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Improving Land Cover Class Separation Using an
Extended Kalman Filter on MODIS NDVI
Time-Series Data

Waldo Kleynhans, Jan Corne Olivier, Konrad J. Wessels, Frans van den Bergh,
Brian P. Salmon, and Karen C. Steenkamp

Abstract—TIt is proposed that the normalized difference vegeta-
tion index time series derived from Moderate Resolution Imag-
ing Spectroradiometer satellite data can be modeled as a triply
(mean, phase, and amplitude) modulated cosine function. Second,
a nonlinear extended Kalman filter is developed to estimate the
parameters of the modulated cosine function as a function of time.
It is shown that the maximum separability of the parameters for
natural vegetation and settlement land cover types is better than
that of methods based on the fast Fourier transform using data
from two study areas in South Africa.

Index Terms—Discrete Fourier transforms, Kalman filtering.

I. INTRODUCTION

AND cover classification based on multitemporal satel-

lite data can capitalize on seasonal variation in land
surface reflectance due to vegetation phenology to provide
better classification than single-date imagery [1], [2]. Multi-
temporal coarse-resolution satellite imagery such as the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and the
Advanced Very High Resolution Radiometer has been widely
used to map land cover at regional to global scales [3]-[5].
Land cover classification methods are often based on a series
of secondary metrics derived from the normalized difference
vegetation index (NDVI) time series and include principal
component analysis [2], [6], [7], phenological metrics [8], or
Fourier (spectral) analysis [9], [10]. Fourier (spectral) analy-
sis expresses a time series as the sum of a series of cosine
waves with varying frequency, amplitude, and phase [11]. The
frequency of each cosine component is related to the number
of completed cycles over the defined interval. The fast Fourier
transform (FFT) is an effective and computationally efficient
algorithm to compute the discrete Fourier transform (DFT) [11]
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and is often used when evaluating NDVI time-series data [10],
[12]-[14]. In many applications where the FFT of NDVI time-
series data is used for classification and segmentation, only
the first few FFT components are considered as they tend to
dominate the spectrum [10], [12], [13]. The reason for this is
because of the strong seasonal component and slow variation
relative to the sampling interval of the time series (eight days
for MODIS). It has been found that, even when considering
only the mean and seasonal FFT components [10], reliable
class separation can be achieved. A drawback of using FFT-
based methods is that the underlying process is assumed to be
stationary. This assumption is often invalid in the case of NDVI
time-series data, particularly if a land cover change is present.
The extended Kalman filter (EKF) is a nonlinear estimation
method that can potentially be employed to estimate unob-
served parameters (process model) using noisy observations
of a related measurement model. EKF techniques in remote
sensing have been used for parameter estimation of values
related to physical, biogeochemical processes, or vegetation
dynamics models [15], [16]. In this letter, it is first proposed
that the NDVI time series be modeled as a single but triply
modulated cosine function, where the mean u, the amplitude
«, and the phase ¢ are functions of time. Second, it is proposed
that a nonlinear EKF be used to estimate these parameters as a
function of time for each NDVI time series.

Using MODIS MODA43 data from two study areas, this letter
shows that the u, «, and ¢ parameter streams over time are
similar for the same class land cover types and dissimilar
for different land cover types representing natural vegetation
and settlement land cover types in the Limpopo province of
Southern Africa. The parameter sequence can thus be used to
determine the level of similarity between NDVI time series
belonging to different land cover types.

II. DATA DESCRIPTION
A. Study Area

The Limpopo province is located in northern South Africa
and is mostly covered by natural vegetation while a large num-
ber of informal settlements are rapidly expanding throughout
the province. The proposed method was tested in two regions
in the Limpopo province. The first study area (Region A)
is centered around latitude 24°17'21.43" S and longitude
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Fig. 1. Mean NDVI time series for natural vegetation and settlement land
cover in Region A.

29°39'42.96” E and is 43 km southeast of the city of Polok-
wane. Region A covers a geographic area of approximately
190 km?; 42 natural vegetation and 42 settlement pixels were
selected for analysis. Region B is centered around latitude
24°19'51.50” S and longitude 29°18'04.07” E and is 47 km
southwest of the city of Polokwane. Region B covers a ge-
ographical area of 100 km?; 76 settlement and 52 natural
vegetation pixels were selected. The study regions that were
considered had settlements and natural vegetation areas in close
proximity which ensured that the rainfall, soil type, and local
climate were similar. Each of the MODIS pixels was evaluated
using SPOTS5 high-resolution data to ensure that none of them
had experienced any land cover change during the study period.

B. MODIS Data

The NDVI time-series data were derived from eight
daily composite MCD43 bidirectional-reflectance-distribution-
function-corrected MODIS data with a spatial resolution of
500 m [17] for the period January 2001 to January 2008. Fig. 1
shows the mean NDVI time series for natural vegetation and
settlement pixels in Region A.

III. METHODOLOGY
A. FFT Method

As discussed in Section I, the Fourier analysis of the NDVI
time series has proved to be insightful because the signal can
be decomposed into a series of cosine waves with varying
amplitude, phase, and frequency. The DFT can be written in
matrix form as

Y = FNy (1)
where yT =[yo y1 vo yn_1] is the NDVI
time series of length N in vector form, YT =
Yo 1 Y5 Yn_1] is the DFT of y, and F is the

DFT matrix in the form

1 o (r—=1)-(e-1)
} (2)

Fy(r,c) = [eN

2
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Fig. 2. First 30 FFT components of the mean natural vegetation NDVI series
for Region A.

where Fx(r,c) is the value of row 7 and column ¢ of the
Fn matrix [11]. The first 30 FFT components of a typical
seven-year natural vegetation NDVI time series are shown in
Fig. 2. As expected, the majority of signal energy is contained
in the mean and the annual component which relates to FFT
component zero and seven, respectively. As proposed in [10],
the similarity of any two arbitrary NDVI time series can be
evaluated by computing their FFT and then comparing the first
and seasonal FFT component of each FFT series. A distance
metric based on the mean (u) and seasonal () FFT component
difference for any two FFT series can then be formulated as
follows:

DEFT = |~ ¥ ®
DET = 2 (v - 72)| @

where DFFT and DEFT are the Euclidean distances between
the mean and annual FFT components, respectively, of two
NDVI time series.

B. New EKF Method

It is proposed that an NDVI time series for a given pixel can
be modeled by a triply modulated cosine function given as

Yk = pg + o cos(wk + o) + vg 5)

where ;. denotes the observed value of the NDVI time series
at time k£ and vy, is the noise sample at time k. The noise is
additive but with an unknown distribution. The cosine function
is based on a number of parameters (that are not directly
observable), namely, the frequency w, the nonzero mean i, the
amplitude «, and the phase ¢. The frequency can explicitly be
computed as w = 27 f, where f is based on the annual vege-
tation growth cycle. Given the eight daily composite MCD43
MODIS data, f was calculated to be 8/365. The values of
Wi, i, and ¢ are functions of time and must be estimated
given y; for k € 1,..., N. The estimation of these parameters
is nontrivial and requires a nonlinear estimator. According to
the EKF formulation, for every increment of %k (the discrete
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time), a state vector xj, is defined containing the parameters to
be estimated in the form x = [ux  ar  ¢x|T. The relation
between xj, and Xj_; is given by v, which is a known but
possibly nonlinear function. The state vector xy, is related to
the observation vector y;, via a nonlinear measurement function
h. Both these models are possibly nonperfect, so the addition of
process wy, and measurement vy noise is used. This is expressed
as [18]

X = V(Xp_1) + Wi (6)
i =h(xy) + vi. (7)

The state vector parameters may be estimated over time k by
recursive iteration [18] based on the observation data y; up
to time k. In the observation equation (7), yy, is the predicted
measurement. Function h is used to compute a measurement
given the predicted state, and vy, is the observation noise vector.
The estimated values for x; = [ur,  ax &5 | T over time k
effectively result in a time series for each of the three parame-
ters. The next step was to define the metrics to measure class
separability corresponding to a land cover type. As shown in
[10], substantial separability can be achieved when comparing
mean and annual FFT components of an NDVI time series of
different land cover types. In the proposed EKF framework, the
mean FFT component (i.e., FFT component 0) corresponds to
1, and the annual FFT component (i.e., FFT component 7 for
the seven-year NDVI time series) corresponds to . Hence, it
is proposed that, within the EKF framework, a separability or

distance metric between two NDVI time series be defined as
DR = max{pe1 — pr2},  1<k<N ®)

EKF
Da

max{ag1 — g2}, 1<k<N. 9)

D7EF is the maximum distance between the first (121) and sec-
ond (p2) parameter sequence over time k. DEKF is calculated
in a similar manner finding the maximum distance between the
annual amplitude parameter sequence.

For the present case, it was assumed that the state vector x
does not change significantly when time is advanced by one;
hence, v = 1, and the process model is linear. The measurement
model, however, contains the cosine term and, as such, is
evaluated via the standard Jacobian formulation, thereby lin-
earizing the nonlinear measurement model around the current
state vector [18].

IV. RESULTS

Taking the FFT of two NDVI time series and comparing
the Euclidean distance between their first and annual FFT
components, respectively, produce a scalar quantity in each
case. When using the EKF to estimate the x and o parameter
sequence for each NDVI time series, the difference between
the parameter sequences fluctuates over the seven-year period.
This is shown in Fig. 3, where the p sequence estimated
using the EKF is shown along with the FFT mean component
for two typical NDVI time series belonging to each of the
two classes in Region A. The p sequence for the settlement
and natural vegetation time series clearly varies in similarity
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Fig. 3. Comparing the EKF-derived . parameter with the FFT mean compo-

nent for natural vegetation and settlement for Region A.

(Fig. 3). This is to be expected as land cover classes tend to
be more similar during certain parts of the season than others.
This characteristic was exploited by only considering the max-
imum distance between each parameter sequence as given in
(8) and (9).

To evaluate the performance of the proposed EKF algorithm,
an all-to-all comparison was made between the NDVI time
series of each pixel in the natural vegetation class with each
pixel in the settlement class.

The initial state parameters, as well as the observation and
process noise estimates, were determined offline based on
known training data from the study areas. The training data
were random selection of 5% of the total number of pixels per
region. The initial state parameters were calculated using the
FFT mean and annual components of the training data as

Z

Yi
=y - (10)
=1
~ 2 vy
ap =y —H (11)
2 =7
Z .
Y}
=) —" (12)
1=1

where Z is the total number of training time series and Y/, is
the nth FFT component of time series ¢. The observation noise
was determined as

A
std(ei)
Oy = . ? (13)
=1
e; =y —yill- (14)

Here, o, is the estimated standard deviation of the observation
noise; std(e;) is the standard deviation of a vector containing
the difference between the original time series y; and a filtered
version y; calculated as

yi = FlY" (15)
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TABLE 1
INITIAL EKF STATE PARAMETER VALUES
Region Q1 (o5 1
A 0.3008 0.0835 0.2700
B 0.3447 | 0.1185 | 0.1708
TABLE 1I
EKF OBSERVATION AND PROCESS NOISE VALUES
Region Oy oy O 9¢
A 3.8x1072 | 8x107°% | 8 x107% | 1.5 x 10—2
B 44%x1072 | 9x107°% | 9x107% | 1.7 x 1072
0.025 T T T T T T
HDals7)
0.02 ,
3
8
0.0051 . 1
H ‘.'.\“.
Ty 0 16 '''' 0is 2

Fig. 4. Probability distribution functions of D, using the FFT and EKF
method in Region A, where p(Dq|sy) is the distribution of the DEFT values
for an NDVI time series of the same class, p(Dq |d) is the distribution of the
DEFT values for an NDVI time series of different classes, p(Dq|sy) is the
distribution of the DZXF values for an NDVI time series of the same class, and
p(Da|dy) is the distribution of the DEXF values for an NDVI time series of
different classes.

Y is defined as

~. Yz(k)v k= {07 7}
Y'(k) =< 0, 1<k<6 (16)
0, 8<k<N

and F_N1 denotes the inverse DFT operation. Y is thus a copy
of Y but with only the mean and seasonal FFT components;
all other components were set to zero.

The initial state parameters, as well as the observation and
process noise standard deviation for Regions A and B, are
shown in Tables I and II, respectively. The values of 1, a1,
and ¢; in Table I were calculated using (10)—(12), respectively.
In Table II, the observation noise variance o, was calculated
using (13) and (14), while the process noise variance 0, 0,
and o, were estimated by maximizing the class separability on
the training data for each region.

Once determined, the parameters were kept fixed for all
numerical results relating to the specific region.

The distance metrics DEXF and DEKF were recorded, and
the consequent distributions of the values of these distance
metrics were calculated. The distribution and values of the FFT
distance metrics DEFT and DEF T were also calculated for
comparison. Fig. 4 shows the distribution of the FFT and EKF
D,, values for Region A.
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TABLE III
ERROR PROBABILITY COMPARISON OF THE FFT AND EKF METHOD
Region | P (p) | PEEF () | PITT(0) | PERF(a)
A 18% 13% 4% 3%
B 32% 34% 35% 21%

Table III gives the Bayesian decision error for both the FFT
and EKF distance metrics for each region defined as

Di* 00

PFFT(a) = /p<Da\df>+ / p(Dalsy)  (17)
Da= Da:Dc]:*
Dk .

PP (q) = /p(Da|dk>+ / p(Dolsy)  (18)
Da=0 Do=Dk*
Df* o

PF* () = p(D,ldy) + / p(Dulsy)  (19)
D=0 D, =D}*
Dﬁ* .

PP () = p(Dyldy) + / p(D,lsk)  (20)
D, =0 D, =Dk

where the value of D¥*, x € {a, u}, y € {f, k}. is the optimal
decision threshold minimizing the probability of error P, in
each instance. It can be seen that the Bayesian decision error
in Region A using the EKF was reduced by 5% over the FFT
method when considering D, and by 1% when considering D,
(Table III). In Region B, the Bayes error of the EKF method
was increased with 2% over the FFT method when considering
D, but a significant reduction of 14% was achieved when
considering D,,. Thus, overall, it may be concluded that the
EKF formulation has a reduced probability of error when
compared to the FFT-based approach on the same data. This
implies that the EKF formulation offers improved separability
of land cover classes for the study areas A and B.

The phase parameter ¢ was found to provide negligible
additional separability in the classes and thus was excluded
from the results.

V. DISCUSSION OF RESULTS

The overall improved separability of natural vegetation and
settlement land cover types using the EKF based on a triply
modulated cosine function model over FFT is evident for both
regions A and B. In an effort to improve the results, a sum
of sinusoid model was also considered, but preliminary results
showed a negligible performance increase with a significant
increase in the complexity as more parameters needed to be
estimated. This corresponds to results shown in [10], where no
significant added separability was achieved when considering
more sinusoidal components other than the annual component.

Consistent with most EKF implementation, the tracking of
state parameters is not instantaneous and does require a certain
amount of observations. As this period is unknown, an initial
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Fig. 5. Average square difference between the EKF-derived p parameter and

the FFT mean component for all settlement pixels in Region A.

number of state parameter values need to be excluded when
calculating DEXF and DEXF. The average square difference
between the EKF-derived ;1 parameter and the FFT mean
component is shown in Fig. 5; it can be seen that the variation
seems to stabilize within the first two years, which relates
to approximately 100 samples. It was also found that, when
excluding the first 100 estimates of the state parameters, a stable
distribution of DEXF and DJKF was obtained. The first 100
state parameter estimates were consequently disregarded in all
results shown.

The initialization procedure used to determine the initial EKF
parameters, as shown in Section IV, was found to work well
for each region. By using an initial training set and keeping the
EKF initialization parameters constant for each region, the EKF
is effectively adaptable for each region and requires minimal
manual parameter selection.

VI. CONCLUSION

Previous research has found that class similarity can be
evaluated by considering the difference in FFT components, in
particular the mean (x) and annual (o) FFT components, as
they tend to carry the majority of signal energy [10], [12]. In
this letter, the mean and annual frequency components were
estimated for each time step using an EKF. Having iterative
estimates of these components allows one to exploit the fact that
the mean and annual frequency dissimilarity is more prevalent
during certain parts of the seasonal cycle than other parts, an
effect that is merely averaged out using the traditional FFT over
the entire NDVI time series. The variance of the distribution
of the distance metrics derived using the EKF p(D,|s;) and
p(Dql8) is higher than that of the FFT method (Fig. 4). The
reason for this is that the EKF is more sensitive to the variability
of pixels of the same class that are separated geographically.
Even though the variance of the EKF distance metric is higher,
the total probability of the decision error was reduced for both
of the regions considered in this letter. A further possible appli-
cation of this method is toward land cover change detection.
By following the changes of the cosine parameters through
time and comparing them with neighboring pixels, a change
detection method can be formulated, and this is currently being

researched. Finally, note that the EKF is well suited to multiple
observations so that the EKF can capitalize on all seven bands
as opposed to just the NDVI time-series data to further improve
estimates of the underlying process model. This possibility is
also currently being researched.
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