
Locating and Characterizing the Stationary
Points of the Extended Rosenbrock Function

Schalk Kok schalk.kok@up.ac.za
Department of Mechanical and Aeronautical Engineering, University of Pretoria,
Pretoria, 0002, South Africa

Carl Sandrock carl.sandrock@up.ac.za
Department of Chemical Engineering, University of Pretoria, Pretoria,
0002, South Africa

Abstract
Two variants of the extended Rosenbrock function are analyzed in order to find the sta-
tionary points. The first variant is shown to possess a single stationary point, the global
minimum. The second variant has numerous stationary points for high dimensionality.
A previously proposed method is shown to be numerically intractable, requiring arbi-
trary precision computation in many cases to enumerate candidate solutions. Instead,
a standard Newtonian method with multi-start is applied to locate stationary points.
The relative magnitude of the negative and positive eigenvalues of the Hessian is also
computed, in order to characterize the saddle points. For dimensions up to 100, only
two local minimizers are found, but many saddle points exist. Two saddle points with
a single negative eigenvalue exist for high dimensionality, which may appear as “near”
local minima. The remaining saddle points we found have a predictable form, and a
method is proposed to estimate their number. Monte Carlo simulation indicates that
it is unlikely to escape these saddle points using uniform random search. A standard
particle swarm algorithm also struggles to improve upon a saddle point contained
within the initial population.

Keywords
Numerical optimization, stationary points, saddle points, benchmark functions.

1 Introduction

Suitable test functions are indispensable in the development of optimization algorithms,
since practical optimization problems are frequently computationally expensive. How-
ever, the conclusions that can be drawn about the abilities of an algorithm are limited
by the knowledge of the challenges that a particular test function poses. Therefore,
we analyze the extended Rosenbrock function in this paper, in order to highlight the
challenges that this popular test function poses.

Similar to Shang and Qiu (2006), we analyze the Hessian of the test functions at a
stationary point. A stationary point x of a function f (x) is any point where the gradient
vector vanishes, that is, ∇f (x) = 0. However, instead of only determining whether or
not the Hessian is positive definite, we compute the eigenvalues of the Hessian. At
a stationary point, the ith eigenvalue λi is the curvature of the function in the direc-
tion of the associated eigenvector x̂i (Himmelblau, 1972). If all eigenvalues are positive

C© 2009 by the Massachusetts Institute of Technology Evolutionary Computation 17(3): 437–453

S. Kok and C. Sandrock

(negative) at a stationary point, the stationary point is a local minimizer (maximizer). If
some eigenvalues are positive, and some negative, the stationary point is a saddle point.
In some cases, all but one of the eigenvalues are positive. If in addition the magnitude of
this single negative eigenvalue is significantly less than the magnitude of the positive
eigenvalues, a very limited range of descent directions exist, and optimization algo-
rithms may find such saddle points difficult to escape. One such an example is found
by Deb et al. (2002) for the 20D Rosenbrock problem, where the “near minimum” they
report is in fact a saddle point with only one negative eigenvalue. One million small ran-
dom perturbations about this point do not generate any superior solutions (Shang and
Qiu, 2006). However, a small perturbation in the direction of the eigenvector associated
with the negative eigenvalue generates a superior solution. This example motivates the
characterization of a test function in terms of the presence of saddle points, particularly
those saddle points with very few negative eigenvalues.

2 Rosenbrock Variants

The 2D Rosenbrock function (parabolic valley problem), given by

f (x1, x2) = 100
(
x2

1 − x2
)2 + (x1 − 1)2, (1)

is a well-known test function in classical optimization that was originally analyzed
by de Jong (1975). This test function has a single stationary point, at x1 = x2 = 1. The
Hessian matrix at this stationary point is positive definite, signifying that the stationary
point is a local minimizer.

This 2D function has been extended to higher dimensions, in order to assess the
performance of optimization algorithms on problems of high dimensionality. As pointed
out by Shang and Qiu (2006), many researchers assume that the extended versions
also contain a single stationary point, the global minimum at x = [1 1 . . . 1]T . Several
variants of the extended Rosenbrock function have been proposed. Although they
have a completely different character, researchers often refer only to “the extended
Rosenbrock function.” We subsequently analyze two commonly encountered variants.

2.1 Variant A

Dixon and Mills (1994), among others, propose

f (x1, x2, . . . , xN) =
N/2∑
i=1

[
100

(
x2

2i-1 − x2i

)2 + (x2i-1 − 1)2]. (2)

This variant is only defined for even N , and is the sum of N/2 uncoupled 2D Rosenbrock
problems. The gradient vector of f is computed as

∂f

∂x2i-1
= 400x2i-1

(
x2

2i-1 − x2i

) + 2(x2i-1 − 1)

∂f

∂x2i

= −200
(
x2

2i-1 − x2i

)
,

for i = 1, 2, . . . ,
N

2
(3)

438 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

while the Hessian [H] is 2 × 2 block diagonal, with every 2 × 2 block given by

200

[
6x2

i-1 − 2xi + 0.01 −2xi-1

−2xi-1 1

]
for i = 2, 4, . . . , N. (4)

The only stationary point for this variant is x2i-1 = x2i = 1. The Hessian is positive
definite at this point for all N (all eigenvalues are positive), hence the only stationary
point is the global minimum.

2.2 Variant B

This variant, from Goldberg (1989), and as quoted by Shang and Qiu (2006), given by

f (x1, x2, . . . , xN) =
N−1∑
i=1

[
100

(
x2

i − xi+1
)2 + (xi − 1)2], (5)

is much more challenging to analyze. The gradient vector of f is given by

∂f

∂x1
= 400x1

(
x2

1 − x2
) + 2(x1 − 1) (6)

∂f

∂xi

= −200
(
x2

i-1 − xi

) + 400xi

(
x2

i − xi+1
) + 2(xi − 1) for i = 2, . . . , N − 1 (7)

∂f

∂xN

= −200
(
x2

N-1 − xN

)
, (8)

while the nonzero components of the tri-diagonal Hessian [H] are given by

Hi,i = 200
(
6x2

i − 2xi+1 + 0.01
)

for i = 1, 2, . . . , N − 1. (9)

HN,N = 200. (10)

Hi,i+1 = Hi+1,i = −400xi for i = 1, 2, . . . , N − 1. (11)

Shang and Qiu (2006) detail a technique to determine the stationary points. Assuming
a value for x1, Equation (6) is used to solve for x2:

x2 = 200x3
1 + x1 − 1
200x1

(12)

Equation (7) is then used to solve for x3 to xN :

xi+1 = −100x2
i-1 + 101xi + 200x3

i − 1
200xi

for i = 2, . . . , N − 1. (13)

Finally, if Equation (8) equals zero, the generated sequence x1, x2, . . . , xN is a stationary
point. Shang and Qiu (2006) use points generated with the method outlined above as
starting points for a steepest descent algorithm to find local minimizers. This strategy
seems very attractive, since it transforms the N dimensional problem to a 1D problem:

Evolutionary Computation Volume 17, Number 3 439

S. Kok and C. Sandrock

search Equation (8) as a function of x1, and enumerate the roots. However, this strategy
has severe limitations, as discussed in Section 2.2.2.

2.2.1 Newton’s Method
An alternative method to find the stationary points of f is to use Newton’s method.
Given an initial guess x0, a sequence of improved candidates to a stationary point is
computed from

xi+1 = xi + �x for i = 0, 1, . . . (14)

where the update �x is solved from Newton’s method:

H(xi)�x = −∇f (xi). (15)

Here H is the Hessian, ∇f is the function gradient, and the superscripts indicate
the iteration number. This process repeats until the norm of the gradient is less than
some small tolerance ε. Since H is symmetric and tri-diagonal, the linear system in
Equation (15) can be solved very efficiently. The quadratic convergence of Newton’s
method provides highly accurate stationary points in a small number of iterations, if
the algorithm converges. The convergence of the method is improved by imposing a
maximum update norm, chosen as ‖�x‖ < 10N for this problem.

A large number of random starts are performed in the domain [−1; 1] on all dimen-
sions, and only those Newton runs that converge are recorded. Using this approach,
108 stationary points are found for the N = 30 case, with 100 million random starts.
Two of the stationary points are the minimizers found by Shang and Qiu (2006), the
global minimum at x1 = [1 · · · 1]T and the local minimum near x1 = [−1 1 · · · 1]T . The
remaining stationary points are saddle points.

Upon scrutiny of the located stationary points, it seems that our results are in
disagreement with those of Shang and Qiu (2006). We identify a large number of distinct
stationary points with a first component value of x1 = −0.55537607608450 within the
accuracy afforded by IEEE double precision floating-point numbers. This deserves
further investigation since this value of x1 should yield a single, unique stationary point
according to the method of Shang and Qiu (2006).

2.2.2 Sensitivity of the Numerical Scheme
The explanation of the “disagreement” lies in the numerical sensitivity of the algorithm
proposed by Shang and Qiu (2006), which they mention suffers from numerical issues
related to accumulation of errors in the terms. To quantify this phenomenon, we com-
pute the sensitivity of xN with respect to x1. This follows from the chain rule applied to
Equation (13):

dxi+1

dx1
= ∂xi+1

∂xi

dxi

dx1
+ ∂xi+1

∂xi-1

dxi-1

dx1
for i = 2, . . . , N − 1. (16)

The partial derivatives ∂xi+1
∂xi

and ∂xi+1
∂xi-1

are given by

∂xi+1

∂xi

= 600x2
i + 101 − 200xi+1

200xi

(17)

440 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Figure 1: Numerical sensitivity of the sequences x1, x2, . . . , xN generated with the al-
gorithm of Shang and Qiu (2006) for N = 30, with varying precision representations of
x1 = −0.555376076084502505233604025479092222981047831067610276183928.

∂xi+1

∂xi-1
= −xi-1

xi

. (18)

In addition, dx1
dx1

= 1 and dx2
dx1

follows from direct differentiation of Equation (12):

dx2

dx1
= 600x2

1 + 1 − 200x2

200x1
. (19)

The absolute value of the partial derivative ∂xN

∂x1
for the 108 roots found by the random

procedure varies between 103 and 1042, with 38 of the 108 values greater than 1022. Even
the magnitude of the sensitivies for the two local minimizers are greater than 108.
This has grave implications when attempting to use the algorithm proposed by Shang
and Qiu (2006) using double precision arithmetic. To illustrate, the most frequently
found saddle point was refined to 62 digits using Newton’s method with the arbitrary
precision computations implemented in the Python (2006) decimal module. Figure 1
shows the sequences generated when using less precision in Shang and Qiu’s method.
At least 56 digit precision is required to reproduce the stationary point accurately. The
accompanying graph of x2

N-1 − xN vs. x1 is shown in Figure 2.
Transforming the original N dimensional problem to a 1D problem is therefore not

a tenable method to solve the problem because the resolution required along the x1 axis
in order to locate all the stationary points is higher than conventional floating point
precision provides. The required resolution also increases with N . Numerical experi-
ments for N = 100 indicate than in some cases 170 digits are required to represent x1,
in order to generate a stationary point where x100 is accurate to only six digits. Locating
candidate x1 values for x1 ∈ [−1 0] using increments of �x1 = 10-170 would require

Evolutionary Computation Volume 17, Number 3 441

S. Kok and C. Sandrock

Figure 2: x2
N-1 − xN vs. B, where x1 = A + 10-43B and the constant A =

−0.55537607608450250523360402547909222298104815. The curve is for N = 30, com-
puted using 56 decimal point precision.

the generation of 10170 sequences, which is not feasible using current computational
devices. Even for N = 30, the numerical experiments suggest the generation of 1025

sequences.
The large number of stationary points found for which x1 ≈ −0.55537607608450 is

now resolved: these stationary points have each distinct x1 values, but a large number
of digits is required before these values can be distinguished. This is illustrated in
Figure 3, which depicts Equation (8) as a function of x1 ∈ [A,A + 1.32 × 10-23], where
A = −0.555376076084502505233603985. We also verified that we are able to reduce the
gradient norm of those stationary points we located to arbitrarily small values using
increasing precision with Newton’s method using arbitrary precision arithmetic.

2.2.3 Analytical Solution
Due to the computational demands of the method by Shang and Qiu (2006), we at-
tempted an analytical solution using their approach. x2 is available as a function of
x1 from Equation (12). Repeated substitution of xi(x1) and xi-1(x1) into Equation (13)
provides all x components as functions of x1. Finally, we obtain

rN (x1) = x2
N-1(x1) − xN (x1). (20)

Explicit forms for rN have been obtained for N = 2 to 7. In all of these cases, rN (x1) is of
the form

rN (x1) = (x1 − 1)pN (x1)
qN (x1)

(21)

where both pN (x1) and qN (x1) are polynomials in x1 on the order of 3N-2 − 1 and 3N-2,
respectively. The asymptote visible in Figure 2 is now also explained: the asymptote
coincides with a root of qN (x1).

442 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Figure 3: x2
N-1 − xN vs. B, where x1 = A + 10-25B and the constant A =

−0.555376076084502505233603985. The curve is for N = 30, computed using 65 dec-
imal point precision. Notice the two distinct roots, spaced approximately 132 × 10-25

apart.

Since we aim to locate the roots of rN (x1), we only have to locate the roots of
(x1 − 1)pN (x1). According to Cauchy’s bound, all the real roots of pN (x1) are within the
interval x1 ∈ [−M ; M], with M given by

M = 1 + maxm-1
i=1 |ai |

|am| , (22)

where ai is the ith coefficient of the polynomial pN (x1) = amxm
1 + · · · + a1x1 + a0.

Furthermore, the number of real roots can be determined using the Sturm sequence
Pi of pN . This is done by defining Sturm functions (Weisstein, 2008)

P0(x1) = pN (x1) (23)

P1(x1) = p′
N (x1) (24)

Pn(x1) = −rem (Pn-2, Pn-1) , n ≥ 2. (25)

Here rem(Pn-2, Pn-1) denotes the remainder upon division of Pn-2 by Pn-1. The sequence
terminates when a constant is obtained. Now, the difference in the number of sign
changes between the Sturm functions when evaluated at x1 = a and x1 = b gives the
number of nonrepeated real roots Nr in the interval (a, b).

The leading coefficient am, the maximum absolute remaining coefficient of pN , the
Cauchy bound M and the number of real roots Nr in [−M,M] are given in Table 1 for
N = 3 to 7. In all these cases, the minimum absolute coefficient is 1. Not shown is the
rapid growth in the number of significant digits required to exactly represent the integer
coefficients: 49 digits are required for N = 6, while at most 147 digits are required for
N = 7.

Evolutionary Computation Volume 17, Number 3 443

S. Kok and C. Sandrock

Table 1: Leading Coefficient am, Maximum Absolute Remaining Coefficient, Cauchy
Bound M , and Number of Real Roots Nr for pN (x1) = amxm

1 + · · · + a1x1 + a0

N m am maxm-1
i=1 |ai | M Nr

3 2 200 200 2 0
4 8 8 × 106 8.12 × 106 2.015 2
5 26 5.12 × 1020 5.3504 × 1020 2.045 2
6 80 1.34217728 × 1062 1.5233712128 × 1062 2.135 2
7 242 2.417851639229258 × 10186 3.397081553117108 × 10186 2.405 2

The problem of locating the stationary points of the Rosenbrock function is now
transformed to locating the real roots of the polynomial pN (x1). An analytical solution
is possible for N = 3 (m = 2, a quadratic) but thereafter numerical procedures are again
required. Using arbitrary precision computation in Maxima (2008), the two real roots
are computed for N = 4 to 7. Since we were unable to determine pN (x1) for N > 7, we
could not attempt to compute the associated roots. If double precision numbers are
used to represent the coefficients approximately, we find the two correct real roots for
N = 4 and 5, six real roots for N = 6 (the two correct roots and four spurious roots),
and 10 real roots for N = 7 (only one of the two correct roots, and nine spurious roots).
Conventional double precision representation is clearly inadequate due to inevitable
rounding errors.

As a final attempt to find all the stationary points of the Rosenbrock problem, we
attempt to solve the system of homogeneous polynomial equations (Equations [6–8]).
Using a polyhedral homotopy continuation method (Gunji et al., 2004), we could solve
the system up to N = 10. This method attempts to find all the solutions to the system,
including complex solutions. For the N = 10 case, 6,377 solutions are found, of which
only three are real. Based on the analytical results for N < 8, we expect 3(10-2) = 6,561
solutions. These computations, using a single CPU of an AMD Athlon 4400+ dual
core with 4 GB memory, required more than 6 h to complete. As a comparison, the
Newton scheme using 1,000 random starts frequently requires less than 0.1 s of CPU
time to locate all three real solutions. Homotopy continuation is therefore not currently
suitable since it is limited to small N , and it might not locate all the (real) solutions.

At this point it becomes evident that we have to abandon our attempt to locate
all real stationary points. We have to resort to some efficient numerical procedure that
allows us to locate “many” stationary points. At the very least this provides a lower
bound on the number of stationary points.

2.2.4 Predictive Pattern
Close scrutiny of the stationary points found using Newton’s method revealed a pattern
that allows us to predict the stationary points for a given problem dimension N . For
the N = 100 problem, approximately 71% on the random starts converge to a stationary
point. The four stationary points listed in Table 2 account for 99.9% of these converged
solutions. The first two stationary points are local minimizers, also found by Shang and
Qiu (2006). The remaining two stationary points are saddle points, with only one neg-
ative eigenvalue. Notice that the magnitude of the negative eigenvalue is significantly
less than the median eigenvalue.

For large N , the function values of the first three stationary points are insensitive of
N , while the function value associated with the last stationary point is approximately a

444 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Table 2: The Four Stationary Points Found Most Often Using 100 Million Random
Starts and Newton’s Method for N = 100, Reported to Eight Decimal Points∗

x1 1 −0.99932861 −0.01094139 −0.55537608
x2 1 0.99665107 0.46210002 0.32244549
x3 1 0.99833032 0.70758673 0.11517821
x4 1 0.99916774 0.84772207 0.02350620
x5 1 0.99958520 0.92242609 0.01066138
x6 1 0.99979328 0.96091538 0.01021797
x7 1 0.99989698 0.98041576 0.01020862
x8 1 0.99994866 0.99021374 0.01028428
x9 1 0.99997441 0.99511648 0.01020842
...

...
...

...
...

x96 1 1.00000000 1.00000000 0.01020842
x97 1 1.00000000 1.00000000 0.01020834
x98 1 1.00000000 1.00000000 0.01020421
x99 1 1.00000000 1.00000000 0.01000409
x100 1 1.00000000 1.00000000 0.00010008

P (%) 81.52 17.16 0.52 0.70
f 0 3.98662385 65.02536346 98.69667141
λ1 0.49875312 0.49875312 −182.76136633 −2.81157458
λ2 202.39471252 202.39100938 0.49875312 166.57951322
λ50 976.86321108 976.48330537 936.15044478 197.99795121
λ51 1001.99201591 1001.60968201 961.45622931 198.25623977
λ100 1801.60524391 1801.60154965 1801.54623931 516.47175711

∗Also included are the percentage found P , function value f , and four eigenvalues from the sorted list
λ1 < λ2 < · · · < λ50 < · · · < λ100.

linear function of N , given by

f ≈ 0.989896874N − 0.293015997. (26)

The remaining 0.1% of the random starts converge to saddle points with a very
specific form. The basic solution is the fourth saddle point listed in Table 2, with a
number of roughly half-sinusoidal curves (humps) superimposed upon it. Examples of
these types of saddle points are presented in Figure 4 for the N = 50 case. As can be
seen, the width of the hump is roughly 12 units, and it is found to be independent of N .
Given such a stationary point, new stationary points are found if the hump is translated
approximately 0.5 units to either side. This provides a numerical procedure to locate
a large number of the stationary points. All possible combinations of humps that will
fit are superimposed on the basic solution and used as the initial point for Newton’s
method. Update norms are limited to ‖�x‖ ≤ 0.1 to assist convergence to a stationary
point close to the starting point, and a maximum of 20 Newton steps are allowed. The
list of roots is pruned based on roots already found. A MATLAB implementation of this
numerical strategy is included in the Appendix.

This strategy found the number of stationary points listed in Table 3. Notice that
for N = 30 we now locate 128 stationary points, including the four dominant station-
ary points, compared to 108 stationary points found using 100 million random starts.
The function value associated with these stationary points can also be estimated. The

Evolutionary Computation Volume 17, Number 3 445

S. Kok and C. Sandrock

Figure 4: Examples of saddle points for N = 50, containing one to four humps.

function value of the base solution follows from Equation (26), while the presence of
each hump contributes approximately 53.9 to the function value.

Also of interest is that the norm of the stationary points containing a certain number
of humps are similar, and it increases as the number of humps increase. The distance
between a stationary point and its nearest neighbor is distributed discretely, ranging
between 0.01 and 0.45 for the N = 50 case, but with the most common distance being
0.29.

As can be seen from Table 3, the number of stationary points grows rapidly with N .
Instead of using the random multi-start strategy to find each stationary point, we now
exploit the repeating structure of the humps to deduce the number of stationary points.

Let us define na as the number of humps and a as their width. In addition, let us
assume that there are nb gaps of width b that represent the smallest incremental shift
of a hump that can generate a new stationary point. If there are N dimensions and we
want to fill the available space, it follows that

N = na · a + nb · b (27)

Thus,

nb =
⌊

N − na · a

b

⌋
(28)

446 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Table 3: Number of Stationary Points Containing Humps Found Using Newton’s
Method for Problem Dimension N , Exploiting the Predictable Location of the Humps

Number of humps
N 1 2 3 4 5 Total

12 2 2
20 17 17
25 27 5 32
30 37 87 124
35 47 277 324
40 57 561 184 808
50 77 1,447 5,066 144 6,734
60 97 2,726 22,696 27,619 27 53,165

Next we consider na + nb locations which could be either a hump or a space. Because
the order in which these humps and spaces occur is not important, we can calculate the
number of combinations as

(na + nb)!
na!nb!

(29)

Finally, we can exploit the knowledge that at most �N
a
� humps can fit into N spaces

and write the total number of stationary points containing humps as

NSP =
� N

a
�∑

na=1

(na + nb)!
na!nb!

(30)

where nb is calculated from Equation (28). Since nb is typically larger than na , it is
beneficial to calculate Equation (30) by noticing that

(na + nb)!
nb!

= (na + nb) · (na + nb − 1) · (na + nb − 2) · · · (nb + 1)

to avoid calculating very large numbers in the numerator.
The predicted number of stationary points is depicted in Figure 5, for na = 11.8 and

nb = 0.5. The data from Table 3 are included. Notice that the trend rapidly approaches
an exponential in N , with more than 145 million stationary points predicted for N = 100.

It is also found that the number of humps in a stationary point is related to the num-
ber of negative eigenvalues. Given that a stationary point contains na humps, the
number of negative eigenvalues can range from na + 1 to 2na + 1. Also, the relative
magnitude of the negative eigenvalues is small compared to the positive eigenvalues.
To illustrate, the eigenvalues at each of the 812 located stationary points (808 containing
humps and four others) for N = 40 are plotted in Figure 6. Only 89 of the 812 stationary
points have eigenvalues less than –50, while the median eigenvalue of all the points are
greater than 198.

The effect of this eigenvalue spectrum is that evolutionary algorithms could find it
very challenging to escape these saddle points. A Monte Carlo simulation is performed
to investigate this further. M uniform random points are generated on the surface of an

Evolutionary Computation Volume 17, Number 3 447

S. Kok and C. Sandrock

Figure 5: Predicted number of stationary points containing humps, compared to the
actual number found.

Figure 6: Eigenvalues at each of the 812 stationary points found for the 40D Rosenbrock
problem. The two curves (A) are associated with local minima while the remaining
curves are for saddle points that have (B) a single negative eigenvalue (C) one hump
(D) two (97%) or three humps (3%) and (E) three (91%) or two (9%) humps.

N dimensional hypersphere of radius R, which is centered at some point of interest x∗.
After counting the number of points K with function value less than f (x∗), the integral
of the fraction K/M from 0 to R (corrected for the probability of generating such a point)
provides an estimate of the probability of generating a function value lower than f (x∗)
using uniform random search.

448 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Table 4: Local Minima and Saddle Points Used for Monte Carlo Simulation, Reported
to 14 Decimal Points

N = 4 N = 6
Local minimum Saddle point Local minimum Saddle point

x∗
1 −0.775659226565 −0.656124635719 −0.986574979571 −0.555419727179

x∗
2 0.613093365485 0.443120040972 0.983398228836 0.322493274297

x∗
3 0.382062846338 0.204312248228 0.972106670053 0.115207004099

x∗
4 0.145972018552 0.041743494776 0.947437436826 0.023502770405

x∗
5 0.898651184852 0.010447901205

x∗
6 0.807573952035 0.000109158640

f (x∗) 3.701428610430 3.708241996647 3.973940500930 5.646383966588

Figure 7: Probabilities to locate points with function values less that the specified points
of interest, using random search.

The Monte Carlo simulation was performed for N = 4 and N = 6, choosing the
points of interest as the saddle points and local minima in Table 4, as well as the zero
vector. The zero vector provides a reference in that it is a point with nonzero gradient but
with a relatively small function value. M was chosen as 10 million for all the simulations
except the 6D local minimum, where we used 1 billion. For problem dimension N > 6,
prohibitively large M is required to obtain reliable probabilities.

The results of the Monte Carlo simulations are presented in Figure 7, which con-
firms that the saddle points are indeed difficult to escape using random search. As the
problem dimension increases, the probability to escape using random search decreases
rapidly. This is true for all the saddle points we located, including those with multi-
ple negative eigenvalues. Shang and Qiu (2006) did however report that their steepest
descent method always located the global minimum if started at the 20D saddle point
reported by Deb et al. (2002). We do not regard this as evidence that the saddle points
are “easy” to escape using evolutionary algorithms, since few evolutionary algorithms
use gradient information. Furthermore, since Deb et al. (2002) only reported the 20D
saddle point to six digits, a nonzero gradient was computed at this point and hence the
steepest descent algorithm moved away from the point.

Evolutionary Computation Volume 17, Number 3 449

S. Kok and C. Sandrock

3 Practical Implications

We conclude this study by illustrating the effect of the stationary points on a practical
algorithm, the widely used particle swarm optimization (PSO) algorithm proposed by
Kennedy and Eberhart (1995), even though we are aware that it might not be the best
choice to solve this problem.

Consider a swarm of p particles in an N dimensional search space. The position
vector xi

k of each particle i is updated by

xi
k+1 = xi

k + vi
k+1, (31)

where k is a unit pseudo time increment (iteration number). vi
k+1 is the velocity vector

that is obtained from

vi
k+1 = wvi

k + c1r1
(

pi
k − xi

k

) + c2r2
(

pg

k − xi
k

)
, (32)

where w is the inertia factor, c1 and c2 are cognitive and social scaling factors respectively,
pi

k is the best position vector of particle i, and pg

k is the global best position vector of
the complete swarm (i.e., a fully connected swarm), up to time step k. r1 and r2 are
uniform random numbers between 0 and 1, and are generated independently for every
dimension of every particle.

For each particle i, the initial position (iteration k = 0) is generated randomly within
the allowable domain. We set the initial velocity of all particles to zero, and limited each
velocity component to half the domain size to prevent instability of the swarm.

In our numerical experiments, we use problem domain ±2.048 on all dimensions
and parameter settings w = 0.72, c1 = c2 = 1.49, p = 20, and N = 50. In order to es-
tablish a reference point, we run the algorithm 100 times to a maximum of 100,000
iterations. The global minimum is found 18 times, the only known local minimum is
found four times, and the mean function value is 17.8.

To illustrate the potential effect of a saddle point, we set the initial position of one
of the particles equal to a known saddle point containing one hump, with function
value approximately 103. After 100,000 iterations, only two out of 100 runs succeeded
to improve upon this initial saddle point solution.

Now that we have established that the immediate neighborhoods of the Rosenbrock
saddle points are difficult to escape by PSO once they have been entered, the one
outstanding issue is whether it is likely that an algorithm searching for a minimum will
locate one of these saddle points. To investigate this, we performed 10,000 PSO runs to
100,000 iterations. We found 544 cases where the global best solutions at 1,000 iterations
are closer than 0.4 from a known saddle point. The vast majority is the base solution (the
50D equivalent to column four in Table 2), but stationary points containing one and two
humps also occurred occasionally. The number of global best solutions that are close to
known stationary points reduces to only three after 10,000 iterations, and none exists
after 100,000 iterations. The point here is not that these numbers become negligible as
the algorithm proceeds, but that saddle points do in fact feature in the searches of the
PSO algorithm.

4 Conclusion

We investigated the stationary points of two variants of the extended Rosenbrock prob-
lem. Variant A is shown to have a single stationary point, the well known global

450 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

minimum. Variant B, however, contains numerous stationary points, including two lo-
cal minima. The numerical scheme proposed by Shang and Qiu (2006) is shown to be
a numerically intractable method to find all stationary points. Instead, Newton’s algo-
rithm is employed with multiple random starts. This uncovered sufficient stationary
points in order to deduce a pattern in which the stationary points appear. The stationary
points are characterized in terms of the number of negative eigenvalues, and the relative
magnitude. Few negative eigenvalues of small magnitude as compared to the positive
eigenvalues indicates “near” local minima, in that very limited search directions ex-
ist that can improve the solution. Variant B contains two such “near” local minimum
saddle points, each with a single negative eigenvalue. It also contains numerous others
that have a small fraction of negative eigenvalues, again with a small magnitude as
compared to the positive eigenvalues. Using Monte Carlo simulation we illustrated
that uniform random search is unlikely to escape these saddle points of Variant B. An
algorithm like the particle swarm optimization (PSO) for instance struggles to escape
a saddle point contained in the initial population. Finally, we found that the PSO algo-
rithm does in fact locate saddle points while searching for the minimum, but manages
to escape most of the time.

Acknowledgments

The authors gratefully acknowledge the contribution of Daniel N. Wilke for his insight-
ful comments and suggestions.

References

Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-paremeter optimization. Evolutionary Computation, 10(4):371–395.

de Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD Thesis,
University of Michigan, Ann Arbor, Michigan.

Dixon, L. C. W., and Mills, D. J. (1994). Effect of rounding errors on the variable metric method.
Journal of Optimization Theory and Applications, 80(1):175–179.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading,
Massachusetts: Addison-Wesley.

Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., and Mitzutani, T. (2004). PHoM—A
polyhedral homotopy continuation method for polynomial systems. Computing, 73:57–77.

Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill.

Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE
International Conference on Neural Networks, Vol. 4 (pp. 1942–1948). Perth, Australia.

Maxima. (2008). Maxima 15.5.0, http://maxima.sourceforge.net/.

Python. (2006). Python Software Foundation, Python©R 2.4.3, http://python.org/.

Shang, Y.-W., and Qiu, Y.-H. (2006). A note on the extended Rosenbrock function. Evolutionary
Computation, 14(1):119–126.

Weisstein, E. W. (2008). Sturm function. From MathWorld—A Wolfram resource. http://
mathworld.wolfram.com/SturmFunction.html.

Evolutionary Computation Volume 17, Number 3 451

S. Kok and C. Sandrock

Appendix Code Listing

The following MATLAB functions can be used to generate roots using the predictive pat-
tern described in Section 2.2.4. Call humper from the commandline as >> humper(N)
to generate a list of roots for the N† dimensional problem.

452 Evolutionary Computation Volume 17, Number 3

Stationary Points of the Extended Rosenbrock Function

Evolutionary Computation Volume 17, Number 3 453

