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a b s t r a c t

Nonstandard finite difference schemes for conservation laws preserving the property of
diminishing total variation of the solution are proposed. Computationally simple implicit
schemes are derived by using nonlocal approximation of nonlinear terms. Renormalization
of the denominator of the discrete derivative is used for deriving explicit schemes of first
or higher order. Unlike the standard explicit methods, the solutions of these schemes have
diminishing total variation for any time step-size.
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1. Introduction

The general setting of this work is conservation laws in the form

ut + f (u)x = 0, x ∈ R, t ∈ [0, T ], (1)
u(x, 0) = u0(x), x ∈ R. (2)

We assume that the data functions f and u0 are such that Eqs. (1)–(2) have a unique entropy solution, e.g. f smooth and
uniformly convex and u0 ∈ L∞(R), see [1, Section 3.4]. As typical for partial differential equations, Eqs. (1)–(2) cannot be
completely solved by analytic techniques. Consequently, numerical simulations are of fundamental importance in gaining
some useful insights on the solutions. More precisely, it is crucial to design numerical methods, which replicate essential
physical properties of the solutions. This motivates the following concept of stability [2]:

Definition 1. Assume that the solution of (1)–(2) satisfies some property (P). A numerical method approximating (1)–(2) is
called qualitatively stable with respect to (P) or P-stable if the numerical solutions satisfy property (P) for all values of the
involved step sizes.

The nonstandard finite difference method introduced by Mickens in the late 1980s appear to be powerful in producing
qualitatively stable schemes. A formal definition is as follows [2]:

Definition 2. A finite difference method for (1)–(2) is called nonstandard if at least one of the following is met

• In the discrete derivatives the traditional denominator ∆t or ∆x is replaced by a nonnegative function ϕ(∆t) or ϕ(∆x)
such that

ϕ(z) = z + O(z2) as 0 < z → 0. (3)

• Nonlinear terms are approximated in a nonlocal way, i.e. by a suitable function of several points of the mesh.
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The following properties have received extensive attention in the design of qualitatively stable nonstandard finite
difference schemes: fixed points and their stability [3,2], conservation of energy, monotonicity [4,5], positivity and
boundedness [6,7], etc.
This paper is concerned with a physical property which to the best of the authors’ knowledge has not yet been exploited

in the context of the nonstandard finite difference method. That is, the total variation diminishing of the entropy solution
of (1)–(2). More precisely we have that the total variation with respect to x does not increase with time [8](Chapter
16), [9](Chapter 2):

TV (u(·, t1)) ≥ TV (u(·, t2)) for 0 ≤ t1 < t2. (4)

Our aim is to design and analyze nonstandard finite difference methods for (1)–(2), which are qualitatively stable with
respect to the total variation diminishing property (4). A large variety of methods is available for this equation including
total variation diminishing (TVD) methods. The preservation of the diminishing total variation property is also discussed
in [10] within the context of the more general concept of strong stability. It has been shown that schemes with such
qualitative stability resolve discontinuities in the solution without spurious oscillations which are often displayed by
numerical solutions [11,12]. One problem associated with the explicit TVD methods is a restriction on the time step-size
which in some cases could be rather severe. This is particularly pronounced in higher order methods, e.g. methods of
Runge–Kutta type [13,14]. On the other hand, the computational complexity of TVD implicit methods is significantly higher
particularly when nonlinear functions are involved.
Our approach is to use the tools of the nonstandard finite difference method in constructing total variation diminishing

schemeswhich have the advantages of being computationally simpler (in the case of implicit schemes) and have no step-size
restriction (in the case of explicit schemes).
The rest of the paper is organized as follows. In Section 2 we give some preliminary settings and results including

Harten’s lemma. In Section 3 we formulate an implicit nonstandard finite difference scheme using nonlocal approximation
of nonlinear terms. Section 4 deals with explicit nonstandard finite difference schemes where renormalization of the
denominator is used. Numerical results by both the implicit and the explicit methods are presented in Section 5. Some
final remarks are given in the conclusion.

2. Preliminaries

Following a space discretization, Eq. (1) is written as a system of ODEs of the form

vt = L(v), (5)

where v = (vj) and vj(t) ≈ u(xj, t). We consider the case when the operator L in (5) is obtained from spacial discretization
using the Lax–Friedrichs numerical flux. More precisely, we have

(L(v))j =
1
∆x

(
f̂j− 12 − f̂j+ 12

)
, (6)

where we assume that the mesh in the space dimension is uniform with a step-size∆x and

f̂j+ 12 =
1
2

[
f (vj+1)+ f (vj)− α(vj+1 − vj)

]
, (7)

α = max
u
|f ′(u)|, (8)

the maximum being taken over the relevant range of u. Hence

(L(v))j =
1
2∆x

[
α(vj+1 − 2vj + vj−1)− f (vj+1)+ f (vj−1)

]
. (9)

Let a mesh tn = n∆t , n = 0, 1, . . ., in the time direction be given. As usual vn denotes an approximation of v at t = tn.
The total variation of vn is given by

TV (vn) =
∑
j

|vnj+1 − v
n
j |.

The discrete analogue of (4) is as follows. A numerical scheme is called TVD if TV (vn) is decreasing with respect to n, that is,

TV (vn) ≥ TV (vn+1), n = 0, 1, 2, . . . . (10)

The TVD property of numerical methods is often proved by using Harten’s lemma. We give below a version dealing with
both the explicit and the implicit cases [15,10].

Lemma 1 (Harten). Consider the explicit scheme

vn+1j = vnj + Cj+ 12 (v
n
j+1 − v

n
j )− Dj− 12 (v

n
j − v

n
j−1), (11)
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and the implicit scheme

vn+1j = vnj + Cj+ 12 (v
n+1
j+1 − v

n+1
j )− Dj− 12 (v

n+1
j − vn+1j−1 ), (12)

where Cj+ 12 and Dj− 12 are functions of v
n and/or vn+1 at various (usually neighboring) grid points. If Cj+ 12 ≥ 0 and Dj− 12 ≥ 0

then the scheme (12) is TVD. If in addition to these conditions we have Cj+ 12 + Dj− 12 ≤ 1 then the scheme (11) is TVD.

3. Implicit nonstandard schemes

In this section, we design nonstandard schemes by exploiting the nonlocal approximation of nonlinear terms as stated
in the second bullet of Definition 2. We consider nonlocal approximation of the function L for deriving nonstandard TVD
schemes for Eq. (5). Below we propose a scheme of Euler type.

vn+1j = vnj +
∆t
2∆x

(
α(vn+1j+1 − 2v

n+1
j + vn+1j−1 )− (v

n+1
j+1 − v

n+1
j−1 )

f (vnj+1)− f (v
n
j−1)

vnj+1 − v
n
j−1

)
. (13)

We should note that the linear terms in (9) are evaluated at t = tn+1. The expression f (vj+1) − f (vj−1) is multiplied and
divided by vj+1 − vj−1, where the multiplier is evaluated at t = tn+1 and the remaining part of the expression evaluated at
t = tn.

Theorem 1. The scheme (13) is qualitatively stable with respect to the total variation diminishing property (4).

Proof. The scheme (13) can be written as

vn+1j = vnj +
∆t
2∆x

((
α −

f (vnj+1)− f (v
n
j−1)

vnj+1 − v
n
j−1

)
(vn+1j+1 − v

n+1
j )−

(
α +

f (vnj+1)− f (v
n
j−1)

vnj+1 − v
n
j−1

)
(vn+1j − vn+1j−1 )

)
.

Therefore the scheme (13) can be represented in the form (12) with

Cj+ 12 =
∆t
2∆x

(
α −

f (vnj+1)− f (v
n
j−1)

vnj+1 − v
n
j−1

)
,

Dj− 12 =
∆t
2∆x

(
α +

f (vnj+1)− f (v
n
j−1)

vnj+1 − v
n
j−1

)
.

Using (8), we obtain that Cj+ 12 ≥ 0 and Dj− 12 ≥ 0 for all j. Hence it follows from Lemma 1 that the scheme (13) satisfies (10).
�

Using standard techniques of numerical analysis one can easily obtain that for linear systems the scheme (13) is consistent
and unconditionally stable. Moreover, the qualitative stability of the scheme (13) also does not impose any condition on∆x
and/or∆t .
We should note that one step in the time dimension requires the solutions of a tridiagonal linear system. Hence the

computation effort is similar to the one for explicit methods. Furthermore, the suggested scheme is not unique. One may
use a different kind of nonlocal approximation to obtain a TVD scheme. For example, the scheme

vn+1j = vnj +
∆t
2∆x

(
α(vn+1j+1 − 2v

n+1
j + vn+1j−1 )− (v

n+1
j+1 − v

n+1
j )

f (vnj+1)− f (v
n
j )

vnj+1 − v
n
j
− (vn+1j − vn+1j−1 )

f (vnj )− f (v
n
j−1)

vnj − v
n
j−1

)
is also TVD.

4. Explicit nonstandard schemes

The schemes in this section are based on the renormalization of the denominator of the discrete derivatives, see
Definition 2. This means that the denominator∆t in the discrete time derivative is replaced by a function ϕ(∆t) satisfying
(3). In order to obtain elementary stable schemes, that is, schemeswhich are qualitatively stable with respect to fixed points
of the differential equation and their stability, the following renormalization was considered, [3,2]:

ϕ(∆t) =
φ(q∆t)
q

, (14)

where the function φ is such that

φ(z) = z + O(z2) as z → 0, (15)
0 < φ(z) < 1 for z > 0, (16)
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and q = max{|λ|}, λ tracing the eigenvalues of the Jacobian J(v) of the right-hand side of Eq. (5) at the fixed points of the
equation. We will show that similar renormalization also ensures the TVD property of the scheme. We consider function ϕ
as given by (14) where the value of q is suitably determined by the function L.
Let us consider first the Euler scheme

vn+1 − vn

ϕ(∆t)
= L(vn). (17)

The next theorem shows that the above scheme is TVD.

Theorem 2. The scheme (17) where ϕ(z) = φ( αz∆z )
α/∆x , z > 0, and φ satisfies conditions (15)–(16) is qualitatively stable with

respect to the total variation diminishing property (4).

Proof. The scheme (17) can be written in the form

vn+1j = vnj +
ϕ(∆t)
2∆x

(
α(vnj+1 − 2v

n
j + v

n
j−1)− f (v

n
j+1)+ f (v

n
j−1)

)
= vnj +

ϕ(∆t)
2∆x

((
α −

f (vnj+1)− f (v
n
j )

vnj+1 − v
n
j

)
(vnj+1 − v

n
j )−

(
α +

f (vnj )− f (v
n
j−1)

vnj − v
n
j−1

)
(vnj − v

n
j−1)

)
.

Therefore (17) can be represented in the form (11) with

Cj+ 12 =
ϕ(∆t)
2∆x

(
α −

f (vnj+1)− f (v
n
j )

vnj+1 − v
n
j

)

Dj− 12 =
ϕ(∆t)
2∆x

(
α +

f (vnj )− f (v
n
j−1)

vnj − v
n
j−1

)
.

Using the definition of α, see (8), it is easy to see that Cj+ 12 ≥ 0 and Dj− 12 ≥ 0. Furthermore, we have

Cj+ 12 + Dj+ 12 =
ϕ(∆t)
2∆x

(
α −

f (vnj+1)− f (v
n
j )

vnj+1 − v
n
j

)
+
ϕ(∆t)
2∆x

(
α +

f (vnj+1)− f (v
n
j )

vnj+1 − v
n
j

)

=
φ
(
α∆t
∆x

)
α
∆x2∆x

(2α) = φ
(
α∆t
∆x

)
.

Then it follows from (16) that Cj+ 12 + Dj+ 12 ≤ 1. Hence we can apply Harten’s lemma, see Lemma 1, and obtain that the
scheme is TVD. �

Renormalization can also be used in higher ordermethods, e.g. Runge–Kuttamethods. For investigation of TVDproperties
a Runge–Kutta method is typically written in the so-called Shu–Osher form, [14], namely

y(0) = vn

y(i) =
i−1∑
j=1

(λijy(j) +∆tµijL(y(j))), i = 1, . . . ,m

vn+1 = y(m).

By consistency
∑i−1
j=0 λij = 1, i = 1, . . . ,m. Therefore in each intermediate step of the method y

(i) is a convex combination
of Euler forward operators:

y(i) =
i−1∑
j=1

λij

(
y(j) +∆t

µij

λij
L(y(j))

)
.

If these operators are TVD then the Runge–Kutta method is also TVD. Following the result of Theorem 2 we will obtain a
TVD scheme if the Euler operator involving y(j) above is renormalized by

ϕij(∆t) =
φ
(
αµij∆t
λij∆x

)
αµij
λij∆x

where the function φ satisfies conditions (15)–(16). Note that this function might have to satisfy additional conditions for
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Fig. 1. Numerical solution by the standard Euler method with∆x = ∆t = 0.2.

Fig. 2. Numerical solution by the scheme (22) with∆x = ∆t = 0.2.

the scheme to be of particular order. Wewill illustrate by an example. Following the discussion above the two stage scheme
given below is TVD:

y(1) = vn + φ
(
α∆t
∆x

)
∆x
α
L(vn) (18)

vn+1 =
1
2
vn +

1
2
y(1) +

1
2
φ

(
α∆t
∆x

)
∆x
α
L(y(1)). (19)

Using standard techniques one can also obtain that it is of order two provided that φ(z) = z + O(z3).

5. Numerical results

We apply the schemes considered in Sections 3 and 4 to Burger’s equation

ut +
(
1
2
u2
)
x
= 0. (20)

It iswell known that the entropy solution of this equation develops discontinuities (shocks) even for smooth initial condition.
To simplify the matters we take

u(x, 0) =
{
1.2 if x ≤ 0,
0 if x > 0. (21)

After some obvious transformations the scheme (13) can be written in the form

vn+1j = vnj +
∆t
2∆x

(
α(un+1j+1 − 2u

n+1
j + u

n+1
j−1 )−

1
2
(vn+1j+1 − v

n+1
j−1 )(v

n
j+1 + v

n
j−1)

)
. (22)

It was shown in [13] that non-TVD methods typically produce oscillations around the points of discontinuity. Fig. 1 shows
such oscillations produced by the standard Euler method applied to problem (20)–(21). Figs. 2–4 show the numerical
solution of the problem (20)–(21) by the implicit scheme (22) for various time steps. One can observe that while an increase
in∆t affects the accuracy of the solution it nevertheless remains TVD and free of spurious oscillations.

Please cite this article in press as: R. Anguelov, et al., Total variation diminishing nonstandard finite difference schemes for conservation laws,
Mathematical and Computer Modelling (2009), doi:10.1016/j.mcm.2009.08.038



ARTICLE  IN  PRESS
6 R. Anguelov et al. / Mathematical and Computer Modelling ( ) –

Fig. 3. Numerical solution by the scheme (22) with∆x = 0.2,∆t = 0.5.

Fig. 4. Numerical solution by the scheme (22) with∆x = 0.2,∆t = 1.0.

Fig. 5. Numerical solution by the scheme (23) with∆x = ∆t = 0.2.

Similar results are obtained using the explicit schemes in Section 3. For the considered problem (20)–(21) Euler’s method
(17) can be written as

vn+1j = vnj +
1
2α
φ

(
α∆t
∆x

)
(α(vnj+1 − 2v

n
j + v

n
j−1)− (v

n
i+1)

2
+ (vnj−1)

2), (23)

where we take φ(z) = 1 − e−z . The numerical solution computed with ∆x = ∆t = 0.2 is presented on Fig. 5. Fig. 6

represents the solution produced by the Runge–Kutta method (18)–(19) with renormalizing function φ(z) = 1−e−t
2

t so
that the method is of order two. Let us note that since the exact solution is discontinuous, a higher order method does not
necessarily give a better approximation. Naturally, the accuracy can be improved by decreasing the step sizes. However,
the major point here is that irrespective of the step sizes the numerical solution is free of spurious oscillations and its total
variation does not increase with time, for this particular equation it is in fact constant.
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Fig. 6. Numerical solution by the scheme (18)–(19) with∆x = ∆t = 0.2.

6. Conclusion

Schemes preserving the essential physical property of diminishing total variation are of great importance in practice.
Such schemes are free of spurious oscillations around discontinuities. In this paper, we have discussed nonstandard finite
difference schemes,which have this qualitative stability property.We usedMickens’ rules of approximating nonlinear terms
in a nonlocal way and of renormalizing denominators. The obtained schemes are computationally simple. Furthermore, they
require no restriction on the time step-size as typical for qualitatively stable nonstandard schemes [2].
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