
c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ier . com/ loca te /cose
Adapting usage control as a deterrent to address the
inadequacies of access controls
Keshnee Padayacheea,*, J.H.P. Eloffb

aUniversity of South Africa, School of Computing, PO Box 392, Unisa, Pretoria, Gauteng 0003, South Africa
bInformation & Computer Security Architectures Research Group, Department of Computer Science, University of Pretoria, Pretoria 0002,

South Africa
a r t i c l e i n f o

Article history:

Received 4 April 2008

Received in revised form

12 March 2009

Accepted 13 March 2009

Keywords:

Usage Control

Optimistic Access Control

Deterrent Control

Access Control

Aspect-Oriented Programming
* Corresponding author. Tel.: þ27 124296460.
E-mail addresses: padayk@unisa.ac.za (K

0167-4048/$ – see front matter ª 2009 Elsevi
doi:10.1016/j.cose.2009.03.003
a b s t r a c t

Access controls are difficult to implement and evidently deficient under certain conditions.

Traditional controls offer no protection for unclassified information, such as a telephone

list of employees that is unrestricted, yet available only to members of the company. On

the opposing side of the continuum, organizations such as hospitals that manage highly

sensitive information require stricter access control measures. Yet, traditional access

control may well have inadvertent consequences in such a context. Often, in unpredictable

circumstances, users that are denied access could have prevented a calamity had they

been allowed access. It has been proposed that controls such as auditing and account-

ability policies be enforced to deter rather than prevent unauthorized usage. In dynamic

environments preconfigured access control policies may change dramatically depending

on the context. Moreover, the cost of implementing and maintaining complex preconfig-

ured access control policies sometimes far outweighs the benefits. This paper considers an

adaptation of usage control as a proactive means of deterrence control to protect infor-

mation that cannot be adequately or reasonably protected by access control.

ª 2009 Elsevier Ltd. All rights reserved.
1. Introduction freely available in the public domain. In the recruitment
Industry surveys prove that a substantial portion of computer

security incidents are due to the intentional actions of legiti-

mate users, the consequences of which include negative

publicity, competitive disadvantage and loss of consumer

confidence (D’Arcy and Hovav, 2007). Traditional access

control models are evidently deficient under certain condi-

tions. For instance, a particular organization may necessitate

access controls to be less prescriptive for the purposes of

intra-organizational cooperation (Stevens and Wulf, 2002;

Etalle and Winsborough, 2007). Traditional access controls,

such as mandatory, discretionary or role-based access control,

offer no protection for information that is unclassified and
. Padayachee), eloff@cs.u
er Ltd. All rights reserved
industry, for example, information such as client lists and

candidate lists has to be shared freely for purposes of collab-

orative job matching. As there are no controls over this

information, an employee may download and distribute it to

competitors.

On the opposing side of the continuum, organizations (e.g.

hospitals) that manage highly sensitive information insist on

stricter access control measures. Yet, traditional access

controls may sometimes have an undesired effect in these

circumstances. Consider as an example a nurse – at a hospital

that has been isolated during a tornado – who needs access to

a patient’s records but cannot access them because nurses are

not authorized to access this information (Povey, 1999). The
p.ac.za (J.H.P. Eloff).
.

mailto:padayk@unisa.ac.za
mailto:eloff@cs.up.ac.za
http://www.elsevier.com/locate/cose

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4 537
meaningful implementation of access control remains a diffi-

cult task and preconfigured access control policies may at

times change dramatically in dynamic environments,

depending on the context. Often, in unpredicted circum-

stances, users that are denied access could perhaps have

prevented a catastrophe had they been allowed access.

Moreover, the cost of implementing and maintaining complex

preconfigured access control policies sometimes far

outweighs the benefits. It has been proposed that auditing and

accountability measures be enforced to deter unauthorized

users, rather than to completely prevent them from gaining

access (Etalle and Winsborough, 2007). This paper considers

a proactive means of deterrence control to protect informa-

tion that cannot be adequately or reasonably protected by

access control.

The deterrence control approach is an application of opti-

mistic access control. Optimistic access control is useful in

cases where openness and availability are more important

than complete confidentiality (Povey, 1999). Optimistic access

control involves a combination of audit and accountability as

deterrent mechanisms to encourage trustworthy behavior.

This approach is characteristically more retrospective rather

proactive. However, the application of usage control within an

optimistic access control context may provide proactive

means of deterrent control. Usage control enables finer-

grained control over the use of objects than do traditional

access control models (Sandhu and Park, 2003). Within tradi-

tional access control models, usage control would offer an

extra layer of restriction against unauthorized usage.

However, under the optimistic access control paradigm it

would not restrict users but rather deter them from accessing

and misusing information. As is defined in terms of the opti-

mistic access control paradigm, the user must ultimately be

able to access the required information.

This paper investigates the possibility of reformulating

usage control in terms of the optimistic access control para-

digm. Section 2 explores traditional access control models and

presents the concept of optimistic access control. Section 3

elaborates on the usage control model and its applicability.

Section 4 describes the adaptation of usage control as an

application of deterrence control to enhance traditional

access control. Furthermore, a possible technique to imple-

ment the model is proposed, using aspect-oriented program-

ming. The objective is to seamlessly augment traditional

access control with deterrence control. Section 5 concludes

with directions for future work.
2. Background work on access control

Discretionary access control (DAC) is an access policy that

restricts access to files and other system objects such as

directories and devices on the basis of the identity of the users

and/or the groups to which they belong (Russell and Gangemi,

1991). Discretionary access control is very flexible but highly

vulnerable to Trojan Horses. As a result of this inadequacy,

mandatory access policies are proposed. Mandatory access

control (MAC) (Ramachandran et al., 2006) refers to access

control policy decisions that are made beyond the control of

the individual owner of the object. A central authority
determines what information is to be accessible by whom,

and the user cannot change access rights (Pfleeger, 1997). The

most dominant model of recent times is the role-based access

control model. Within role-based access control (RBAC),

system administrators create roles according to the job

responsibilities performed in a company. They grant permis-

sions (access authorization) to those roles, and then assign

users to the roles on the basis of their specific job responsi-

bilities (Sandhu et al., 1996).

Access control models such as DAC, MAC and RBAC often

assume what users want and are able to determine permis-

sions before the actual access is made. They require a priori

settings of permissions that are difficult to specify and

maintain in highly dynamic environments where access

policies may fluctuate on a regular basis. These types of

control lack flexibility as they rely entirely on denying access.

Access control models assume that human beings cannot

behave in a trustworthy manner and the system has to

prevent them from behaving in an undesirable manner. For

example, within a typical mandatory access control model,

doctors may have the privilege to access a patient’s medical

information, whereas clerks would have the privilege to access

a patient’s account information only. Unfortunately, this does

not guarantee that an authorized user will in fact demonstrate

integrity or act professionally with the designated

information.

Optimistic access controls address this niche, where the

access control is not preconfigured and the user is essentially

trusted to behave ethically. While traditional access controls

such as DAC, MAC and RBAC may be highly appropriate in

certain contexts, optimistic access controls may be more

appropriate in other circumstances (Padayachee and Eloff,

2007). A field study conducted by Stevens and Wulf (2002), who

considered the cooperation between two engineering offices

and a steel mill, is a case in point. Within this real-world inter-

organizational cooperation scenario, it was found that tradi-

tional access controls did not comply with the organization’s

requirements and that cooperation and competitive reasons

motivate the use of interactive and optimistic access controls

(Stevens and Wulf, 2002). A posteriori policy enforcement

offers interoperability, flexibility and scalability, which is

crucial in collaborative environments (Etalle and Wins-

borough, 2007). Moreover, the call for privacy-sensitive

systems to have a range of control and feedback mechanisms

for building pessimistic, optimistic and mixed-initiative

applications has also been recognized (Hong and Landay,

2004).

The optimistic access control scheme allows users to

exceed their normal privileges in a way that is constrained so

that it is securely audited and may be rolled back (i.e. the

system is restored to its original state before the breach). As

optimistic accesses are subject to ex ante controls to ensure

that the organization’s security policies are maintained, it is

contingent on administrators to detect unreasonable access

and take steps to compensate for the action. Such steps might

include the following (Povey, 1999):

� Undoing illegitimate modifications

� Taking punitive action (e.g. firing or prosecuting individuals)

� Removing privileges

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4538
Optimistic access controls trust human beings to perform

legitimate accesses and take retrospective action after such

trust has been breached. The initial cost of implementing

optimistic access control methods is minimal as there are no

clearly defined mechanisms for restricting unauthorized

users. However, the consequences of a breach in trust could

be disastrous. If such a breach is discovered, it could involve

prosecution or require the performing of a roll-back proce-

dure. Although the roll-back procedure may be able to restore

the system to its original state prior to the breach, it is highly

likely that it may not be able to undo the damage done.

Padayachee and Eloff (2007) propose that this type of access

control should be supplemented with usage control to ensure

that humans behave ethically. However, the proposed model

had limited appeal as it suggested that all information should

be subject to optimistic access control. It did not consider the

real-world context where traditional access control measures

are also obligatory. In this paper, we expand this concept to

constitute a model for deterrence control as an enhancement

of traditional access control.
3. Background on the usage control (UCON)

Usage control (UCON) is intended to address the inadequacies

of traditional access control. Consequently, there has been

a trend towards complementing access control methods such

as role-based access control with usage control (see Li et al.,

2005; Xu et al., 2003). The UCON model encompasses emerging

applications such as trust management in a unified frame-

work. It considers the missing components of traditional

access control, such as the concepts of obligations and condi-

tions. Obligations require some action by the subject (user) so as

to gain or sustain access, e.g. by clicking the ACCEPT button on

a license agreement or agreeing not to distribute a confidential

document. Conditions represent system-oriented factors such

as time-of-day, where subjects are allowed access only within

a specific time period. With traditional access control,

authorization is assumed to be done before access is allowed

(pre). However, the UCON model extends pre-authorization by

re-evaluating usage requirements throughout usages. This

property is called ‘‘continuity’’ and has to be captured in

modern access control for the control of relatively long-lived

usage or for immediate revocation of usage. The ‘continuity’

property implies that access may be revoked instantaneously

during access. Hence ongoing authorization is active

throughout the usage of the requested right, and is repeatedly

checked for sustaining access. Technically, these checks are

performed periodically based on time or events. For instance,

suppose an ongoing obligation condition stipulates that

a window declaring the ‘Terms and Conditions of Use’ should

remain open during access. Accordingly, if the user ignores

this stipulation and closes the window during access, then the

usage is revoked immediately (Sandhu and Park, 2003).

Usage control is relevant in many contexts, including

privacy, Digital Rights Management, management of Internet

Protocols and that of trade and administration secrets (Pre-

tschner and Walter, 2008). One of the motivations for applying

usage control is that it considers ongoing controls for

extended access or for revocation. For example, Zhang and
Nakae (2006) used UCON as the access control model for

collaborative systems by leveraging the features of decision

continuity and attribute mutability. They claim that tradi-

tional access control approaches do not consider the usage

status of a shared object in authorization. They developed

a prototype and found that the main overhead of the system

introduced by usage control involved mutable attribute

acquisitions, policy interpretations and evaluations, and the

updates of mutable attributes. Wang et al. (2006) also moti-

vated the use of the UCON model for extended access, as it

would be useful in ubiquitous environments where the

information can be accessed anywhere and at any time, which

is potentially unsafe. The ongoing continuity for authoriza-

tions, obligations and conditions found in the UCON model

can be used to control objects in a dynamic environment,

since they provide more robust access control for ubiquitous

computing environments and can protect sensitive messages

from dissemination.

Although the UCON model is comprehensive, it has been

extended in several ways. For instance, according to Lee et al.

(2004) this framework lacks an important component in terms

of access control. Lee et al. (2004) maintain that the element of

‘consent’ should also be included in an access control system,

thereby increasing society’s trust towards a software system.

They consider consent to be diametric to the ‘concept of

obligation’ within the Usage Control Model and state that

‘[w]hile the obligation is obeyed by the customer, consent is

observed by the provider’ (Lee et al., 2004). The proposed

method can extend the coverage of the UCON model in

a security area, and will enhance the right of the provider and

customer. It also provides a solution for trust relationships on

e-Commerce and protection for individual privacy. In a posi-

tion paper, Pretschner and Walter (2008) considered usage

control in the context of distributed systems that are

composed of different actors taking the roles of data providers

(who give data away) and data consumers (who request and

receive data). In this position paper, they considered the

element of negotiation for usage control. The term negotiation

suggests that multi-step bidirectional communication takes

place. Shin and Yoo (2007) extended the usage control (UCON)

model by adding a further component, namely delegation, for

the effective modeling of delegating access rights in ubiqui-

tous computing.

Sandhu and Park (Sandhu and Park, 2003; Park and Sandhu,

2004) have expanded usage control into a family of models for

usage control, involving pre-authorizations and ongoing

authorizations. The implementation of pre-authorization is

relatively simple, as it warrants checking the conditions and

obligations before the user may proceed. However, the

implementation of ongoing authorization is non-trivial.

Sandhu and Park (Sandhu and Park, 2003; Park and Sandhu,

2004) furthermore do not offer a proposition towards how

ongoing authorizations may be implemented. In an previous

paper (Padayachee and Eloff, 2007) we proposed the use of

multithreading to implement ongoing authorizations. If

a subject (user) requests an object (such as a file), the pre-

conditions and pre-obligations are checked, then two separate

threads are invoked representing ongoing conditions and

ongoing obligations respectively. The ongoing obligations and

ongoing conditions will be tested intermittently during the

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4 539
access. In the next section, the model for usage control is

adapted under the optimistic access control paradigm. The

mechanisms for pre-obligations, pre-conditions, ongoing

obligations and ongoing conditions are used as mechanisms

of deterrence control.
4. Adapting usage control as a mechanism
for deterrence control

According to Jones and Rastogi, security controls may be

found in one of four categories: corrective control, deterrent

control, detective control and preventative control. Access control

falls in the preventative control category. Typically, informa-

tion under this protection is secured in terms of roles or

attributes, whereas information in the public domain is not.

Two aspects are at issue in the securing of a distributed

computing environment against malicious or otherwise

disruptive use: a social aspect, where the safeguarding of

a computer system relies on social deterrents such as

shameful exposure or prosecution, and a technical aspect,

where the system is protected by technical means such as

encryption algorithms and access controls (Georgiev and

Georgiev, 2001). Detective functions attempt to identify

unwanted events even as they are occurring or after they have

occurred. Deterrent controls are intended to discourage indi-

viduals from intentionally violating information security

policies or procedures. Typically, organizations implement

deterrents such as anti-virus systems and passwords, or by

fostering security awareness. Recovery controls restore lost

computing resources or capabilities and help the organization

to recover monetary losses caused by a security violation.

Corrective controls either remedy the circumstances that

allowed the unauthorized activity or revert conditions to what

they were before the violation (Kim and Leem, 2004).

4.1. A motivating example

Suppose company ABC is an e-recruitment company where

clients and prospective candidates (job seekers) place job

orders and applications online. Company ABC then maintains

databases of candidates and clients. While internally the

company places access controls on sensitive information such

as salaries, this information is unrestricted for purposes of

collaborative job matching. Suppose an employee of company

ABC decides to download all the telephone numbers that are

available on these databases and sell it to a telemarketer. Due

to the lack of deterrents, this act is relatively easy to carry out.

Furthermore, the employee may claim that he was unaware of

the fact that his actions were unethical. This type of security

breach is usually blamed on the user and on a lack of user

training. Such an understanding of a security breach is

contradictory to the requirements of security usability.

According to Zurko (2005) we have to ask, ‘why did the system

make the insecure option so easy and attractive’ and in this

case ultimately lucrative? Perhaps if system provided for

synchronous deterrents, this employee may have been

deterred from carrying out the act.

So, in the above scenario, the following stipulations as

mechanisms could be used as usage control deterrents:
Pre-obligation: The user must click on a button in a window,

thereby indicating that he/she agrees not to distribute this

information.

Ongoing obligation: A window with the following warning

‘‘This data set must be used EXCLUSIVELY for work-related

purposes’’ is to remain open at all times.

Pre-condition: This information may be accessed during

business hours only.

Ongoing condition: This information may be accessed during

business hours only (same as pre-condition, as it is time

dependent). While the pre-condition may have been valid at

the time of access, pre-condition may become invalid during

the access.

Post-obligation: The user must send an e-mail to the admin-

istrator if he accessed these databases outside of business

hours.

The post-obligation implies that an employee may in fact

access the databases after hours. Under the optimistic para-

digm, the employee should ultimately be able to download the

data in the case of an emergency. This is permitted as the

employee should not be prevented from performing his/her

duties. In the following section we consider how such deter-

rents may be implemented practically under the optimistic

paradigm.
4.2. Design

Fig. 1 shows the activity diagram for usage deterrence. When

a user requests access to an object, authorization is performed

utilizing subject and object information (attributes). Usage

rules are used to check whether the request is allowed or not

and whether the data is classified and subject to access control.

If the data is in the public domain and hence unprotected by

access controls, then the usage deterrence mechanisms are

deployed. Otherwise the access control proceeds as expected

with traditional access control based on user attributes.

The Pre-Conditions and Ongoing Conditions activities

decide whether conditional requirements are satisfied by

using the contextual information (such as current time, IP

address, etc.) before and during the access. The Pre-

obligation, Ongoing Obligation and Post Obligation

activities decide whether certain obligations have to be per-

formed or not – either before, during or after the requested

usage has been executed. If there exists any post-obligation

that has to be performed, this must be monitored and the

result has to be resolved by the Post Update activity. If the

user does not accept the Pre-Obligations, he/she is not

allowed to access the information at all. If the user does not

accept the Ongoing Obligations while accessing the infor-

mation, then access is ceased. These problems are not

considered as breaches. However, if the user has accessed the

information and refuses to accept the post-obligations, this is

considered to be a breach of trust. Here the user will be

penalized and he/she will be not trusted to access this infor-

mation in the future. While the user will not be permitted to

access the information unless the obligations are satisfied, he/

she will under special circumstances be allowed to access it by

utilizing the Break the Glass facility.

pre-conditions valid

ac
ce

pt
ed

 o
ng

oi
ng

 o
bl

ig
at

io
ns

accepted pre-obligations

unclassified and authorized

on
go

in
g

co
nd

iti
on

s
va

lid

re
fra

in
ed

 fr
om

 u
si

ng
 B

R
EA

KG
LA

SS
 fa

ci
lit

y

rejected ongoing obligations

on
go

in
g

co
nd

iti
on

s
in

va
lid

pre-conditions invalid

classified and authorizednot authorized

Access Control

Access Object

User Request Access

Ongoing Obligations Access Object Ongoing Conditions

End Request

Post Obligations Post Update

user ends request

rejected pre-obligations

Break the Glass

Fig. 1 – Adapting usage control with respect to deterrent control.

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4540
The Break the Glass facility is a novel addition to the

usage control model. While it is a facility to deter the user

from proceeding with access when the conditions are not

satisfied, it provides a mechanism to override the system.

As in Ferreira et al. (2006), the user is informed about the

consequences of accessing this information illegitimately

and the access is red flagged for auditing purposes. The

difference here is that the Break the Glass facility is

deployed when the system conditions are not satisfied.

Essentially the Break the Glass facility is for emergencies

only. During auditing, the Post Update process will also be

referenced to identify unfulfilled post-obligations. If the user

cannot justify an illegal access or an unfulfilled post-obli-

gation, then the access policy will be updated to restrict this

user’s access rights to public domain information in the

future. This may also involve punitive action. If the user has

performed some illegal modification to the data, the roll-

back procedure will be attempted to return the data back to

its original state. Immediate revocation of usage occurs in

two instances: – firstly, if the user ignores the stipulation of
the Ongoing Obligations, and secondly, if the user does

not deploy the Break the Glass facility when the Ongoing

Conditions are no longer satisfied.

In terms of the enforcement of security policies, it is

imperative that it is centrally located and enforced uniformly.

Accordingly, the same notion would apply to the imple-

mentation of such policies in terms of application logic (Ver-

hanneman et al., 2005). This type of deployment may be

achieved through the use of aspect-oriented methodologies.

The premise of the model is to create an aspect that will

intercept calls when a subject requests access to an object and

enforce deterrence control where access control is not

imposed. A significant amount of work has been conducted on

aspect-oriented security in respect of access control. It has

been shown that aspect-oriented programming eases the

implementation of security type concerns such as access

control (De Win et al., 2001). It results in an implementation

that is easier to maintain and port to different environments.

Many recent systems are based on a three-tiered architecture

– access is via the web, the application programs reside within

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4 541
an application server, and the data is stored within a database

system (Li et al., 2005). However, only the application layer is

considered in the next section.

4.3. An aspect-oriented approach to deterrence control

An aspect is a modular unit of a crosscutting implementation

that is provided in terms of pointcuts and advices. It specifies

what (advice) and when (pointcut) its code is going to be

executed (Ortin and Cueva, 2004). In terms of codification,

aspects are similar to objects. However, aspects observe

objects and react to their behavior (Viega and Voas, 2000). An

aspect is a piece of code that describes a recurring property of

a program and can span multiple classes, interfaces or aspects

(Choi, 2000). Unlike a class though, aspects are injected into

other types. Aspects improve the separation of concerns by

making it possible to cleanly localize crosscutting design

concerns. They also allow programmers to write, view and edit

a crosscutting concern as a separate entity. During program

execution, there will be certain well-defined points where calls

to aspect code would be inserted (Ortin and Cueva, 2004). These

are known as join points. Aspects introduce their supple-

mental functionality at these join points (Viega and Voas,

2000). A pointcut is a set of join points described by a pointcut

expression. An advice declaration is used to specify code that

should run when the join points specified by the pointcut

expression are reached (Mahrenholz et al., 2002). The advice

code will be executed when a join point is reached, either

before or after the execution proceeds. For example, AspectJ

supports before, after and around advices, depending on the time

the code is executed (De Win et al., 2002). A before (after) advice

on a method execution defines code to be run before (after) the

particular method is actually executed. An around advice

defines code that is executed when the join point is reached

and has control over whether the computation at the join point

(i.e. an application method) is allowed to be executed or not

(Kiczales et al., 2001). Combining the application functional

code and its specific aspects generates the final application.

These two entities will be combined at compile time by

invoking a special tool called a ‘weaver’ (Choi, 2000).

Consider the following class that controls user accesses to

features. A feature could be ‘‘View File c:\candidate.txt’’ or

‘‘Edit Report c:\AnnualReport.txt’’.

public class WebSecurityManager

{

public WebSecurityManager(){}

public static void init(String sApplicationName)

throws

WebSecurityManagerException{

//initial WebSecurityManager

}

public static final Boolean checkPermission(User user,

Feature feature){

//determine if user is allowed access

}

public void request(User user, Feature feature){

//allow user to request feature

}

}

With aspect-oriented programming, we can augment

WebSecurityManager, which has methods for traditional

access control with deterrence control without modifying the

class. Further, all details relating to deterrence control can be

confined in a singular modular structure, namely an aspect,

without it being mixed in with the WebSecurityManager class.

To accomplish this, a generic aspect DeterrenceCon-

trolInjector was defined. This aspect delineates three

pointcuts. The first pointcut InterceptCheckPermission

intercepts those calls where a user requests access to a feature,

i.e. during program execution calls to checkPermissionwill be

intercepted.Theafteradvice defines codethat isexecutedafter

the checkPermission method is called. The advice initially

determineswhetherthis information is inthe publicdomain(i.e.

not protected by the traditional access control facility), other-

wise it allows traditional access control to proceed as usual. This

advice contains operations to test the pre-Obligations and

pre-Conditions. If the pre-Obligations are not satisfied, the

user is not allowed to access the feature. If thepre-Conditions

are invalid, the user has the opportunity to use the Break the

Glass facility to access the feature. The aspect invokes threads

to maintain the ongoing conditions and ongoing obligations to

control the request to use the feature.

public aspect DeterrenceControlInjector {

private Thread conditionsThread;

private Thread obligationsThread;

private Thread AspectWebSecurityThread;

private WebSecurityManager SecurityManager;

private Boolean authorized;

private User user;

private Feature feature;

pointcut InterceptCheckPermission(User user,

Feature feature):

call(* *.checkPermission(..)) &&!within(Deterrence

ControlInjector)

&& args(user,feature)

after (User user, Feature feature)

returning (Boolean authorized):

InterceptCheckPermission(user,feature,WM){

if (isPublicDomain() && authorized){

if (pre_Obligations(user,feature)){

if (pre_Conditions(user,feature)

jj BreakTheGlass(user,feature)){
Conditions conditions ¼ new Conditions

(user,feature);

conditionsThread ¼ new Thread(conditions);

conditionsThread.start();

Obligations obligations ¼ new Obligations

(user,feature);

obligationsThread¼ new Thread(obligations);
obligationsThread.start();

AspectWebSecurityThread ¼ new Thread

(SecurityManager);

AspectWebSecurityThread.start();

SecurityManager.request(user,feature);

}

}

}}

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4542
pointcut OngoingConditions(Conditions conditions):

call(* *.warning()) && target(conditions);

after(Conditions conditions): OngoingConditions

(conditions){

if (!BreakTheGlass(conditions.getUser(), conditions.

getFeature())){

conditions.stop();

System.exit(0);

}}

pointcut OngoingObligations(Obligations obliga-

tions): call(* *.stop()) && target(obligations);

after(Obligations obligations): OngoingObligations

(obligations){

SecurityManager.endrequest();

PostObligations(obligations.

getUser(),obligations.getFeature());

System.exit(0);

}

Boolean pre_Obligations(User user, Feature feature){

//determine pre-Obligations for user to access

feature

}

Boolean pre_Conditions(User user, Feature feature){

//determine pre-conditions for user to access

feature

}

Boolean PostObligations(User user,Feature feature){

//determine postObligations for the user to access

feature

}

Boolean BreakTheGlass(User user, Feature feature){

//present the break the glass option to user

}

void LogAccess(User user,Feature feature,String

s,String a){

//log accesses

}

Boolean isPublicDomain(){

//inspect usage control policies

}

}

The next two pointcuts, namely pointcut OngoingCon-

ditions and pointcut OngoingObligations, intercept

execution points that indicate that the ongoing conditions and

ongoing obligations are no longer satisfied. The after advices of

each pointcut define code that is executed after such an

irregularity has been detected. In this case, if some action

results in the warning or stop method being called on either

the conditions object or the obligations object, then this call

will be intercepted by these pointcuts. If the ongoing obliga-

tions are no longer satisfied, then the access is terminated

immediately. If the ongoing conditions are no longer satisfied,

the user has the opportunity to use the Break the Glass

facility to continue with the access.

In order for the immediate revocation of access to occur,

the object that is responsible for allowing access needs to now

terminate the access. If we consider the WebSecur-

ityManager class, we need to extend it, to control users’

requests to a feature and to end requests. Fortunately, aspect-
orientation permits a seamless integration of this additional

functionality by facilitating the creation of a special aspect

known as an intertype declaration without modifying the Web-

SecurityManager class. The intertype declaration construct is

supported by aspect-oriented programming languages such

as AspectJ. An intertype declaration is generally used to add on

information such as methods or fields to an object without

modifying the existing class. Here, methods to control

requests and to end requests to information were added.

Furthermore, as this process needed to be controlled within

thread, in Java this implies that this class must implement the

java.lang.Runnable thread interface. With AspectJ, this can

be done using the declare parents syntax so that WebSe-

curityThread can be the active object.

public aspect AspectWebSecurityThread {

Feature feature;

User user;

private Thread WebSecurityManager.myThread;

declare parents: WebSecurityManager implements

Runnable;

public void WebSecurityManager.run() {

//implement run for WebSecurityManager

}

public void WebSecurityManager.stop() {

myThread ¼ null;

}

public void WebSecurityManager.request(User user,

Feature feature){

//control user’s request to feature

}

public void WebSecurityManager.endrequest(){

stop();

}

}

Augmenting traditional access control with usage control

features will slow down program execution, as it involves the

inclusion of additional code to the functional system. In terms of

usability, controls such pre-obligations and ongoing obligations

may be distracting and impact negatively on the productivity of

users. Perhaps as the user becomes more ‘‘trustworthy’’, some

obligations or conditions may be relaxed or negotiated. The cost

of implementing usage control as a deterrent may have to be

weighed against the cost of information misuse. South Africa’s

draft bill on the protection of personal information is viewed as

a means of ensuring South Africa’s future participation in the

information market by providing ‘adequate’ information

protection of an international standard (see Discussion Paper

109). If individuals are ensured that their privacy is taken into

account in a software system, it is understandable that these

individuals will trust the system with their private information.

The survival of e-business will probably depend on its ability to

ensure the privacy of its clients.
5. Conclusions and future work

The element of trust within deterrence control warrants an

investigation into human behaviors and responses to its

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4 543
application. It would be pragmatic to investigate whether the

model presented here does in fact dissuade individuals from

accessing and misusing information in the public domain. To

ease the development and maintenance of optimistic usage

control measures, it is posited that they be completely sepa-

rated from the application logic by using the aspect-oriented

paradigm. The aspect designed has not been tested within

a real-world context. However, confining all the operations

pertaining to deterrent control to a single modular structure

will ease both development and maintenance costs as it can

be integrated seamlessly into a system based on traditional

access control. Future studies would involve conducting

a case study to test the usability and performance issues of the

approach presented here.

The proposed solution may well ease the burden of system

administrators significantly. It is rather difficult for adminis-

trators to predict all of the possible usage scenarios and thus

all of the necessary permissions. With deterrence control, it is

ultimately left to users to make that judgment. Consequently,

the complexity of implementing and maintaining preconfig-

ured access control policies is shifted to the way the user

interacts with the system. Adapting usage control with

respect to deterrence control provides a proactive mechanism

in addition to the retroactive methods of auditing and

accountability. Hence, with a proactive means of deterrent

control, a larger subset of information may be relegated into

the public domain.

Acknowledgements

The code for WebSecurityManager class was derived from

the ‘‘Secure a Web application’’ article that was created

by M Cymerman, [http://www.javaworld.com/javaworld/jw-

04-2000/jw-0428-websecurity.html?page=1] however it has

been customized to fit the current scenario. We also like to

acknowledge the use of the Eclipse platform and AspectJ

(http://www.eclipse.org/aspectj/) during the development

process.
r e f e r e n c e s

Choi JP. Aspect-oriented programming with enterprise JavaBeans.
In: Fourth international enterprise distributed object
computing conference (EDOC’00). Makuhari, Japan; 2000.
p. 252–61.

D’Arcy D, Hovav A. Deterring internal information systems
misuse. Communications of the ACM 2007;50(20):113–7.

De Win B, Joosen W, Piessens F. Developing secure applications
through aspect-oriented programming. In: Aksit M, editor.
Aspect-oriented software development. Boston: Addison-
Wesley; 2002. p. 633–50.

De Win B, Vanhaute B, Decker B. Security through aspect-
oriented programming. In: Advances in network and
distributed systems security, IFIP TC11 WG11.4 first working
conference on network security, 2001, Leuven, Belgium.
Boston: Kluwer Academic Publishers; 2001. p. 125–38.

Discussion paper 109 (Project 124), http://www.ispa.org.za/
regcom/privacyfiles/chapter-9-draft-bill-protection-personal-
info.pdf; 2006.
Etalle S, Winsborough WH. A posteriori compliance control. In:
SACMAT ’07: proceedings of the 12th ACM symposium on
access control models and technologies. Sophia Antipolis,
France: ACM; 2007. p. 11–20.

Ferreira A, Cruz-Correia R, Antunes L, Farinha P, Oliveira-
Palhares E, Chadwick DW, et al. How to break access control in
a controlled manner. In: Proceedings of the 19th IEEE
international symposium on computer-based medical
systems. Salt Lake City, UT; 2006. p. 847–51.

Georgiev IK, Georgiev II. A security model for distributed
computing. Journal of Computing Sciences in Colleges 2001;
17(1):178–86.

Hong JI, Landay JA. An architecture for privacy sensitive
ubiquitous computing. In: MobiSys ’04. Boston, MA, USA; 2004.
p. 177–89.

Jones RL, Rastogi A. Secure code: building security into the
software development life cycle. Information Security Journal:
A Global Perspective 2004;15(5):29–39.

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J. Getting
started with AspectJ. Communications of the ACM 2001;44(10):
59–65.

Kim S, Leem CS. An information engineering methodology for the
security strategy planning. In: Computational science and its
applications – ICCSA 2004, Assisi, Italy. Berlin/Heidelberg:
Springer; 2004. p. 597–607.

Lee G, Kim W, Kim D-K. Novel method to support user’s consent
in usage control for stable trust in E-business. Lecture Notes in
Computer Science 2004;3045:906–14.

Li X, Naeem NA, Kemme B. Fine-granularity access control in 3-
tier laboratory information systems. In: Database engineering
and application symposium, IDEAS. Montreal, Canada; 2005.
p. 391–7.

Mahrenholz D, Spinczyk O, Schröder-Preikschat W. Program
instrumentation for debugging and monitoring with
AspectCþþ. In: Proceedings of the 5th IEEE international
symposium on object-oriented real-time distributed
computing. Washington, DC, USA; 2002. p. 249–56.

Ortin F, Cueva JM. Dynamic adaptation of application aspects.
Journal of Systems and Software 2004;71(3):229–43.

Padayachee K, Eloff JHP. Enhancing optimistic access controls
with usage control. In: Lambrinoudakis C, Pernul G, Tjoa AM,
editors. Trust, privacy and security in digital business.
Regensburg, Germany: Springer; 2007. p. 75–82.

Park J, Sandhu R. The UCON_ABC usage control model. ACM
Transactions on Information and System Security 2004;7(1):
128–74.

Pfleeger CP. Security in computing. 2nd ed. United States of
America: Prentice Hall; 1997.

Povey D. Optimistic security: a new access control paradigm. In:
Proceedings of the 1999 workshop on new security paradigms.
Caledon Hills, Ontario, Canada; 1999.

Pretschner A, Walter T. Negotiation of usage control policies –
simply the best? In: ARES ’08: proceedings of the 2008 third
international conference on availability, reliability and
security. Washington, DC, USA: IEEE Computer Society; 2008.
p. 1135–6.

Ramachandran R, Pearce DJ, Welch I. AspectJ for multilevel
security. In: The 5th AOSD workshop on aspects, components,
and patterns for infrastructure software (ACP4IS). Bonn,
Germany; 2006. p. 1–5.

Russell D, Gangemi GT. Computer security basics. Sebastopol, CA:
O’Reilly and Associates; 1991.

Sandhu R, Park J. Usage control: a vision for next generation access
control. In: The second international workshop on mathematical
methods, models and architectures for computer networks
security. St Petersburg, Russia; 2003. p. 17–31.

Sandhu RS, Coyne EJ, Feinstein HL, Youman CE. Role-based
access control models. IEEE Computer 1996;29(2):38–47.

http://www.javaworld.com/javaworld/jw-04-2000/jw-0428-websecurity.html?page=1
http://www.javaworld.com/javaworld/jw-04-2000/jw-0428-websecurity.html?page=1
http://www.eclipse.org/aspectj/
http://www.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf
http://www.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf
http://www.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 3 6 – 5 4 4544
Shin W, Yoo SB. Secured web services based on extended usage
control. In: PAKDD 2007 workshops. Lecture notes in artificial
intelligence, vol. 4819; 2007. p. 656–63.

Stevens G, Wulf V. A new dimension in access control: studying
maintenance engineering across organizational boundaries.
In: Proceedings of the ACM conference on computer supported
cooperative work (CSCW). New Orleans, LA, USA; 2002.

Verhanneman T, Piessens F, De Win B, Joosen W. Uniform
application-level access control enforcement of
organizationwide policies. In: Proceedings of the 21st annual
computer security applications conference (ACSAC 2005);
2005.

Viega J, Voas J. Can aspect-oriented programming lead to more
reliable software. IEEE Software 2000;17(6):19–21.

Wang H, Zhang Y, Cao J. Ubiquitous computing environments
and its usage access control. In: InfoScale ’06: proceedings of
the 1st international conference on scalable information
systems. Hong Kong: ACM; 2006. p. 6–16.

Xu Z, Feng D, Li L, Chen H. UC-RBAC: a usage constrained role-based
access control model. Lecture Notes in Computer Science 2003;
2836/2003:337–47.

Zhang X, Nakae M. A usage-based authorization framework for
collaborative computing systems. In: Symposium on access
control models and technologies (SACMAT’06). Lake Tahoe,
CA, USA; 2006. p. 180–9.

Zurko ME. User-centered security: stepping up to the grand
challenge. In: Annual computer security applications
conference 2005. Tucson, AZ, USA; 2005.

Keshnee Padayachee is a Lecturer in the School of Computing

at the University of South Africa. She holds a masters degree

in Computer Science from the University of KwaZulu Natal in

South Africa.

Ms Padayachee’s main areas of interest are Aspect-Oriented

Programming and its relevance to information security.
Jan Eloff received a PhD (Computer Science) from the Rand

Afrikaans University, South Africa. He gained practical expe-

rience by working as management consultant specialising in

the field of information security. Since October 2002 he is Head

of Department and full professor in Computer Science at the

Department of Computer Science, University of Pretoria. Prior

to that he has was a full professor in Computer Science at the

Rand Afrikaans University.

He is an expert representative from South Africa on Tech-

nical Committee 11 (Information Security) of the International

Federation for Information Processing (IFIP). In 2001 he

received the IFIP Silver Core and Outstanding Services Award

for his long-term services to IFIP. He also serves as the South

African representative on ISO (International Standards Orga-

nization) contributing to the development of computer and

information security standards. In October 2004 he was elected

as the President of the South African Institute of Computer

Scientists and Information Technologists (SAICSIT).

He has published extensively in a wide spectrum of

accredited international subject journals. Many acclaimed

international and national conferences were organised and

conducted under his leadership. He delivered papers at leading

information security conferences on an international level.

He is an evaluated researcher from The National Research

Foundation (NRF), South Africa. He is a member of the Council

for Natural Scientists of South Africa.

He is an annually invited guest professor at the Interna-

tional Institute of Management in Telecommunications,

University of Fribourg, Switzerland.

He advises to industry on various information security

projects.

	Adapting usage control as a deterrent to address the inadequacies of access controls
	Introduction
	Background work on access control
	Background on the usage control (UCON)
	Adapting usage control as a mechanism for deterrence control
	A motivating example
	Design
	An aspect-oriented approach to deterrence control

	Conclusions and future work
	Acknowledgements
	References

