf
z∈[d+ξ,a+δ]

f(z).}

Therefore
inf

z∈[d+ξ,a+δ]
f(z) ≤ p. (32)

Using similar techniques as in the proof of Lemma 14 the inequality (32)
implies that Lδ(f)(x) ≤ p < p + ∆ ≤ f(x), x ∈ [a, d + ξ], which contradicts
the definition of d. Hence

inf
z∈[d,d+ξ]

f(z) ≤ p , ξ > 0. (33)

As a consequence of the above equation we have

Lδ(f)(d) ≤ p. (34)

16



The function f , being a function of bounded variation, may have only dis-
continuities of first kind, that is, the left and right limit exist at every point.
Then the inequality (33) means that

f(d) ≤ p or f(d+) ≤ p. (35)

The inequality (30) can be treated in a similar manner. Under the case
assumption (31) the inequality (30) is equivalent to

inf
z∈[d,d+η]

(f(z)− Lδ(f)(z)) = 0 , η > 0,

which implies that

f(d) = Lδ(f)(d) or f(d+) = Lδ(f)(d+). (36)

Case 2.1 f(d) > p. Then we also have Lδ(f)(d) ≤ p < f(d) so that (35) and
(36) imply that f(d+) ≤ p and f(d+) = Lδ(f)(d+). Therefore for every ε > 0
there exists µ(ε) > 0 such that

f(z) ≤ p + ε , f(z)− Lδ(f)(z) < ε , z ∈ (d, d + µ) .

Let ε = min
{
ε, 1

2
(f(a)− Lδ(f)(a)), 1

2
(f(b)− Lδ(f)(b))

}
. Then any c ∈ (d, d+

µ(ε)) satisfies the conditions (i)–(iii).

Case 2.2 f(d) = p.

Case 2.2.1 f(d) = p = Lδ(f)(d). Then we take c = d.

Case 2.2.2 f(d) = p > Lδ(f)(d). Then it follows from (35) that f(d+) =
Lδ(f)(d+). Assume that Lδ(f)(d+) = f(d+) > p. Then there exists η > 0
such that f(z) ≥ Lδ(f)(z) ≥ p, z ∈ [a, d + η] \ {d} and f(d) = p > Lδ(f)(d).
It is easy to see that this is impossible. Indeed, let Lδ(f)(d) < m < p. Then
there exists y1 ∈ B δ

2
(a) and y2 ∈ B δ

2
(d + η) such that I δ

2
(f)(y1) > m and

I δ
2
(f)(y2) > m. Using also that m is a lower bound of f on [a, d+η] we obtain

that f(z) > m, z ∈ [α, β] where α = min{y1, y2} − δ
2
, β = max{y1, y2} + δ

2
.

Since d ∈ [α, β] and β − α ≥ δ there exists z ∈ B δ
2
(d) such that B δ

2
(z) ⊆

[α, β]. Then Lδ(f)(d) ≥ I δ
2
(f)(z) > m which is a contradiction. Therefore

Lδ(f)(d+) = f(d+) ≤ p. Then the proof proceeds as in the Case 2.1.

Theorem 16 For an arbitrary δ > 0 the operators Lδ, Uδ and their compo-
sitions are all total variation preserving operators on BV (Ω).
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Proof. Let δ > 0. We will only prove that Lδ is total variation preserving,
since the total variation preserving property of Uδ is proved in a similar way
and the statement for the compositions follows directly from Theorem 13.
Let θ > 0 and let {x1, x2, ...xn} be an arbitrary grid of points on Ω arranged
in increasing order. We will show that there exist a finer grid {y1, y2, ...ym},
n ≤ m < 2n, such that for every i = 1, ..., m− 1 we have either

f(yi) ≥ f(yi+1)

Lδ(f)(yi) +
θ

2n
≥ Lδ(f)(yi+1) (37)

(id− Lδ)(f)(yi) ≥ (id− Lδ)(f)(yi+1)

or

f(yi) ≤ f(yi+1)

Lδ(f)(yi) ≤ Lδ(f)(yi+1) +
θ

2n
(38)

(id− Lδ)(f)(yi) ≤ (id− Lδ)(f)(yi+1)

This result is obtained from Lemma 15 with ε = θ
n
. If Lδ(f)(xi) = Lδ(f)(xi+1)

trivially either (37) or (38) is satisfied for the points xi and xi+1. If Lδ(f)(xi) 6=
Lδ(f)(xi+1) then according to Lemma 15(a) there exists ci ∈ [xi, xi+1] such
that the inequalities (37) are satisfied for the points xi and ci and the in-
equalities (38) are satisfied for the points ci and xi+1. Thus by including
in the grid {x1, x2, ...xn} a point ci between xi and xi+1 for all i such that
Lδ(f)(xi) 6= Lδ(f)(xi+1) we obtain a finer grid {y1, y2, ...ym} satisfying either
(37) or (38) for every two consecutive points. Using this property, for every
i = 1, ..., m− 1 we have

|f(yi)− f(yi+1)|
= |[Lδ(f)(yi)−Lδ(f)(yi+1)] + [(id−Lδ)(f)(yi)−(id−Lδ)(f)(yi+1)]|
≥ |Lδ(f)(yi)−Lδ(f)(yi+1)| − θ

n
+ |(id−Lδ)(f)(yi)−(id−Lδ)(f)(yi+1)|
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Therefore

TV (f) ≥
m−1∑
i=1

|f(yi)− f(yi+1)|

≥
m−1∑
i=1

|Lδ(f)(yi)−Lδ(f)(yi+1)|+
m−1∑
i=1

|(id−Lδ)(f)(yi)−(id−Lδ)(f)(yi+1)|−θ

≥
n−1∑
i=1

|Lδ(f)(xi)−Lδ(f)(xi+1)|+
n−1∑
i=1

|(id−Lδ)(f)(xi)−(id−Lδ)(f)(xi+1)|−θ

Since the grid {x1, x2, ...xn} and the number θ are arbitrary, the above in-
equality implies

TV (f) ≥ TV (Lδ(f)) + TV ((id− Lδ)(f)).

In view of (23) this completes the proof.

6 Conclusion

In this paper we extended the LULU operators from sequences to real func-
tions defined on a real interval using the lower and upper δ-envelopes of func-
tions. The obtained structure, although more general than the well known
LULU structure of the discrete operators, retains some of its essential prop-
erties.

Of significant importance is the link obtained between properties of func-
tions and sequences that are samplings of these. Particularly, we can easily
observe that if a function f has a good approximation Af that is δ-monotone,
then a sampling of Af at a uniform sampling interval of h with h < δ

n+1
then

the sampling is n-monotone, and a Discrete Pulse Transform will have no
(high)-resolution components less than n. Thus we may call Af a “pulse
limited” function, in the same sense as a sequence is called “band limited” in
the theory of Wavelet Analysis when there are no high frequencies present.

Since the total variation of a function is the supremum of the total varia-
tions of all its samplings, we can derive that the total variation of a sequence
of samplings does not exceed that of the function. If the functions is δ-
monotone they are equal, provided the sampling interval h is smaller than

δ
n+1

.
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This is important in image processing, where Total Variation is used as
an appropriate norm [8]. It may be illuminating to consider that the energy
reaching the ear is appropriate as a natural norm, where the power spectrum
yields important information for economical decomposition and storage of
auditory signals.

The eye does not even see with the total illumination as norm, but rather
the measure of contrast. It is well known that we perceive an image in the
same way under different illumination intensities. The total Variation fits
naturally as the sum of the absolute differences of intensity between neigh-
bouring pixels. It turns out to be the natural norm in Discrete Pulse Trans-
forms, as they have a naturally associated “Parseval’s Identity” which can be
considered analogous to the Parseval’s Identity in Wavelet and Fourier Trans-
forms, which is based on the energy distribution amongst resolution levels.
We thus have a Pulse Spectrum associated with such a LULU -decomposition,
which is useful for thresholding decisions for economical transportation and
storage of the essentials of an image [8].
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