
RESEARCH PAPER

Collective neuro-evolution for evolving specialized sensor
resolutions in a multi-rover task

G. S. Nitschke • M. C. Schut • A. E. Eiben

Received: 4 July 2009 / Accepted: 6 November 2009

� Springer-Verlag 2009

Abstract This article presents results from an evaluation

of the collective neuro-evolution (CONE) controller design

method. CONE solves collective behavior tasks, and

increases task performance via facilitating emergent

behavioral specialization. Emergent specialization is guided

by genotype and behavioral specialization difference met-

rics that regulate genotype recombination. CONE is com-

paratively tested and evaluated with similar neuro-evolution

methods in an extension of the multi-rover task, where

behavioral specialization is known to benefit task perfor-

mance. The task is for multiple simulated autonomous

vehicles (rovers) to maximize the detection of points of

interest (red rocks) in a virtual environment. Results indi-

cate that CONE is appropriate for deriving sets of special-

ized rover behaviors that complement each other such that a

higher task performance, comparative to related controller

design methods, is attained in the multi-rover task.

Keywords Neuro-evolution � Multi-rover �
Collective behavior � Specialization

1 Introduction

Specialization is observable in many collective behavior

systems and is thought to be a fundamental mechanism

necessary to achieve optimal efficiency. Examples of col-

lective behavior systems include social insect colonies,

biological neural networks, traffic jams, economies of a

nation, as well as industrial infrastructures such as energy

and telecommunications networks [44]. In complex eco-

logical communities, specializations have evolved over

time as a means of diversifying the community in order to

adapt to the environment [48]. Over the course of evolu-

tionary time, specialization in biological communities has

assumed both morphological [51] and behavioral forms [6].

For example, certain species of ants adapt their foraging

behavior as a function of individual preference and colony

demand, and have evolved specialized morphologies

appropriate for different tasks such as foraging and nest

construction [5]. Thus, labor is efficiently divided between

specialized castes and individuals for the benefit of

accomplishing group tasks. In such a sense, specialization

is an adaptive mechanism in collective behavior systems. In

fields of research such as multi-robot systems [47], it is

highly desirable to reproduce the underlying mechanisms

that result in replicating the success of biological collective

behavior systems. One such underlying mechanism is

emergent behavioral specialization [34]. Emergent spe-

cialization is that which emerges from the interaction of

system components in response to a dynamic task that

requires varying degrees, or types of specialization, in

order to effectively accomplish. Such approaches are

popular in collective behavior task domains where one

does not know, a priori, the degree of specialization

required to optimally solve the given task [30]. Behavioral

specialization refers to agent behaviors that are advanta-

geous for accomplishing specific types of tasks [34].

In the study of controller design methods that solve

various collective behavior tasks [7, 27, 40, 46], emergent

specialization is not typically used as a problem solving

G. S. Nitschke (&)

Computational Intelligence Research Group,

Department of Computer Science, University of Pretoria,

Pretoria 0002, South Africa

e-mail: gnitschke@cs.up.ac.za

M. C. Schut � A. E. Eiben

Computational Intelligence Group,

Vrije Universiteit Amsterdam, De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands

123

Evol. Intel.

DOI 10.1007/s12065-009-0034-z

mechanism, but rather emerges as an ancillary result of the

system accomplishing a collective behavior task. Collec-

tive behavior task refers a task that can only be solved if

agents (behaviors) in the system cooperate. In this article

the collective behavior task investigated is the extended

multi-rover task (Sect. 4). Other collective behavior tasks

that use or benefit from behavioral specialization include

cooperative transport by multi-robot systems [36], pursuit-

evasion tasks [57], RoboCup soccer [52], and multi-agent

computer games [7].

This article tests collective neuro-evolution (CONE),

which is a novel controller design method that addresses a

gap in current controller design methods. CONE solves

collective behavior tasks via purposefully facilitating

emergent behavioral specialization [34]. The potential

advantage of CONE is that it increases collective behavior

task performance or attains collective behavior solutions

that could not otherwise be attained without specialization.

1.1 Approach and objectives

In line with state of the art methods for controller design

[15, 20], this research supports NE as an appropriate

approach for controller design within continuous and par-

tially observable collective behavior task environments. NE

has been successfully applied to solve a disparate range of

collective behavior tasks that include multi-agent computer

games [7, 49, 50], RoboCup soccer [52], pursuit-evasion

games [40, 57], and multi-robot tasks that include cooper-

ative transport [35] and coordinated movement [4].

The extended multi-rover task (Sect. 4) investigated in

this research elucidates that it is beneficial to use special-

ization that emerges during controller evolution, as part of

the problem solving process. Multi-rover experiments

indicate that CONE (comparative to related controller

design methods) effectuates behavioral specialization in a

set of controllers, allowing the derivation of collective

behavior solutions that could not otherwise be derived. The

multi-rover experiments also indicate that controllers

adopting non-specialized behaviors produce a compara-

tively inferior collective behavior performance.

1.2 Research goals and hypotheses

In order to fulfill the following research goal and test

the hypotheses, CONE is comparatively evaluated with

two related NE controller design methods (cooperative,

co-evolutionary genetic algorithm and multi-agent enforced

sub-populations).

Research goal To demonstrate the efficacy of CONE as a

controller design method that solves collective behavior

tasks via effectuating behavioral specialization.

Hypothesis 1 CONE facilitates emergent behavioral

specialization in a set of ANN controllers, where such

specialization contributes to the evolution of collective

behaviors that effectively solve the multi-rover task.

Hypothesis 2 Genotype and behavioral metrics in CONE

adaptively regulate genotype recombination and encourage

emergent behavioral specialization appropriate for

achieving a higher task performance comparative to related

controller design methods.

1.3 Contributions

The main contributions of this research are as follows.

1. CONE: CONE is an extension of the multi-agent ESP

controller design method [57] that adapts a team of

controllers in order to solve collective behavior tasks.

Unlike multi-agent ESP, CONE includes adaptive

mechanisms that autonomously regulate genotype

recombination between multiple populations and con-

troller size as a means of encouraging the emergence

of behavioral specialization.

2. Genotype and behavioral metrics: CONE uses geno-

type and behavioral (Sect. 3.3) metrics. Such metrics

have been proposed in previous research [3, 55].

However, the CONE metrics identify and propagate

beneficial specialized controller behaviors as part of a

cooperative co-evolutionary process.

3. Dynamic controller size adaptation: The number of

hidden layer neurons in each ANN controller is

adapted as a function of the fitness progress of all

controllers. Dynamic controller size adaptation allows

different controllers to evolve to sizes appropriate for

solving different sub-tasks [24, 32].

4. Emergent specialization as a problem solver: Geno-

type and behavioral metrics, and dynamic adaptation

of controller size allows CONE to purposefully evolve

behaviorally specialized controllers. The interactions

of these controllers results in a higher collective

behavior task performance (comparative to that

yielded by related methods). This assumes that the

given collective behavior task benefits from behavioral

specialization.

2 Approaches to specialization in collective behavior

tasks

There has been a large amount of research on various

methods for evolving specialization for solving collective

behavior tasks. In addition to approaches delineated in the

following, see Nitschke et al. [34] for a comprehensive

Evol. Intel.

123

review of various methods for evolving specialization for

the benefit of solving collective behavior tasks.

2.1 Neuro-evolution

Neuro-evolution (NE) is the evolution of ANNs using

evolutionary algorithms [56]. NE has been highlighted

as being an appropriate method for controller design in

collective behavior systems [15, 35, 41] as well as

being effective for facilitating behavioral specialization

[7, 40, 52].

Some prevalent research examples include Quinn et al.

[43], who employed artificial evolution to adapt ANN

controllers in a team of real robots. The team was given a

coordinated movement task. Results indicated that com-

plementary and specialized roles emerged that enabled the

robots to move in a coordinated manner. Similarly, Bull

and Holland [10] and Quinn [42] compared methods for the

evolution of team behavior in a team of simulated robots.

A method that specified the ANN controller of each robot

as one genotype (clonal) was compared to a method

that specified the controller of each robot as a different

genotype (aclonal). These methods were tested on a

coordinated movement task, and it was found that the

aclonal approach evolved higher performance teams

comparative to the clonal approach. Also, the highest

performing teams evolved by the aclonal approach con-

sisted of robots adopting complementary and behaviorally

specialized roles.

Bryant and Miikkulainen [7] applied the Enforced Sub-

Populations ESP [18] method to evolve behaviors of bar-

barian versus legion teams in a multi-agent computer

game. A division of labor emerged during the evolution of

legion teams. Some legion agents became specialized to

pursuing barbarian agents, whilst others specialized to

defending cities from barbarian agents. Whiteson et al.

[53] apply the ESP method to evolve ANN controllers for

specialized behavioral roles in a keep-away soccer task.

Results indicated given a suitable task decomposition, NE

(in this case ESP) was appropriate for evolving high per-

formance collective (keep-away) behaviors. Potter and

Meeden [40] applied NE for evolving ANN controllers in a

simulated robot team. The authors demonstrated that

emergent specialized behaviors were facilitated by

increasing the number of skill sets necessary to solve the

task. In their experiments, Potter and Meeden [40] added a

predator robot which resulted in beneficial specialist

behaviors emerging in herding robots. Baldassarre et al.

[35] applied NE to evolve a collective object movement

behavior in a simulated robot team. Specialized pushing

versus pulling behaviors emerged enabling the team to

cooperatively move an object when the robots were phys-

ically linked to each other.

2.2 Cooperative co-evolution

Cooperative co-evolution models [54] are suited for facil-

itating behavioral specialization when applied to solve

collective behavior tasks. Such approaches segregate the

solution space into multiple species, where individuals

within a species constitute candidate partial solutions to a

collective behavior solution. Cooperative co-evolution

models use cooperation between species as well as com-

petition between individuals of a species.

Holland and Reitman [23] did early work in cooperative

co-evolution using Classifier Systems. A population of rules

was evolved by assigning a fitness to each rule based on the

success of interaction with other rules. Also, Husbands and

Mill [25] used multiple genotype populations in order to

evolve partial solutions to a manufacturing scheduling

optimization task. These partial solutions were then com-

bined in order to form a complete solution to the given task.

However, in this research, emergent specialization did not

play a role in problem solving. Potter and De Jong [37]

developed a general cooperative co-evolution model that

uses evolutionary algorithms. One particular instantiation of

this generalized model was the CCGA. ESP co-evolves

neurons for the purpose of evolving ANN controllers suited

for a given task. In both CCGA and ESP, the genotype

population is decomposed into a set of sub-populations.

Each generation of the CCGA and ESP evolutionary pro-

cess, the fittest genotype is selected from each sub-popula-

tion. These genotypes are then decoded into partial

solutions. Collectively, these partial solutions then represent

a complete solution to a given task. This complete solution is

evaluated on the given task, and a fitness is assigned back to

each of the constituent genotypes (partial solutions). Thus,

individuals are evaluated based upon how well they coop-

erate with other individuals for the purpose of accomplish-

ing a given task. In CCGA, genotypes are general enough to

encode various partial solutions, such as ANN controllers

[37], and rules [38] (see also Bull et al. [9]). ESP is a specific

case of CCGA, where each genotype is encoded as a string

of values that represent input and output connection weights

of a hidden layer neuron. Hence, combined, the fittest

genotype selected from each sub-population represents the

fittest ANN evolved for a given task.

Multi-agent ESP is the application of ESP to collective

behavior tasks. Multi-agent ESP creates n populations for

deriving n ANN controllers. Each population consists of u

sub-populations, where individual controllers are con-

structed as in ESP. This process is repeated n times for n

controllers, which are then collectively evaluated in a

task environment. Multi-agent ESP is further described in

related work [57].

Moriarty [28] applied a cooperative co-evolution

approach in order to co-evolve a population of blueprints

Evol. Intel.

123

for ANNs and a population of neuron connection weights

with which to construct ANNs. The population of ANN

blueprints were evaluated based on how well their corre-

sponding neurons solved a given task. In the other popu-

lation, neurons received fitness based upon the number of

successful blueprints they participated in. Drezewski [11]

describes a multi-agent system that uses a cooperative co-

evolutionary process with two species. The system solves

multi-objective optimization tasks via locating the pareto

frontier as a result of co-evolutionary interactions between

the species.

2.3 State-of-the-art

In summary, although numerous studies have investigated

methods to solve collective behavior tasks. Within such

studies, behavioral specialization emerges as an ancillary

result of task accomplishment. With notable exceptions

such as [16], there are few examples of research that suc-

cessfully specifies, a priori, what exactly the behavior of

system components should be, in order to produce a spe-

cifically desired, yet emergent collective behavior. That is,

a controller design method that purposefully facilitates and

uses emergent specialization in order to solve collective

behavior tasks is currently lacking.

3 Methods: collective neuro-evolution (CONE)

CONE is a controller design method that uses cooperative

co-evolution in order to adapt a group of agent controllers.

Each controller is an artificial neural network (ANN).

Given n genotype populations (for evolving n controllers),

CONE evolves one controller from each population, where

the controllers must cooperate in order to solve collective

behavior tasks. The controllers are collectively evaluated in

a task environment according to how well they solve the

given collective behavior task. Each controller is a feed-

forward ANN with one hidden layer that is fully connected

to the input and output layers. Each hidden layer neuron of

each controller is encoded as one genotype. CONE evolves

the connection weights of these neurons and then combines

them into complete controllers.

The motivation for CONE operating at the neuron level

is two-fold. First, NE methods that evolve neurons (or more

generally functional units) have been demonstrated as

exhibiting superior solutions for various controller design

tasks [19, 21]. Second, cooperative co-evolutionary methods

that operate at the neuron level avoid the competing

conventions problem [45] and population diversity is

maintained thus reducing the chance of premature conver-

gence (relatively high for NE methods that evolve complete

ANNs) [29].

An example of CONE using three controllers (and thus

three genotype populations) is presented in Fig. 1. Unlike

related methods, which include SANE [28], CCGA [37],

ESP [18], and multi-agent ESP [57], CONE implements

genotype and behavioral specialization difference metrics

to regulate genotype recombination between and within

populations. Based upon genotype similarities and the

success of behavioral specializations exhibited by con-

trollers, these metrics control recombination and direct

evolution. CONE is an extension of multi-agent ESP [57]

that includes novel contributions that use emergent

behavioral specialization as a problem solving tool.

1. Genotype difference metric (GDM): A heuristic that

adaptively regulates recombination of similar and

beneficial genotypes in different populations. For

measuring genotype similarity, a Genetic Similarity

Threshold (GST) is defined. Genotypes a and b are

considered similar if the average weight difference

[55] between a and b \ GST. Given that similar

genotypes in different populations may encode very

different functionalities, recombining similar geno-

types may produce genotypes (neurons) that do not

work in a controller. The specialization difference

metric addresses this problem.

2. Specialization difference metric (SDM): A heuristic

that regulates genotype recombination based on

behavioral similarities exhibited by controllers. The

SDM ensures that specialized behavior exhibited by

two controllers is sufficiently similar, before two

GP 3

GP 1

SP 1 1

SP 1 2

SP 1 3

SP 3 1

SP 3 2

SP 3 3

SP 3 4

GP 2

SP 2 1

SP 2 2

SP 2 3

ANN 1

ANN 2

ANN 3

Task Environment

GP: Genotype Population
SP: Sub-Population

Fig. 1 CONE example. ANN controllers are derived from three

populations and evaluated in a collective behavior task. Doubleended
arrows indicate self regulating recombination occurring between

populations

Evol. Intel.

123

populations that encode the two controllers, can be

recombined. If the SDM calculates the behavior of two

controllers to be sufficiently similar, then the GDM is

applied in order to recombine similar genotypes within

the two populations1.

3. Controller size adaptation: A heuristic that adapts the

number of hidden layer neurons in each controller over

the course of cooperative co-evolution. Controller size

adaptation supports the facilitation of behavioral

specialization by CONE, via allowing different con-

trollers to evolve to different sizes. That is, controllers

of varying sizes and complexity are often appropriate

for solving sub-tasks of varying complexities [32].

For succinctness, this section presents a description of

the CONE architecture (Sect. 3.1), CONE’s novel contri-

butions (Sects. 3.2 to 3.3), and an overview of the CONE

process (Sect. 3.5). For a comprehensive description of

CONE refer to Nitschke [32].

3.1 Representation: multi-population structure

As with related NE methods [18, 37], CONE segregates the

genotype space into n populations for the purpose of

developing n ANN controllers. CONE mandates that ANNi

(1 B i B n) is derived from genotype population i(Pi),

where Pi contains ui sub-populations. ANNi is derived from

Pi via selecting one genotype from each of the ui sub-

populations and decoding these genotypes into hidden

layer neurons. Figure 1 illustrates an example of the CONE

representation. Three populations for deriving three con-

trollers are illustrated. ANN-1 and ANN-2 (derived from

genotype populations 1 and 2, respectively) consist of three

hidden layer neurons, whilst ANN-3 (derived from geno-

type population 3) consists of four hidden layer neurons.

ANNi consists of w input neurons, and v output neurons,

fully connected to ui hidden layer neurons. The number of

input and output neurons remains fixed and the number of

hidden layer neurons can be adapted. The CONE process is

driven by mechanisms of cooperation and competition

within and between sub-populations and populations.

There is competition between genotypes of a sub-popula-

tion, given that the genotypes compete for a place as a

neuron in the hidden layer of a fittest controller. There is

cooperation between sub-populations, in that a fittest

genotype is selected from each sub-population in order to

participate in forming a controller. There is cooperation

between controllers given that n controllers must cooperate

in order to accomplish a collective behavior task.

3.2 Behavioral specialization

An integral part of CONE is defining behavioral special-

ization exhibited by controllers, and measuring special-

ization similarities. The degree of behavioral specialization

(S) exhibited by an individual controller is defined by the

frequency with which the controller switches between

executing distinct motor outputs (actions) during its life-

time. Controllers select from executing one of at least two

different actions. Given this, the behavioral specialization

metric used is an extension of that defined by Gautrais

et al. [17].

This specialization metric was selected since it is

applicable to the behaviors of individual controllers,

accounts for the partitioning of a controller’s work effort

among different actions, and is simple enough to extend for

the purposes of working within CONE. The metric is

general enough to define controllers as being specialized

when they regularly switch between different actions, and

an approximately equal portion of the controller’s lifetime

is devoted to each action, but where there is a preference

for executing a particular action. The metric is also general

enough to be applicable to controllers that have distinct

motor outputs, but a variable range for each output. For

example, the metric was applied in a multi-robot experi-

ment, where each robot had two motor outputs controlling

left and right wheel speeds. Each motor output was

executed with a value indicating its wheel speed [31]. For

a given controller, S is calculated as the frequency

with which a controller switches between each of its v

actions (Eq. 1). In Eq. 1, A is the number of times the

controller switches between different actions, and N is the

total number of possible action switches. Equation 1

assumes that each controller has v distinct motor outputs

(actions).

S ¼ A

N
ð1Þ

A value of S close to zero indicates a high degree of

specialization, where a controller specializes to primarily

perform one action, and switches between this and the

other v - 1 actions with a low frequency. An S value close

to one indicates a low degree of specialization, where a

controller switches between some or all of its v actions with

a high frequency. In the case of a perfect specialist (S = 0),

a controller executes the same action for the duration of its

lifetime (A = 0). An example of a non-specialist (S = 0.5)

is where a controller spends half of its lifetime switching

between different actions. For example, if A = 5, N = 10,

v = 2 then the controller would switch between each of its

actions every second iteration. Controllers are labeled as

either specialized or not specialized according to the

following rule.

1 The SDM and GDM regulate recombination between populations

such that the chances of genotype recombination producing delete-

rious offspring is minimal.

Evol. Intel.

123

• If S C ST then a controller is labeled as non-

specialized.

• If S \ ST then a controller is labeled as specialized.

Where, ST is the behavioral specialization threshold.

Throughout this paper we use ST = 0.5. If a controller is

defined as being specialized, then it is labeled as being

specialized to action x, where x is the action that is most

executed over the course of the controller’s lifetime.

Otherwise, a controller is labeled as being non-specialized.

Also, if a set of controllers are defined as being specialized,

then controllers are grouped according to their specializa-

tion label. A controller group specialized to executing the

same action is called a caste [26]. For measuring the

similarity between the specialized behaviors of two con-

trollers ANNi and ANNj a specialization distance (SD) is

defined (Eq. 2).

SDðANNi;ANNjÞ ¼ jSðANNiÞ � SðANNjÞj ð2Þ

ANNi and ANNj have similar behavioral specializations

if SD is less than a specialization similarity threshold

(SST), where, SST [{0, ..., 1} (Eq. 3).

SDðANNi;ANNjÞ\SST ð3Þ

3.3 Adaptation of algorithmic parameters

This section describes the mechanisms that adapt the

Genetic Similarity Threshold (GST) and Specialization

Similarity Threshold (SST). The purpose of the GST and

SST is to autonomously regulate recombination between

different populations as a function of the fitness progress of

the n controllers. GST and SST values are adapted by 0.01,

which was determined from exploratory experiments run

prior to multi-rover experiments (Sect. 4). This did not

change the GST and SST by too much per regulation, thus

missing useful values, and was not too small, thus inhib-

iting the discovery of effective GST and SST values.

Specialization for regulating recombination: This heu-

ristic regulates the SST as a function of behavioral

specialization and fitness progress.

1. If the average degree of specialization (S) measured

for at least one of the fittest n controllers has

increased over the previous V generations, and

average fitness (for the fittest n controllers) stagnates

or is decreasing over this same period, then decre-

ment the SST value. That is, if the fittest controllers

have an average S that is too high for improving

team fitness, then recombination between popula-

tions is restricted.

2. If the average S of at least one of the fittest n

controllers has decreased over the last V genera-

tions, and average fitness stagnates or is decreasing

over this same period, then increment the SST value.

That is, if the fittest controllers have an average S

that is too low to improve team fitness, then allow

for more recombination between populations.

Recombination for regulating recombination: This heu-

ristic regulates the GST value as a function of recom-

binations and fitness progress.

1. If recombinations between populations have

increased over the previous V ? W generations,

and fitness has stagnated or decreased, then decre-

ment the GST value.

2. If recombinations between populations have

decreased or stagnated, and fitness has stagnated

or decreased over the previous V ? W generations,

then increment the GST value.

3.4 Adapting controller size

Controller size (the number of hidden layer neurons and

sub-populations from which each hidden layer neuron is

derived), is dynamically adapted as a function of collective

behavior performance. If the fitness of at least one of the n

fittest controllers has not progressed in V ? W ? Y gener-

ations, then the size of the stagnating controllers is adapted.

Specifically, the number of sub-populations in the popula-

tion from which the stagnating controller is derived is

adapted. This differs from related NE methods that evolve n

controllers with fixed sensory input and motor output

topologies in collective behavior tasks [7, 40, 57]. In such

related work there was no dynamic adaptation of controller

size in collective behavior tasks. Controller size adaptation

in CONE allows for the derivation of controller sizes that

effectively complement each other for the purpose of col-

lective behavior task accomplishment. In collective

behavior tasks comprised of sub-tasks of varying degrees of

complexity and difficulty, controllers of different sizes

work more effectively at solving complementary sub-tasks,

and thus cooperating. A lesion mechanism [28] is applied in

order to determine if the size of a stagnating controller

should be increased or decreased. When an additional sub-

population is created, new genotypes are created by ran-

domly initializing each gene to a value within a range

stipulated by the task. Multi-rover experiments (Sect. 4)

with controller size adaptation turned off yielded an average

task performance decrease of *25% for all experiments.

3.5 Overview of the collective neuro-evolution

(CONE) process

1. Initialization. n populations are initialized. Popula-

tion Pi(i [{1, ..., n } contains ui sub-populations.

Evol. Intel.

123

Sub-population Pij contains m genotypes. Pij contains

genotypes encoding neurons assigned to position j in

the hidden layer of ANNi (ANNi is derived from Pi).

2. Evaluate all genotypes. Systematically select each

genotype g in each sub-population of each population,

and evaluate g in the context of a complete controller.

This controller (containing g) is evaluated together

with n - 1 other controllers. Other controllers are

constructed via randomly selecting a neuron from each

sub-population of each of the other populations. The

evaluation results in a fitness being assigned to g.

3. Evaluate elite controllers. For each population, sys-

tematically construct a fittest controller from a geno-

type (randomly selected from the elite portion2) of

each sub-population of the population. Controller

fitness is determined by its utility. A controller’s

utility is determined by a simple sum of the fitness

value the genotypes corresponding to each of its

hidden layer neurons. Groups of the fittest n controllers

are evaluated together in task simulations until all

genotypes in the elite portion of each population have

been assigned a fitness. For each genotype, this fitness

overwrites the previously calculated fitness.

4. Parent selection. If the two fittest controllers ANNi

and ANNj constructed from the elite portions of Pi

and Pj are calculated as having similar behavioral

specializations (Sect. 3.2) then these populations

become candidates for recombination. For Pi and Pj

to be recombined, both ANNi and ANNj must have

the same specialization label (Sect. 3.2). That is,

both ANNi and ANNj must be behaviorally special-

ized to the same action. Between Pi and Pj each pair

of sub-populations is tested for genetic similarity.

Genetically similar sub-populations are recombined,

and mutation applied. Recombination occurs within

sub-populations that not genetically similar to

other sub-populations. Similarly, recombination

occurs within populations that are not behaviorally

similar.

5. Recombination. For recombination that occurs between

a pair of sub-populations, the elite portion of geno-

types in each sub-population is ranked by fitness.

Genotypes with the same fitness rank are recombined.

For recombination within a sub-population, each

genotype in the sub-population’s elite portion is system-

atically selected and recombined (using one-point

crossover [12]) with a randomly selected elite portion

genotype.

6. Mutation. After recombination, burst mutation with a

Cauchy distribution [18] is applied to each gene of

each genotype with a predefined degree of probability.

7. Parameter adaptation. If fitness of one of the fittest

controllers has not progressed in:

(a) V generations: Adapt the Genetic Similarity

Threshold (GST).

(b) V ? W generations: Adapt the Specialization

Similarity Threshold (SST).

(c) V ? W ? Y generations: Adapt the number of

sub-populations (controller size) of each control-

ler with stagnating fitness (Sect. 3.4). V, W, Y are

constants.

8. Stop condition. Reiterate steps [2, 7] until a desired

collective behavior task performance is achieved, or

the evolutionary process has run for X generations.

4 The extended multi-rover task

This multi-rover task requires a team of simulated auton-

omous vehicles (rovers), to detect features of interest (red

rocks) with a maximal total value over the course of the

team’s lifetime. The term red rock is adapted from Young

et al. [58] and refers to discrete high-value features of

interest on an unexplored terrain. A red rock is detected

when it is within range of more than one rover’s red rock

detection sensors. In this research, detecting a red rock

represents is a metaphor for retrieving, collecting, or

acquiring red rock value. Accordingly, a rover’s red rock

sensors are an abstraction of actuators necessary for red

rock retrieval. The multi-rover task is a collective behavior

task, meaning that a red rock is detected if at least two

rovers can sense it. Furthermore, we distinguish five types

of red rocks (A, ..., E), and three different resolution set-

tings for red rock detection sensors (low-res, med-res, hi-

res). For each type of red rock, we define a specific com-

bination of sensor settings required to detect it. These are

shown in Table 1, together with the value of each red rock

type. This multi-rover task extends that described by

Agogino [1], and differs in a number of respects.

1. This is a collective behavior task, and not a distributed

artificial intelligence task, given that rovers are

required to cooperate in order to accomplish the task

(detect red rocks).

2. Rovers use detection sensors with variable settings

(resolutions), where as in previous work [1], rovers

operate with detection sensors always being active

with a fixed setting.

2 The elite portion is a fittest portion of a given genotype population.

For the experiments described in this article, it was set to 50%.

Random selection from the elite portion was opted for given previous

research results that have demonstrated that evaluating only the

current fittest individuals from each species is not necessarily the best

approach [8, 39].

Evol. Intel.

123

3. In this task, red rock detection requires different rovers

to adopt different sensor resolutions. This encourages

behavioral specialization for task accomplishment.

In line with the work of Young et al. [58] red rocks are

arranged in a canal like structure, thus forming canal

environments. In Young et al. [58], it was the goal of

autonomous vehicles to maximize detection of red rocks

via following these canal like structures. This was also the

motivation for the use of red rock canals within these

experiments, however, the goal of maximizing red rock

detection has been made more complex via introducing

collective behavior requirements. Canals defined by red

rocks represent positions that are impassable to rovers.

Hence, to move through the environment, rovers must

navigate around these canals. Further details of and illus-

trations of the environments used in this study are descri-

bed in Sect. 5.1 as part of the specification of the

experimental setup.

4.1 Rovers: detecting other rovers and red rocks

Each rover is equipped with two types of sensors: those to

detect other rovers and those to detect red rocks. The rover

detection sensors fulfill two functions. First, they prevent

collisions between rovers. Second, they provide each rover

with an indication of red rock detection sensor settings

being used by other rovers. Each rover is equipped with

eight rover detection sensors, S-0 through S-7, each of

which covering one quadrant in a 360 degree sensory field

of view (FOV). The rover detection sensors are constantly

active, maintaining a default value of zero, when not

sensing anything, and have a fixed range and cost

(Table 3). When another rover enters the range of a rover

detection sensor, then that sensor is assumes a new value

equal to the red rock detection sensor setting being used by

the closest rover divided by the squared distance to this

rover. To this end, we encode the symbolic values lo-res,

med-res, and hi-res as integers 1, 2, and 3, respectively.

The red rock detection sensors (that are, in fact,

abstractions of actuators) are for detecting red rocks as

described above. Each rover is equipped with eight red

rock detection sensors, S-8 through S-15 each of which

covering one quadrant in a 360 degree sensory FOV. Red

rock detection sensors have a fixed range and cost

(Table 3). When red rocks come within range of sensor q,

that sensor returns a value inversely proportional to the

value of, divided by the squared distance to, the closest red

rock.

4.2 Rovers: artificial neural network (ANN) controller

Each rover uses a recurrent ANN controller [13], that fully

connects 22 sensory input neurons to six hidden layer

neurons and five motor output neurons (Fig.2). Sensory

input neurons [SI-0, SI-7] accept input from each of the

eight rover detection sensors. Neurons [SI-8, SI-15] accept

input from each of the eight red rock detection sensors.

Neurons [SI-16, SI-21] accept the previous activation value

of each hidden layer neuron. Furthermore, the five motor

output neurons [MO-0, MO-4], are fully connected to the

hidden layer neurons. The hidden and output layer neurons

are sigmoidal units [22].

At each simulation time step, a rover executes one of

four actions (Fig. 2). The motor output with the highest

value is the action executed (MO-3 or MO-4 indicate

movement). A rover’s heading is determined by normal-

izing and scaling the vectors dx and dy by the maximum

distance a rover can traverse in one simulation iteration [2].

1. MO-0: Activate all red rock detection sensors with

low-res setting.

2. MO-1: Activate all red rock detection sensors with

med-res setting.

3. MO-2: Activate all red rock detection sensors with hi-

res setting.

4. MO-3, MO-4: Move in a direction calculated from

MO-3 (dx) and MO-4 (dy).

Table 1 Collective behavior for red rock detection

Red rock type Red rock value Rovers required

A 1 2 Low-res detectors

E 1 2 Detectors (using same settings)

B 1 1 Low-res, 1 med-res detector

C 1 1 Med-res, 1 hi-res detector

D 1 2 Hi-res detectors

Rover’s need to use given detection sensor settings in order to

cooperatively detect given red rock types

Fig. 2 Rover ANN controller. For clarity not all sensory input

neurons are presented

Evol. Intel.

123

4.3 Rovers: heuristic controller

Heuristic controllers are used in a lesion study conducted as

part of the post-experiment analysis (Sect. 7). Four different

heuristic controllers implement hard-wired specialized and

non-specialized behaviors (Table 2). Each controller is

defined by a set of probabilistic preferences for selection of

one action at each simulation iteration. These actions are the

same as those used by the ANN controller. The action selec-

tion preference values were selected given that they produced

a specialized or non-specialized behaviors, where special-

ization is defined as switching between different actions with a

low frequency, and non-specialization is defined as switching

between different actions with a high frequency (Sect. 4.4).

4.4 Specialization in the multi-rover task

In the original rover task [2], each rover could only move at

each simulation iteration, and red rock detection sensors were

constantly active. In this task, each rover can select between

multiple actions, and red rock detection requires at least two

rovers to use complementary detection sensor settings.

Hence, this task encourages different rovers to specialize to

different actions for the purpose of collective behavior task

accomplishment. Related research [33] indicated that the

extended multi-rover task benefits from behavioral special-

ization given rover sensor and energy constraints. These

constraints prevent an effective heuristic based systematic

search of a large environment by the rovers. Specialization is

measured with respect to the behavior exhibited by individual

rovers. The specialization metric (Sect. 3.2) calculates a

degree of specialization (S) for a given rover. Specialized

rover’s are labeled as follows. Label assignment is done after

each rover’s lifetime, since the portion of a rover’s lifetime

spent executing each action must be known.

• Low-res detector: A rover that activates its red rock

detection sensors at low-res for a period of simulation

time greater than any other action.

• Med-res detector: A rover that activates its red rock

detection sensors at med-res for a period of simulation

time greater than any other action.

• Hi-res detector: A rover that activates its red rock

detection sensors at hi-res for a period of simulation

time greater than any other action.

• Mover: A rover that moves for a period of simulation

time greater than any other action.

5 Extended multi-rover task: experimental design

Rovers operate in a continuous simulation environment

which is characterized by a two dimensional plane. One

rover can occupy any given x, y position in the environ-

ment. Movement is calculated in terms of real valued

vectors. To calculate the distance between this rover and

other rovers and red rocks, the squared Euclidean norm,

bounded by a minimum observation distance [2] is used.

Furthermore, the environment is defined by the following.

1. Red rock distribution. Red rock types: [A, B, C, D, E]

are distributed in 10 different environments (Sect. 5.1).

Environments are classification as simple if they

contain only one type of red rock, and complex if

they contain multiple types of red rock.

2. Rovers. Teams of 20 rovers initialized in random

positions in each environment.

5.1 Canal environments: red rock distribution

The ten canal environments used in this study are illus-

trated in Figs. 3, 4, and 5. Red rocks are distributed such

that a red rock can placed at each possible x, y position,

within the confines of a given canal structure. The total red

rock value and the number of red rocks equals 5,000 for

each environment. These canals were selected from

exploratory experiments that found such environments to

contain sufficient complexity in order that the least effec-

tive teams attained a near zero task performance, and the

most effective teams achieved a relatively high perfor-

mance. Experiments tested 20 rovers in the simulation

environment and measured the impact of a controller

design method and environment upon red rock value

detected by a rover team. The experimental objective was

to determine which controller design method maximizes

the red rock value detected by a rover team. Furthermore,

the contribution of emergent behavioral specialization to

rover team task performance is investigated.

• Controller design methods: Each rover’s ANN control-

ler is adapted with either: CCGA [37], multi-agent ESP

[57], CONE (Sect. 3).

• Environment: For each method, two sets of environ-

ments (labeled: simple and complex) are tested. Each

set contains ten red rock distributions (Sect. 5.1).

Table 2 Rover heuristic controllers

Controller

type

Low-res

detection

(%)

Med-res

detection

(%)

Hi-res

detection

(%)

Move

(%)

Low-res detector 70 0 0 30

Med-res detector 0 70 0 30

Hi-res detector 0 0 70 30

Non-specialized 25 25 25 25

Exhibit a specialized (low-res, med-res, hi-res detectors) or non-spe-

cialized behavior. Probabilistic preferences are used for action selection

Evol. Intel.

123

Rover Team Fitness Evaluation. To evaluate team

performance, a global fitness function, G, is defined as a the

total red rock value detected by a team over the course of

its lifetime. This fitness calculation is also used as each

rover’s private fitness function (gg). The goal of a team is to

maximize G. However, rovers do not maximize G directly.

Instead each rover g attempts to maximize gg. G does not

guide evolution, but rather provides a measure of team task

performance. It is gg that guides rover controller evolution.

Experimental Setup and Parameters. Table 3 presents

the simulation and NE parameter settings. These settings

were derived in a set of exploratory experiments, which

indicated that minor changes to these parameter values

produced similar results. Changing the number of iterations

per epoch, to lower values decreased experiment running

time, but did not provide rovers with lifetimes that were

long enough to widely explore the environment. Lowering

the number of generations and epochs also decreased

experiment running time, but did not provide the artificial

evolution process with sufficient time to derive rover teams

that were as effective as those reported upon in Sect. 5.

More than 20 runs per experiment were not used due to

time constraints and the time consuming nature of the

experiments. Less than 20 runs were not used since, since a

reasonable sample size of results was required for each

method in order to draw sound statistically based

conclusions.

Each experiment consists of 500 generations. Each

generation corresponds to the lifetime of each rover in the

team. Each rover lifetime lasts for 10 epochs, where each

epoch consists of 2500 simulation iterations. Each epoch is

a task scenario that tests different rover starting positions,

and red rock locations (within a given distribution) in the

simulation environment. Rover task performance (red rock

value detected) is calculated as an average taken over all

epochs of a rover’s lifetime. The highest task performance

is then selected for each rover in each experiment. An

average team task performance is calculated over 20 runs.

6 Multi-rover task results

This section presents results from the task performance

comparison of CONE, CCGA and multi-agent ESP

evolved teams. In the following, task performance refers to

the red rock value detected by a rover team, and caste

refers to a set of rovers that are specialized to the same

Impassable canal segment Edge of environment

Red Rock Canal Environment 1 Red Rock Canal Environment 2 Red Rock Canal Environment 3 Red Rock Canal Environment 4

Impassable canal segment Edge of environment

Fig. 3 Canal environments

[1–4]

Red Rock Canal Environment 5 Red Rock Canal Environment 6

Impassable canal segment Edge of environment

Red Rock Canal Environment 7 Red Rock Canal Environment 8

Impassable canal segment Edge of environment

Fig. 4 Canal environments

[5–8]

Impassable canal segment Edge of environment

Red Rock Canal Environment 9 Red Rock Canal Environment 10

Fig. 5 Canal environments [9, 10]

Evol. Intel.

123

behavior [26]. One experiment consists of evolving a rover

team using a given NE methods in a given environment,

and consists of an evolution and a testing phase.

• Evolution phase: Rover team controllers are evolved

for 500 generations (Table 3).

• Testing phase: The fittest team (n controllers) are

selected and run in the same environment for one rover

lifetime. During this phase the evolved connection

weights of each rover’s controller remains static. Task

performance results presented are averages calculated

over 20 runs of the fittest team in each test environment.

In order to compare the task performances yielded by

different rover teams a statistical comparison is conducted

between two given sets of task performance data. The

following procedure is followed for a statistical compari-

son between any given two data sets.

• The Kolmogorov–Smirnov test [14] is applied to each

of the data sets in order to check if the data sets

conform to normal distributions.

• To determine if there is a statistically significant

difference between performance results of any two

teams, an independent t-test [14] is applied. The

threshold for statistical significance is 0.05. The null

hypothesis is that data sets do not significantly differ.

6.1 Experiments: environments appropriate

for behavioral specialization

These experiments compare the task performance of rover

teams in simple and complex environments. Simple envi-

ronments contain a distribution of only one red rock type.

Complex environments contain a distribution of multiple red

rock types. Experiment results first illustrate that complex

environments are appropriate for encouraging behavioral

specialization during the NE of rover controllers, where as,

the simple environments do not encourage emergent behav-

ioral specialization. There are 10 simple and 10 complex

environments, where each is a different canal environment

(Sect. 5.1). Each simple environment contains only distribu-

tions of type E red rocks (Table 4). Type E red rocks are

detectable by sensors operating at any setting (Table 1). Each

complex environment contains a distribution of type [A, B, C,

D] red rocks (Sect. 5.1). Two statistical comparisons of

performance results yielded by teams evolved by CCGA,

multi-agent ESP, and CONE in simple (the reader is referred

to nitschke [32]) and complex environments, were conducted.

1. A task performance comparison between teams evolved

by CCGA, multi-agent ESP and CONE in the simple

environments (results presented in nitschke [32]).

2. A task performance comparison between teams

evolved by CCGA, multi-agent ESP and CONE

(Fig. 6) in the complex environments.

Table 3 Simulation and neuro-evolution parameter settings for the

multi-rover experiments

Simulation and neuro-evolution parameters

Rover movement range 0.01

Red rock/rover detection

sensor range

0.05

Initial rover positions Random

Environment width/height 1.0

Total red rocks (value)

in environment

5,000

Red rock distribution 10 Canal environments

(Sect. 5.1)

Generations 500

Epochs 10

Iterations per epoch (rover lifetime) 2500

Mutation probability (per gene) 0.05

Mutation type Burst (Cauchy distribution)

Mutation range [-1.0, ?1.0]

Fitness stagnation Y 15 Generations

(CONE/multi-agent ESP)

Fitness stagnation V/W 10 Generations (CONE)

Genotype/specialization

threshold (GST/SST)

[-1.0, 1.0] (CONE)

Genotype/specialization

distance (GD/SD)

[0.0, 1.0] (CONE)

Genotype population elite portion 50%

Weight (gene) range [-10.0, ?10.0]

Crossover Single point

ANN sensory input neurons 22

ANN hidden layer neurons 6 (Adapted with CONE only)

ANN motor output neurons 5

Genotype 1 neuron (multi-agent ESP,

CONE), 1 ANN (CCGA)

Total genotypes 10,000

Genotype populations/

number of rovers

20

Genotype length 31 (CONE, multi-agent ESP),

310 (CCGA)

Genotypes per population 500

Table 4 Distribution of red rock types per environment set

Environment

set

Type-A

red

rocks

Type-B

red

rocks

Type-C

red

rocks

Type-D

red

rocks

Type-E

red

rocks

Red

rock

value

Complex 0 0 0 0 5,000 5,000

Simple 500 500 500 500 0 5,000

Each of the 10 simple and complex environments is defined by a

different red rock distribution (canal structure)

Evol. Intel.

123

6.1.1 Results: teams evolved in simple and complex

environments

Figure 6 presents the average task performance for teams

evolved by CCGA, multi-agent ESP and CONE in the

complex environments. Tables 5, 6, and 7 present the

behavioral compositions of the fittest teams evolved by

CCGA, multi-agent ESP, and CONE in the complex

environments. A statistical comparison of task perfor-

mances results yielded by teams evolved in the simple

and complex environment sets, indicate the following

results.

1. Average task performance of teams evolved by CCGA,

multi-agent ESP, and CONE in the complex environ-

ments is significantly higher than that in the simple

environments.

2. A comparison of behavioral compositions of the fittest

teams evolved by CCGA, multi-agent ESP, and CONE

in simple and complex environments, indicates that

complex environments are appropriate for evolving of

teams comprised of multiple castes.

These results indicate that the complex environments

encourage the derivation of teams composed of comple-

mentary behavioral specializations, where such special-

izations result in a higher task performance comparative to

teams evolved in simple environments.

6.1.2 Results: teams evolved within the complex

environment set

A statistical comparison of task performances yielded by

CCGA, multi-agent ESP, and CONE in the complex envi-

ronments, indicate the following results.

1. CCGA, multi-agent ESP, and CONE all evolved

teams comprised of complementary castes (Tables 5,

6, and 7).

2. For all 10 complex environments, CONE evolved

teams yielded a significantly higher task performance,

comparative to that of CCGA and multi-agent ESP

evolved teams.

These results support the hypothesis that CONE facili-

tates behavioral specialization in teams, where such

specialization results in a comparatively higher task

performance.

7 Multi-rover task experimental analysis

A statistical comparison of the task performance results

presented in Fig. 6 indicates that the average task

Fig. 6 Average red rock value detected in the complex environments.

Comparative results yielded by CCGA, multi-agent ESP, and CONE

evolved teams

Table 5 Behavioral composition of fittest CCGA evolved teams

CM Low-res

detectors

Med-res

detectors

Hi-res

detectors

Mover NS

1 4 6 9 0 1

2 2 8 8 0 2

3 2 5 8 0 5

4 1 6 7 0 6

5 0 3 11 0 6

6 0 3 10 0 7

7 0 2 9 0 9

8 0 3 10 0 7

9 0 0 10 0 10

10 0 0 11 0 9

For teams of 20 rovers. Low-/Med-/Hi-res detectors rovers specialized

to low-res, med-res, and hi-res detection, respectively, Mover rovers

specialized to moving, NS non-specialized rover, CM complex

environment

Table 6 Behavioral composition of fittest multi-agent ESP evolved

teams

CM Low-res

detectors

Med-res

detectors

Hi-res

detectors

Mover NS

1 2 6 6 0 6

2 3 5 7 0 5

3 3 6 5 0 6

4 0 6 5 0 9

5 0 5 5 0 10

6 0 4 7 0 9

7 0 3 6 0 11

8 0 4 8 0 8

9 0 3 7 0 10

10 0 2 12 0 6

For teams of 20 rovers. Low-/med-/hi-res detectors rovers specialized

to low-res, med-res, and hi-res detection, respectively, Mover rovers

specialized to moving, NS non-specialized rovers, CM complex

environment

Evol. Intel.

123

performance of CONE evolved teams is significantly

higher than that of CCGA, and multi-agent ESP evolved

teams, for all complex environments. Table 7 presents the

fittest team evolved by the CONE method for each envi-

ronment as being comprised of one non-specialized and

multiple specialized castes. Specialized castes are those

sets of rovers specialized to low-res, med-res, and hi-res

red rock detection behavior (Sect. 4.1). This result supports

the research hypothesis that CONE is appropriate for

deriving a level of behavioral specialization such that a

higher collective behavior task performance, comparative

to related methods, is achieved.

7.1 The role of castes

The emergence of non-specialized and specialized castes in

the fittest teams evolved by CCGA (Table 5), multi-agent

ESP (Table 6), and CONE (Table 7) in each of the com-

plex environment, is attributed to the collective behavior

requirement in the multi-rover task. That is, detection of a

red rock’s value depends upon the red rock’s type and the

settings of the rovers’ red rock detection sensors (Sect.

4.1). So, in order for rovers to detect a near optimal value

of red rocks, rover teams are required to adopt special-

izations to different red rock detection sensor settings.

This in turn results in the emergence of low-res, med-res

and hi-res detector as well as non-specialized castes. The

emergent non-specialized caste (in each of the fittest teams)

results from rovers that frequently switch between move-

ment and activating sensors with low-res, med-res, and hi-

res settings. It is theorized that the non-specialized caste

complements the specialized castes for the purpose of

detecting a high value of red rocks. That is, when coupled

with a specialized rover, a non-specialized rover provides

the necessary second detection sensor setting in order that a

red rock within the FOV of both rovers is detected. This

statement is supported by the caste lesion study.

7.2 Emergent controller sizes in castes

Table 8 presents, for the fittest team (evolved by CONE),

the average emergent controller size (number of hidden

layer neurons) for all specialized rovers. The specializa-

tions are: Low-Res, Med-Res, and Hi-Res Detector, and

Mover. The average controller size for the non-specialized

caste (in the fittest team) is also presented. The results

show that the non-specialized rover caste, on average,

consist of controllers that have evolved larger controller

sizes, comparative to the specialized castes. Controllers in

the Low-Res Detector, Med-Res Detector, Hi-Res Detector,

and Mover castes are, on average, approximately the same

size. These results indicate that specialized controllers

require comparatively less internal state compared to that

of non-specialized controllers. It is theorized that, for non-

specialized controllers, a high frequency of switching

between behaviors occurs, requiring a larger internal state

than that of a controller which switches with a low fre-

quency between behaviors.

7.3 Rover caste lesion study

In order to investigate the role of emergent behavioral

specialization in evolved rover teams, a caste lesion study,

was conducted. The goal of this study was to ascertain the

contribution of specialized and non-specialized castes to

the task performance of the fittest teams. The lesion study

evaluates the fittest teams evolved by CCGA, multi-agent

ESP, and CONE via systematically removing specialized

Table 7 Behavioral composition of fittest CONE evolved teams

CM Low-res

detectors

Med-res

detectors

Hi-res

detectors

Mover NS

1 6 7 5 0 2

2 5 8 6 0 1

3 5 6 7 0 2

4 4 5 7 0 4

5 4 4 7 0 5

6 5 5 6 0 4

7 4 5 6 0 5

8 5 4 7 0 4

9 3 5 8 0 4

10 3 4 8 0 5

For teams of 20 rovers. ow-/med-/hi-res detectors rovers specialized

to low-res, med-res, and hi-res detection, respectively, Mover rovers

specialized to moving, NS non-specialized rover, CM complex

environment

Table 8 Emergent controller sizes (hidden layer neurons) in castes

CM Low-res

detectors

Med-res

detectors

Hi-res

detectors

Mover NS

1 7 8 5 6 11

2 6 7 6 6 9

3 6 5 6 7 10

4 6 6 7 5 9

5 7 7 6 8 8

6 6 7 7 6 8

7 6 7 6 5 10

8 6 6 7 7 12

9 7 5 5 5 11

10 7 7 7 6 9

For the fittest team in each environment. Low-/med-/hi-res detectors
rovers specialized to low-res, med-res, and hi-res detection, respec-

tively, Mover rovers specialized to moving, NS non-specialized rover,

CM complex environment

Evol. Intel.

123

and non-specialized castes, replacing them with specialized or

non-specialized heuristic controllers (Sect. 4.3), and then re-

evaluating the task performance of the given team. Each

lesioned team is executed in 20 new experimental runs for

each complex environment. An average red rock value

detected is then calculated over these 20 experimental runs for

each environment. It is important to note that for each of the

fittest teams evolved by each method, castes are removed and

then re-evaluated in the environments in which they were

evolved. This means that castes within a fittest team are often

re-evaluated in a subset of the complex environment set.

• Fittest teams evolved by CCGA in complex environ-

ments (Table 5):

[1, 4]: Low-res detector caste is replaced with low-

res heuristic controllers.

[1,8]: Med-res detector caste is replaced with med-

res heuristic controllers.

[1,10]: Hi-res detector caste is replaced with hi-res

heuristic controllers.

[1, 10]: Non-specialized caste is replaced with non-

specialized heuristic controllers.

• Fittest teams evolved by multi-agent ESP in complex

environments (Table 6):

[1, 3]: Low-res detector caste is replaced with low-

res heuristic controllers.

[1, 10]: Med-res detector caste is replaced with med-

res heuristic controllers.

[1, 10]: Hi-res detector caste is replaced with hi-res

heuristic controllers.

[1, 10]: Non-specialized caste is replaced with non-

specialized heuristic controllers.

• Fittest teams evolved by CONE (Table 7):

[1, 10]: Low-res detector caste is replaced with low-

res heuristic controllers.

[1, 10]: Med-res detector caste is replaced with med-

res heuristic controllers.

[1, 10]: Hi-res detector caste is replaced with hi-res

heuristic controllers.

[1, 10]: Non-specialized caste is replaced with non-

specialized heuristic controllers.

Lesion study results indicate that the task performance

yielded by the fittest teams evolved by CCGA, multi-agent

ESP and CONE depend upon the behavioral roles fulfilled

by each of the castes as well as the interaction of these

castes. Furthermore, the lesion study results indicate that

the fittest CONE evolved teams (for each complex envi-

ronment) are more reliant upon the constituent specialized

and non-specialized castes, comparative to the fittest

CCGA and multi-agent ESP evolved teams in the same

environments. The contribution of individual castes to team

task performance is most pronounced in the fittest CONE

evolved teams. However, the performance of the fittest

CCGA and multi-agent ESP evolved teams are more robust

when castes are removed. That is, there is less of a

reduction in team task performance when either the non-

specialized, low-res, med-res, or hi-res detector castes are

removed. This indicates that there is less interdependency

between constituent castes in the fittest CCGA and multi-

agent ESP teams. These teams do not rely as much as the

fittest CONE evolved teams upon the interactions between

different castes in order to achieve the task performances

presented in Fig. 6. Performance results of teams re-exe-

cuted with castes removed (replaced with heuristic con-

trollers) are presented in nitschke [32].

7.4 Difference metrics (GDM and SDM) study

This study supports the efficacy of the GDM, and SDM for

facilitating behavioral specialization, and increasing task

performance in CONE evolved teams. To support this,

CONE is re-executed with the following three variations of

the original experimental setup (Sect. 5).

1. CONE without GDM (CONE-1 in Fig. 7): Teams are

evolved using CONE without the GDM (Sect. 3),

meaning that genotype recombination only occurs

within sub-populations of a given population. This was

also the case for multi-agent ESP. The SDM for inter-

population recombination is active.

2. CONE without SDM (CONE-2 in Fig. 7): Teams are

evolved using CONE without the SDM (Sect. 3). The

GDM remains active.

3. CONE without GDM and SDM (CONE-3 in Fig. 7):

Teams are evolved using CONE without both the

GDM and SDM.

Figure 7 presents the average red rock value detected by

teams evolved using CONE, without the GDM, SDM, and

both the GDM and SDM, for all complex environments.

These task performance results are averaged over 20

experimental runs for each variation of the CONE setup

and each environment. For comparison, results previously

attained by CONE (original experimental setup) evolved

teams are also presented in Fig. 7. A statistical comparison

of results presented in Fig. 7 indicates that, for all complex

environments, there is a significant difference between the

task performance of teams evolved by CONE, and that of

teams evolved by CONE-1, CONE-2, and CONE-3. That

is, the teams evolved by CONE yield a performance

advantage over the CONE variants. This result supports the

research hypothesis that both the GDM and SDM are

Evol. Intel.

123

beneficial in terms of increasing task performance in

CONE evolved teams. Without either the GDM or SDM,

the CONE evolved teams lose their advantage of a sig-

nificantly higher task performance.

Furthermore, the CONE variants, for all complex envi-

ronments, did not evolve teams that were comprised of

multiple complementary and interacting castes, as was the

case for CONE (Table 7). Figure 8 presents the progres-

sion of average GDM and SDM values over the evolu-

tionary runs of the fittest CONE evolved teams. The

average is calculated from the progression of GDM and

SDM values for the fittest CONE evolved team in each

complex environment. Figure 8 indicates that in the initial

stages of evolution (\100 generations), both the GDM and

SDM adapt to allow for more recombination to occur

between populations. The SDM, for the rest of each run,

then adapts to a point where it fluctuates between a value of

0.3 and 0.4. It is theorized that this is an optimal range of

values for how similar specialized behaviors of different

rovers should be, in order for the propagation of beneficial

specializations to occur. Similarly, the GDM is adapted

such that after 200 generations it stabilizes to a value equal

to *0.05. This indicates that genotypes in different pop-

ulations (of behaviorally similar rovers) need to be very

similar in order to be recombined. Also, this provides an

explanation for why either the GDM or SDM are ineffec-

tive alone. The GDM and SDM working in company

provide a double check mechanism for determining if

recombination should occur between populations. That is,

having both the SDM and GDM as regulation mechanisms

reduces the amount of recombination between populations

and increases the likelihood that only similar and beneficial

specialized behaviors are recombined and propagated.

8 Conclusions

This article investigated the application of the CONE

controller design method for evolving collective behaviors

in a team of simulated rovers. The multi-rover task stipu-

lated that a team of rovers must maximize the value of

features of interest (red rocks) detected in a simulated

environment, where cooperative sensor usage was required.

CONE was found to be successful for evolving controllers

that specialized to complementary sensor settings neces-

sary for an effective collective red rock detection behavior.

The task performance of CONE evolved teams was com-

pared with teams evolved by related controller design

methods. An analysis of results elucidated that CONE was

able to facilitate a degree of behavioral specialization in

rover controllers necessary for teams to achieve a high task

performance (comparative to teams evolved by related

methods).

References

1. Agogino A (2003) Design and control of large collections of

learning agents. Ph. D. Dissertation, Department of Electrical and

Computer Engineering, The University of Texas at Austin,

Austin, USA

2. Agogino A, Tumer K (2004) Efficient evaluation functions for

multi-rover systems. In: Proceedings of the genetic and evolu-

tionary computation conference. Springer, New York, pp. 1–12

3. Balch T (1998) Behavioral diversity in learning robot teams. PhD

Thesis, College of Computing, Georgia Institute of Technology,

Altanta

4. Baldassarre G, Nolfi S, Parisi D (2003) Evolving mobile robots

able to display collective behavior. Artif Life 9(1):255–267

5. Bonabeau E, Dorigo M, Theraulaz G (1998) Swarm intelligence:

from natural to artificial systems. Oxford University Press,

Oxford

6. Bonabeau E, Theraulaz G, Deneubourg J (1996) Quantitative

study of the fixed threshold model for the regulation of division

of labour in insect societies. Proc R Soc Lond B 263(1):

1565–1569

Fig. 7 Red rock value detected by teams evolved with CONE variants
in complex environments The CONE variants (CONE-1, CONE-2,

CONE-3) are described in Sect. 7.4

Fig. 8 Average GDM and SDM values for the fittest CONE evolved
teams. Averages calculated via taking the fittest team from each

(complex) environment

Evol. Intel.

123

7. Bryant B, Miikkulainen R (2003) Neuro-evolution for adaptive

teams. In: Proceedings of the congress on evolutionary compu-

tation. IEEE Press, Canberra, pp. 2194–2201

8. Bull L (1997) Evolutionary computing in multi-agent environ-

ments: partners. In: Proceedings of the seventh international

conference on genetic algorithms. Morgan Kaufmann, East

Lansing, pp. 370–377

9. Bull L, Fogarty T, Snaith M (1995) Evolution in multi-agent

systems: evolving communicating classifier systems for gait in a

quadrupedal robot. In: Proceedings of the sixth international

conference on genetic algorithms. Morgan Kauffman, San Mateo,

pp. 382–388

10. Bull L, Holland J (1997) Evolutionary computing in multi-agent

environments: eusociality. In: Proceedings of the second annual

conference on genetic programming. IEEE Press, San Francisco,

pp. 347–352

11. Drezewski R (2003) A model of co-evolution in multi-agent

system. In: Multi-agent systems and applications III. Springer,

Berlin, pp. 314–323

12. Eiben A, Smith J (2003) Introduction to evolutionary computing.

Springer, Berlin

13. Elman J (1990) Finding structure in time. Cogn Sci 14(1):179–211

14. Flannery B, Teukolsky S, Vetterling W (1986) Numerical reci-

pes. Cambridge University Press, Cambridge

15. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from

architectures to learning. Evol Intell 1(1):47–62

16. Funes P, Orme B, Bonabeau E (2003) Evolving emergent group

behaviors for simple humans agents. In: Proceedings of the

European conference on artificial life. Springer, Berlin, pp. 76–89

17. Gautrais J, Theraulaz G, Deneubourg J, Anderson C (2002)

Emergent polyethism as a consequence of increased colony size

in insect societies. J Theor Biol 215(1):363–373

18. Gomez F (2003) Robust non-linear control through neuroevolu-

tion. PhD thesis, Department of Computer Sciences, The Uni-

versity of Texas, Austin

19. Gomez F, Miikkulainen R (1999) Solving non-markovian control

tasks with neuroevolution. In: Proceedings of the international

joint conference on artificial intelligence. Morgan Kaufmann,

Stockholm, Sweden, pp. 1356–1361

20. Gomez F, Schmidhuber J, Miikkulainen R (2006) Efficient non-

linear control through neuroevolution. In: Machine learning:

ECML 2006. Springer, Berlin, pp. 654–662

21. Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated

neural evolution through cooperatively coevolved synapses.

J Mach Learn Res 9(1):937–965

22. Hertz J, Krogh A, Palmer R (1991) Introduction to the theory of

neural computation. Addison-Wesley, Redwood City

23. Holland J, Reitman J (1978) Cognitive systems based on adaptive

algorithms. Pattern Direct Inference Syst 7(2):125–149

24. Hurst J, Bull L (2006) A neural learning classifier system with

self-adaptive constructivism for mobile robot control. Artif Life

12(3):353–380

25. Husbands P, Mill F (1991) Simulated co-evolution as the

mechanism for emergent planning and scheduling. In: Proceed-

ings of the fourth conference on genetic algorithms. Morgan

Kaufmann, Cambridge, pp. 264–270

26. Kreiger M, Billeter J (2000) The call of duty: self-organized task

allocation in a population of up to twelve mobile robots. Rob

Auton Syst 30(1):65–84

27. Li L, Martinoli A, Mostafa Y (2002) Emergent specialization in

swarm systems. In: Lecture notes in computer science, vol 2412.

Intelligent data engineering and automated learning. Springer,

Berlin, pp. 261–266

28. Moriarty D (1997) Symbiotic evolution of neural networks in

sequential decision tasks. PhD thesis, Department of Computer

Sciences, The University of Texas, Austin

29. Moriarty D, Miikkulainen R (1996) Efficient reinforcement

learning through symbiotic evolution. Mach Learn 22(1):11–33

30. Murciano A, Millan J (1997) Learning signaling behaviors and

specialization in cooperative agents. Adapt Behav 5(1):5–28

31. Nitschke G (2007) Neuro-evolution methods for designing

emergent specialization. In: Proceedings of the ninth European

conference on artificial life. Springer, Lisbon, pp. 1120–1130

32. Nitschke G (2008) Neuro-evolution for emergent specialization

in collective behavior systems. PhD thesis, Computer Science

Department, Vrije Universiteit, Amsterdam

33. Nitschke G, Schut M, Eiben A (2006) Collective specialization

for evolutionary design of a multi-robot system. In: Proceedings

of the second international workshop on swarm robotics.

Springer, Rome, pp. 189–206

34. Nitschke G, Schut M, Eiben A (2007) Emergent specialization in

biologically inspired collective behavior systems. In: Intelligent

complex adaptive systems. IGI, New York, pp. 100–140

35. Nolfi S, Baldassarre G, Parisi D (2003) Evolution of collective

behaviour in a team of physically linked robots. In: Applications

of evolutionary computing. Springer, Berlin, pp. 581–592

36. Nolfi S, Deneubourg J, Floreano D, Gambardella L, Mondada F,

Dorigo M (2003) Swarm-bots: swarm of mobile robots able to

self-assemble and self-organize. Ecrim News 53(1):25–26

37. Potter M, De Jong K (2000) Cooperative coevolution: an archi-

tecture for evolving coadapted subcomponents. Evol Comput

8(1):1–29

38. Potter M, De Jong K, Grefenstette J (1995) A co-evolutionary

approach to learning sequential decision rules. In: Proceedings of

the sixth international conference on genetic algorithms. Morgan

Kaufmann, San Franciso, pp. 366–372

39. Potter M, De Jong K (1994) A cooperative coevolutionary

approach to function optimization. In: Proceedings of the third

conference on parallel problem solving from nature (PPSN III).

Springer, Jerusalem, pp. 249–257

40. Potter M, Meeden L, Schultz A (2001) Heterogeneity in the co-

evolved behaviors of mobile robots: the emergence of specialists.

In: Proceedings of the international joint conference on artificial

intelligence. AAAI Press, Seattle, pp. 1337–1343

41. Quinn M (2000) Evolving cooperative homogeneous multi-robot

teams. In: Proceedings of the international conference on intel-

ligent robots and systems (IROS 2000). IEEE Press, Takamatsu,

pp. 1798–1803

42. Quinn M (2001) A comparison of approaches to the evolution of

homogeneous multi-robot teams. In: Proceedings of the congress

evolutionary computation. IEEE Press, Seoul, pp. 128–135

43. Quinn M, Smith L, Mayley G, Husbands P (2009) Evolving

teamwork and role-allocation with real robots. In: Proceedings of

the 8th international conference on artificial life. MIT Press,

Cambridge, pp. 302–311

44. Resnick M (1997) Turtles, termites, and traffic jams: explorations

in massively parallel microworlds. MIT Press, Cambridge

45. Schaffer J, Whitley D, Eshelman L (1992) Combinations of

genetic algorithms and neural networks: a survey of the state of

the art. In: Whitley D, Schaffer J (eds) Proceedings of an inter-

national workshop on the combinations of genetic algorithms and

neural networks (COGANN-92). IEEE Press, New York

46. Schultz A, Bugajska M (2000) Co-evolution of form and function

in the design of autonomous agents: micro air vehicles project.

In: Proceedings of the workshop on evolution of sensors in nat-

ure, hardware, and simulation, GECCO. AAAI Press, Chicago,

pp. 154–166

47. Schultz C, Parker L (2002) Multi-robot systems: from swarms to

intelligent automata. Kluwer, Washington DC

48. Seligmann H (1999) Resource partition history and evolutionary

specialization of subunits in complex systems. Biosystems

51(1):31–39

Evol. Intel.

123

49. Stanley K, Bryant B, Miikkulainen R (2005) Evolving neural

network agents in the nero video game. In: Proceedings of the

IEEE 2005 symposium on computational intelligence and games.

IEEE Press, Piscataway, pp. 182–189

50. Stanley K, Bryant B, Miikkulainen R (2005) Real-time neuro-

evolution in the nero video game. IEEE Trans Evol Comput

9(6):653–668

51. Wenseleers T, Ratnieks F, Billen J (2003) Caste fate conflict in

swarm-founding social hymenoptera: an inclusive fitness analy-

sis. Evol Biol 16(1):647–658

52. Whiteson S, Kohl N, Miikkulainen R, Stone P (2003) Evolving

keep-away soccer players through task decomposition. In: Pro-

ceeding of the genetic and evolutionary computation conference.

AAAI Press, Chicago, pp. 356–368

53. Whiteson S, Kohl N, Miikkulainen R, Stone P (2005) Evolving

keepaway soccer players through task decomposition. Mach

Learn 59(1):5–30

54. Wiegand R (2004) An analysis of cooperative coevolutionary

algorithms. PhD. Thesis, George Mason University Press, George

Mason University, Fairfax

55. Wineberg M, Oppacher F (2003) The underlying similarity of

diversity measures used in evolutionary computation. In: Pro-

ceedings of the genetic and evolutionary computation conference.

Springer, Berlin, pp. 1493–1504

56. Yao X (1993) Evolutionary artificial neural networks. J Neural

Syst 4(3):203–222

57. Yong C, Miikkulainen R (2007) Coevolution of role-based

cooperation in multi-agent systems. Technical Report AI07-338.

Department of Computer Sciences, The University of Texas,

Austin

58. Young L, Pisanich G, Ippolito C (2005) Aerial explorers. In:

Proceeding of the 43rd AIAA aerospace sciences meeting and

exhibit. AIAA Press, Reno, pp. 4–12

Evol. Intel.

123

	Collective neuro-evolution for evolving specialized sensor resolutions in a multi-rover task
	Abstract
	Introduction
	Approach and objectives
	Research goals and hypotheses
	Contributions

	Approaches to specialization in collective behavior tasks
	Neuro-evolution
	Cooperative co-evolution
	State-of-the-art

	Methods: collective neuro-evolution (CONE)
	Representation: multi-population structure
	Behavioral specialization
	Adaptation of algorithmic parameters
	Adapting controller size
	Overview of the collective neuro-evolution (CONE) process

	The extended multi-rover task
	Rovers: detecting other rovers and red rocks
	Rovers: artificial neural network (ANN) controller
	Rovers: heuristic controller
	Specialization in the multi-rover task

	Extended multi-rover task: experimental design
	Canal environments: red rock distribution

	Multi-rover task results
	Experiments: environments appropriate �for behavioral specialization
	Results: teams evolved in simple and complex environments
	Results: teams evolved within the complex environment set

	Multi-rover task experimental analysis
	The role of castes
	Emergent controller sizes in castes
	Rover caste lesion study
	Difference metrics (GDM and SDM) study

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

