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ABSTRACT 
An optimal smoothing algorithm is developed and applied to Moving SA (Johannesburg) data. Non-
Linear regression is applied successfully to the Moving SA data. Values of 437.4 for saturation 
(vehicles/k.capita), 0.04569 for growth parameter (per annum frequency), and 1979.77 (years) for 
point of maximum growth are obtained. A correlation of +0.9647 with the raw data was achieved. 
The soundness of the statistical inference is demonstrated by showing the bias and trend of the 
model error term to be statistically indistinguishable from zero. Inner bounds on the confidence 
intervals for small sample non-linear regression are constructed for the predicted values. 
 
INTRODUCTION 
 
Motivation 
Practical Applications 
There are numerous possible applications of the car ownership logistic model, some of which are 
listed below. The model can be used to: - 
 

1. evaluate the feasibility of plans and policies with respect to their meeting demand for road 
space; 

2. size and cost projects; 
3. schedule the implementation of plans; 
4. provide a base line prediction against which to monitor the effectiveness of interventions. 
5. A further benefit of a good fit of the logistic modal is that the removal of the trend 

component of the time series is a necessary prerequisite for the analysis of the short and 
medium term oscillatory phenomena such as the business cycle.  

 
Calibration 
Calibration is a necessary step in the modelling process. The word calibration carries the 
connotation of a routine uncontroversial process. The analogy suggested is with calibration of an 
instrument of measurement. In calibrating an instrument for measuring a certain variable, a test 
specimen of known value of the variable is subject to measurement. The controls for the parameter 
of the instrument are then manipulated until the prior known reading for the variable is obtained. 
The ‘calibration’ process, in transportation modelling, is profoundly different. It usually involves the 
subjective removal of a significant number of data points.  
 
Empiricism 
A fundamental tenet of the scientific method is that data decide the validity of theories, and 
consequently theories should not decide the validity of data. However, in practice it often happens 
that some data are eliminated on the basis of a priori considerations. For example, it is not unusual 
for skilled and experienced modellers to discard as much as one third of the data in fitting the 
logistic DE, thereby seriously compromising the scientific validity of the model. This problem is not 
confined to the logistic model, but is widely found in the four-stage model. 
 
Engineering Paradigm 
How has this fundamental violation of empiricism crept into practice? Most problems addressed in 
engineering have been concerned with the application of Newtonian mechanics to designed 
macro-physical systems well within the classical domain. In this class of applications, Newtonian 



mechanics has been, with few exceptions, very successful. The very reasonable temptation, 
therefore, arises to treat data points substantially deviating from the theory (i.e. outliers) as errors.  
 
Unfortunately, transportation planning is far removed from the comfort zone of Newtonian 
mechanics. Transportation planning is very much in the area of behavioural systems, especially 
socio-economic systems. Hence, much greater rigour is required. It can no longer be safely 
assumed that ‘outliers’ are errors. Serious consideration must be given to the possibility that these 
‘outliers’ imply a systematic departure of reality from theory. That is, they constitute a 
disconfirmation of the accepted theory.  
 
Moreover, socio-economic systems are complex, depend on a large number of variables and are 
interactive. The result is that there is a high noise level in the data, that is, the variance about the 
predicted curve is high and sometimes with systematic departures from the model. 
 
Unlike experimentation on a physical system the variables are not easily manipulated. Hence, 
traditional experimental methods cannot be used. 
 
Important Decisions 
Moreover, substantial public and private investment decisions are informed by the results of 
transport models. Often, there is considerable political, commercial or professional interest vested 
in an outcome. As a consequence of the shortcomings of ‘calibration’, and the gravity of the 
outcomes, modellers are in a vulnerable position.  If a valid and objective method could be found to 
handle the problems of ‘calibration’ not only could sounder and more accurate results be obtained, 
but modellers could reduce the risks arising from the ‘calibration’ process in possibly contentious 
circumstances.  
 
The Dilemma and its Resolution 
The dilemma faced by the practitioner is how to retain scientific objectivity while obtaining a good 
fit. A resolution of this dilemma is proposed and illustrated in this paper and in Kelly 2007. The 
solution proposed is to use statistical methods that retain all the data points, but reduce the 
influence, on the fit, of points depending on there deviation from the dominant trend. These 
methods are wholly objective, explicit and algorithmic. 
 
The proposed method cannot find an explanation for the outliers, even less can the method 
construct a theory inclusive of the outliers. That it can do, most cases, is to find an objective best fit 
for existing theories. This is an improvement most practitioners would welcome. 
 
Value of Greater Accuracy 
A section of arterial road recently constructed in Soweto cost 23.1 M(illion)R/km (John White of 
JRA in private communication). The section of road was located in a suburban area and did not 
involve any bridges, or other major structures or any major cut or fill. The costs excluded land 
procurement, but included storm water reticulation, relocation of services and provision of street 
lighting. For the purposes of argument this cost can be taken as representative of marginal road 
construction costs (of building an extra km) in the City of Johannesburg (CoJ) area.   
 
The Integrated Transport Plan  2003-2008 vol. 1 p. 39 table 3-11 states that there are 1,260 km of 
arterial roads on the CoJ. Given these data a low estimate of the approximate replacement cost of 
the arterial network is 29.1 Billion R. 
 
The saturation parameter α can be taken as an indicator of long-term demand. The algorithm in 
Kelly 2007 gives 484.7ˆ =α (the hat indicates that the value has been inferred from the data). The 
algorithm in this paper gives 437.4ˆ =α . Hence, the difference is 47.3ˆ −=Δα  i.e.     –10.8% of 
demand. This gives a 3.1 Billion R saving in previously planned expenditure. Such a saving should 
be sufficient reason to wish to improve the accuracy of the inferred values of the parameters.  

 



Goals 
1. To develop a minimum bias smoothing algorithm. 
2. To develop a non-linear regression algorithm, which can successfully be applied to the car 

ownership data set out in the report Moving SA (Johannesburg).  
3. To demonstrate the soundness of the statistical inference by showing that 

a. the biases on the parameters are statistically indistinguishable from zero, 
b. the bias and trend of the model error term (residual) is statistically indistinguishable 

from zero.  
4. To construct confidence intervals for predicted values from a non-linear regression model 

applied to the Moving SA (small sample) data.  
5. To fully automate the algorithm in S+, a statistics package and programming language. 

 
This paper does not attempt to build a modal quantifying the effect of variables causative of car 
ownership, but confines itself to time only as a surrogate of the causative variables. The role of the 
specific causative variables will be addressed in a later paper. 
 
Cross-Pollination 
Some may feel that this paper would be better placed in a statistics journal. With some 
adjustments and additions, it would be useful to publish in such a journal.  Nonetheless, it is 
important to publish the work in a transportation context. The paper not only reports a promising 
algorithm for solving a problem that has troubled practitioners since logistic models were first 
applied to car ownership in the mid nineteen sixties. It also, attempts a cross-pollination between 
transport modelling and newer statistical methods such as non-linear regression, robust inference, 
and local regression. Moreover, these methods could find wider application in transportation 
modelling than vehicle ownership.  
 
That many problems in the social sciences (of which transportation planning is one) reduce to a 
problem in statistics constitutes sufficient reason to place the paper in a transportation journal. 
 
INVERSION PROBLEM FOR THE LOGISTIC DE 
 
The Logistic Differential Equation 
As discussed in Kelly 2007, the logistic differential equation (DE) is traditionally used to model 
the growth in car ownership. The logistic DE can be written as: 
 

( xx
dt
dx

−= α
α

)κ
                                                        (1), 

( ) 00 xtx =                                                                    (2), 
 

where t is time. The time unit used in this study is the year, and 0h00 1st January in the year zero 
is . Car ownership level (ownership per thousand of the population) at time t is designated as 

. The initial ( ) level of ownership is . α is the saturation level of ownership parameter, 
and κ is the ownership growth rate parameter.  

0=t
( )tx 0tt = 0x

 
The car ownership level x(t) is an example of a state variable, and α and κ are referred to as 

parameters. A closed form solution for the above DE is: ( ) ( )( ) 11 −−−+= γκα tetx ….(3). The parameter 
γ is the time shift parameter arising, as a constant of integration, out of the initial conditions of the 
DE (equation 2), and representing the point in time of maximum growth. 
 

The problem of inferring the parameters α, κ, γ of the DE from a sample of observations  for 
 to n , constitutes what is known as an inverse problem for the DE.  

( )ii tx ,
1=i

 



Non-Linear Regression 
In Kelly (2007 pp. 8-9), an attempt was made to apply non-linear regression to the inverse problem 
for the logistic differential equation as applied to car ownership. By simulation, the paper showed 
considerable gains in accuracy over the standard practice method of discretization of the derivative 
and a linerizing transformation. However, the algorithm supplied in S+ failed to converge on the 
“Moving SA” (November 1997) data. This paper reports the development and application of a 
successful method of applying non-linear regression to the Moving SA data. 
 
In the non-linear approach the closed form solution (e.g. 1) for the DE is used in the least squares 
method to infer the parameters values. Note the regression is non-linear because the model is 
non-linear in the parameters. It is possible to use the closed form solution, because the 
approximate value of the growth parameter (κ ≪3), obtained from the linearizing method is safely 
below the chaotic region for the logistic DE. 
 
As in the preceding paper (Kelly 2007) the algorithm used is a Gauss-Newton method, “nls” of S+ ( 
“S-Plus 2000 Guide to Statistics vol. 1” 1999). The Gauss-Newton method is an adaptation of the 
Newton method to least sum of squares problem devised by C.F. Gauss. Unlike the Newton 
algorithm the Gauss-Newton algorithm does not require us to compute the second derivatives of 
the squared errors.  
 
The innovation is to apply smoothing to the data prior to the non-linear regression. The smoothing 
need not compromise the soundness of inference since the logistic DE model is a long-term trend 
model and the smoothing algorithm parameters are chosen to minimize bias.  
 
OPTIMAL SMOOTHING 
 
Purpose of Smoothing 
Smoothing is not used in the usual way that a transformation is used in statistics. That is, it is not 
used to transform data with a non-Gaussian distribution into data with a Gaussian distributed data, 
so that classical statistical methods are applicable. Data smoothing does not attempt to fulfil this 
role. 
 
The purpose of smoothing is noise reduction. The method of solution used to find the minimum 
error squared is the Gauss-Newton algorithm. This algorithm depends on the first derivative with 
respect to the parameters. This derivative is non-linear in the parameters and highly sensitive to 
errors in the derivative. Aggravating the difficulty is the fact that, small but opposing errors can 
produce large errors in the gradient. The smoother the data the smaller the errors in the gradients 
will be. It is this reduction in error produced by smoothing that allows the Newton optimization 
algorithm to converge. 
 
LOWESS 
The local polynomial smoothing technique used is LOWESS (LOcally WEighted Scatter plot 
Smoothing), see Fan and Gijbels (1996 pp. 24-26). LOWESS is local, in that each data point is the 
centre of a neighbourhood that has a polynomial regression on the set of points in the 
neighbourhood. The smoothing is achieved by choosing the polynomials such that points further 
from the centre have less influence on the fit. Further smoothing is achieved by choosing the 
polynomials such that they ‘smoothly’ fit together. Note that the fitted polynomial need not pass 
through the centre point of a local neighbourhood. The bandwidth ƒ parameter of the LOWESS 
algorithm sets the size of the neighbourhood about a data point for the local polynomial regression.  
 
Smoothing and Bias 
The greatest danger of applying smoothing to the original data is that bias may be introduced into 
the inferred DE parameters. In an unbiased procedure the mean of the error must be zero. The 
error is computed as the un-smoothed data minus the inferred ownership rates. If a bias exits it 
may be either positive or negative. The smoothing parameters were therefore chosen so as to 
minimize the square of the mean errors.  

 



Algorithm 
The non-linear regression was run for various sequences of ƒ parameters. Figures 1a, 1b, 1c and 
1d below plot the mean squared error against the LOWESS ƒparameter. The star point and the 
doted vertical line indicate the value of minimum squared mean errors, i.e. ƒ*=1.0. Figure 2 shows 
the observed ownership rate against the LOWESS curve for ƒ* and the projection of the observed 
flows on to the curve. 
 
Results of non-Linear Regression 
The corresponding values of the parameters inferred by non-linear regression are given in table 1 
below. The solid curve in figure 7 shows the fit using optimally smoothed non-linear regression. 
The open circles are the non-smoothed original data points. The inferred values of α and γ are 
shown as dashed lines. The optimally smoothed non-linear regression curve is a very good fit to 
the dominant trend of the data. 
Table 1 

Inferred Parameter Values using ƒ* correlation
α̂  κ̂  γ̂  ρ̂  
437.3824 0.04568628 1979.768 0.9647 

 
The correlation between the original (unsmoothed) and the corresponding values of ownership rate 
as inferred by non-linear regression is 0.9647. Figures 1a to 1d show the predicted growth in 
ownership in relation to the original observations.  
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Convergence of Kappa under LOWESS Smoothing
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Figure 1b 

Minimum bias for κ 

Convergence of Gamma under LOWESS Smoothing
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Figure 1c 
Minimum bias for γ 

  

Convergence of Squared Mean Error under LOWESS Smoothing
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Figure 1d 

Minimum Squared Mean Error 
 

 



ANALYSIS OF RESIDUALS 
 
Residuals 
The terminology adopted in the paper is to refer to a residual term rather than an error term. 
Residuals are a measure of deviation from the ‘best’ fit of the model to the data. The residual may 
consists of several components: systematic deviations of the model from reality, or systematic 
measurement errors, or others components of a random nature. The two properties investigated 
are bias and trend. 
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Figure 2 Smoothing Curve giving Minimum Bias  

open circles the observed ownership rate 
solid line the LOWESS curve for ƒ* 

solid diamonds the projection of the observed ownership rates  
on to the LOWESS curve  

 
Bias 
A major assumption of the non-linear least squares model is that the residual term has a mean of 
zero. The properties of the residual term are a major indicator of sound statistical inference. Two 
methods will be used to investigate: the existence of bias in the residual, residual plots and 
confidence intervals.  
   
Figure 3a is the scatter plot of the residuals. By inspection, the arithmetic mean estimator of bias 
and the MM robust regression line are indistinguishable from the horizontal axis (i.e. the error 
equals zero). Hence it may be concluded that there is neither bias nor trend in the error term.  
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Figure 3b Error Histogram  
PDF Probability Density Function 

 
Confidence Intervals 
The absolute value of the arithmetic mean, the intercept and the gradient are small compared to 
the total variation in the data. Despite the small values, further confirmation, beyond the residual 
plot, may be sought. Such confirmation can be provided by testing whether the bias statistic is 
significantly different from the global mode (in this case zero). The two-sided test reduces to the 
problem of constructing a confidence interval around zero. From figure 3b it is apparent that the 
distribution is both non-unimodal and skewed. The distribution is therefore not a candidate for 
classical methods of confidence interval construction. Fortunately, bootstrap methods (Efron, and 
Tibshirani 1993), (“S-Plus 2000 Guide to Statistics vol. 2” 1999) are not as vulnerable to such 
deviations from the Gaussian distribution. The bootstrap methods are re-sampling algorithms in 
which sapling with replacement from the original sample is used to construct an empirical 
distribution.  Statistics are computed from the empirical distribution from which more robust 
inferences can be drawn. Both empirical and bias-corrected and accelerated (BCa) algorithms are 
used.  
 
Empirical Confidence Interval (Percentiles) 
The empirical cumulative density function is re-sampled by the bootstrap method, in order to 
construct a more robust cumulative distribution function (c.d.f.). The inverted bootstrapped 
empirical c.d.f. is then used to find end points of confidence interval. 
 
BCa Confidence Interval (Percentiles) 
The bias-corrected and accelerated (BCa) confidence intervals compensate for possible bias by 
using the empirical c.d.f.. The acceleration adjustment is used to adjust for deviations from the 
symmetric Gaussian distribution. 
 
The number of replications re-sampled is one thousand (B = 1000).  
 
The hypotheses to be tested are: H0:ε=0 v.s. H1: ε≠0. From tables 2 and 3 below the hypotheses 
can be tested at the 90% and 95% significance levels. 
 
Table 2 

Empirical Bootstrap Percentiles 
2.5% (significance/2) 5% 

(significance/2)
95% 
(1- significance/2)

97.5% 
(1- significance/2) 

-6.87 -5.72 6.069 7.311 
 

 



Since 0∈ (-6.87, 7.311) then accept H0:ε=0 at the 95% confidence level. 
Since 0∈ (-5.72, 6.069) then accept H0:ε=0 at the 90% confidence level. 
 
Table 3 

BCa Confidence Limits 
2.5%  
(significance/2) 

5%  
(significance/2)

95%  
(1- significance/2)

97.5%  
(1- significance/2) 

-6.495 -5.61 6.36 8.311 
     
Since 0∈ (-6.495, 8.311) then accept H0:ε=0 at the 95% confidence level. 
Since 0∈ (-5.610, 6.360) then accept H0:ε=0 at the 90% confidence level. 
 
It can therefore be concluded that there is no bias in the residual term. 

PSEUDO CONFIDENCE INTERVALS 
In the previous section confidence intervals for the residual term were investigated. This section 
treats the problem of constructing confidence intervals for the predicted car ownership. Clearly the 
usual methods of linear models are inapplicable. Attempting to construct confidence intervals for 
the predicted points themselves, although formally correct, would involve theoretical contortions 
best avoided.  
 
Given that the purpose of constructing confidence intervals is to give some indication of the 
‘accuracy’ of the predictions, a compromise problem might be acceptable to the more rigorously 
defined problem. It is much simpler to construct confidence intervals for the DE parameters, and 
then plot the upper confidence interval curve as the solution of the DE using the upper extremea of 
the parameters, and likewise for the lower confidence interval curve. 
 
One shortcoming of this method is that by virtue of the properties of the logistic function, if 
αupper>αlower,κ upper> κ lower,γ upper≥γ lower then the confidence bound curves intersect. As the pseudo 
confidence bounds approach the intersection, the size of the true confidence bounds are 
underestimated. However, as the pseudo-confidence bounds move away from the intersection they 
approach the true confidence intervals. The pseudo-confidence bound curves form an inner bound 
to the true confidence interval curves. 
 
Initially bootstrap re-sampling was used to construct a sample of parameter vectors. Unfortunately, 
the nonlinear regression algorithm did not converge for some samples. The jackknife re-sampling 
method proved more successful, with the nonlinear regression algorithm converging for every 
sample. In jackknife methods, re-sample from original sample is without replacement. Each re-
sample omits a fixed number randomly chosen elements. Note that the non-replacement implies 
that the re-samples are unique. In order to obtain a large enough number of re-samples so as to 
construct distribution functions for the parameters, three elements were omitted instead of the 
usual one element. Five hundred re-samples were generated. This was considered sufficient, since 
by trial and error it was found that the 5% and 95% confidence end points converged in less than 
500 re-samples. 
 
On the each re-sample the parameter is re-estimated and a new cumulative distribution function for 
the parameter is constructed. The cumulative function can be constructed so that it is strictly 
increasing and therefore invertible. The 5% and 95% quantiles (end points) can then be 
determined from the inverse cumulative function. A confidence interval so constructed is known as 
an empirical confidence interval. 
 
In figures 4a, 5a and 6a below, the doted line represents the value of the relevant parameter 
inferred from the complete sample. The asterisk (*) marks the value of the parameter computed for 
the initial jackknife sample. CI (confidence interval) Upper Points (solid lines) shows the 
convergence of the 95% confidence curve as the number of jackknife samples, and therefore 
inferred values of γ, approaches 500. Likewise, the CI Lower Points (solid lines) show the 

 



convergence of the 5% confidence curve. The curve becoming progressively flatter indicates the 
relevant end point of the confidence interval is stabilizing to a constant. 
 
Figure 7 and Table 4 give the final results of pseudo-confidence interval construction exercise. 
Figure 7 shows the predicted curve (solid) in relation to the untransformed observations (open 
circles). The pseudo-confidence interval curves are represented as dots. The inferred values of α 
and γ are shown as dashed lines. 
 
As would be expected from a reasonable inner bound on the confidence curve, the scatter plot of 
figure 7 shows that most of the observed points lie within the confidence interval curves. In 
accordance with the predicted properties of the inner bounds a greater proportion of the points lie 
within the curves as values of the time variable move away from the cross over point. The 
exception to this is the World War II data, which contrary to the logistic model decreases due to the 
rationing of fuel and vehicles during that conflict. 
 
Another exception is the last data point (i.e. point 30, 1992). Its position well out side the inner 
bound gives further credibility to the belief that it is an outlier. A rapid growth in ownership of 32.3% 
p.a. seems improbable in economic terms and, by subjective judgement, inconsistent with the 
logistic model. 
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Figure 4a Convergence of Alpha Confidence Interval. The 
curve stabilizes after re-sample 150. 
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 Figure 4b Histogram of Empirical 
Jackknife re-sample estimates of Alpha 
 

 



 

Convergence of Kappa Confidence Interval Bounds
Empirical Jakknife (-3, 500)
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Figure 5a Convergence of Kappa Confidence Interval. The 
upper curve stabilizes by re-sample 400, the lower curve by re-
sample 300. 
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Figure 5b Histogram of Empirical Jackknife re-sample 
estimates of Kappa  
 

 

Convergence of Gamma Confidence Interval Bounds
Empirical Jakknife (-3, 500)
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Figure 6a Convergence of Gamma Confidence Interval. Both 
curves stabilize by re-sample 300. 
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Figure 6b Histogram of Empirical Jackknife re-sample 
estimates of Gamma  

CONCLUSIONS 
1. Minimum bias smoothing provides adequate conditioning to allow the convergence of the 

non-linear regression algorithm.  
2. The non-linear regression curve is a good fit to the dominant trend of the data.  
3. It should be noted that the boundaries and hence the demographic composition of the CoJ 

has changed since 1994, therefore this model can only be applied to parts of the CoJ and 
then only after careful consideration. However, the inference method should be applicable 
to the expanded CoJ data. 

4. The inference process for the non-linear is statistically sound.  
5. The fitted curve has high correlation to the raw data.  
6. Figure 3a shows that the residuals are unbiased and have a zero trend.  
7. The tests of hypotheses based on Tables 3 & 4 demonstrate that the residual is unbiased. 
8. The pseudo confidence interval curves give a credible and useful inner bound on the actual 

95% confidence curves. These curves converge to stable values using the empirical 
distribution function constructed by jackknife methods. 

9. The algorithm is fully automated in S+ code. 
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Figure 7: Empirical 95% Confidence Intervals 

 
Table 4 Empirical Confidence Intervals Convergence Value of End Points 

Parameters 5% 95% 
alpha 415.47 527.18
kappa 0.03976 0.04802

gamma 1977.4 1989.1 
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