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a b s t r a c t

We study convexity properties of the zeros of some special functions that follow from the
convexity theorem of Sturm.We prove results on the intervals of convexity for the zeros of
Laguerre, Jacobi and ultraspherical polynomials, as well as functions related to them, using
transformations under which the zeros remain unchanged. We give upper as well as lower
bounds for the distance between consecutive zeros in several cases.
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1. Introduction

The Sturm comparison theorem for solutions of second-order differential equations of the form y′′ + F(t)y = 0 (cf. [1])
has been significantly extended since its publication 170 years ago. Some of the immediate applications to zeros of the
solutions y(t), and those of the derivative y′(t), include Sonin’s theorem on the monotonicity of extrema of such solutions
(cf. [2]), and a result known as Sturm’s convexity theorem, first mentioned in [1], on the monotonicity of distances between
the zeros of the solution (cf. [3,2,4]).
Sonin’s theorem was extended to more general differential equations of the form P(t)y′′ + Q (t)y′ + y = 0 using a

remarkably simple proof (cf. [5], p. 443). In this form the theorem can be directly applied to classical orthogonal polynomials
such as Hermite, Laguerre and Jacobi polynomials, providing the monotonicity of their relative maximum values and
estimates on their supremum norm. This has been done from a different perspective in [6], recovering results for Legendre,
Laguerre and Jacobi polynomials given in [7].
In this paper, we consider the implications of the convexity theorem of Sturm for the convexity of the zeros and bounds

on the distance between the zeros of some classical orthogonal polynomials and functions related to them.

2. Convexity and spacing of zeros

The convexity theorem and an obvious consequence of the comparison theorem of Sturm, already noted in [1], can be
summarised as follows.

∗ Corresponding author.
E-mail address: kjordaan@up.ac.za (K. Jordaan).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.02.045

Please cite this article in press as: K. Jordaan, F. Tookos, Convexity of the zeros of some orthogonal polynomials and related functions, Journal of
Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.02.045

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:kjordaan@up.ac.za
http://dx.doi.org/10.1016/j.cam.2009.02.045


ARTICLE  IN  PRESS
2 K. Jordaan, F. Tookos / Journal of Computational and Applied Mathematics ( ) –

Theorem 2.1 ([8]). Let y′′(t) + F(t)y(t) = 0 be a second-order differential equation in normal form, where F is continuous in
(a, b). Let y(t) be a nontrivial solution in (a, b), and let x1 < · · · < xk < xk+1 < · · · denote the consecutive zeros of y(t) in
(a, b). Then
1. if F(t) is strictly increasing in (a, b), xk+2 − xk+1 < xk+1 − xk,
2. if F(t) is strictly decreasing in (a, b), xk+2 − xk+1 > xk+1 − xk.
3. if there exists M > 0 such that F(t) < M in (a, b) then

∆xk ≡ xk+1 − xk >
π
√
M
,

4. if there exists m > 0 such that F(t) > m in (a, b) then

∆xk <
π
√
m
.

We say that the zeros of y are concave (convex) on (a, b) for the first (second) case.
The convexity theorem has been used to obtain the variation of convexity properties with respect to a parameter, or the

order, for the zeros of gamma, q-gamma, Bessel, cylindrical and Hermite functions as described in the survey paper [9].
In order to apply the convexity theorem to special functions that are solutions of second-order differential equations, the

differential equation has to be transformed into normal form. One simple way to do this is through the following change of
dependent variable. Let

x′′ + g(t)x′ + f (t)x = 0

be a second-order differential equation and set

y = x exp
(
1
2

∫ t

g(s)ds
)
. (1)

The corresponding equation for y is in normal form:

y′′ + F(t)y = 0,

where F(t) = f (t) − 1
4g
2(t) − 1

2g
′(t). The advantage of this transformation is that it does not change the independent

variable, and the zeros of x and y are the same. Hille [10] already used transformation (1) to prove the convexity of zeros of
the Hermite polynomials.
It is also possible to consider other changes of variable and obtain information on the convexity of the transformed zeros.

This was done already by Szegő for the ultraspherical polynomials [7, Theorem 6.3.3] and lately by Deaño, Gil and Segura
[8,11] for hypergeometric functions.
We will consider the convexity and spacing of the zeros of special functions such as Laguerre, Jacobi and, as a special

case, the ultraspherical polynomials, for fixed order n, by transforming their differential equations to normal form using (1).
Sturm [1] used the samemethod to obtain results on the convexity and spacing of the zeros of the Bessel function. Interesting
work on the spacing of the zeros of Jacobi polynomials, as the degree changes, is done in [12]. For higher monotonicity refer
to, amongst others, [13,14].
We note that since the convexity theorem is applicable to any oscillating solutions of second-order differential equations

in normal form, the results we obtain are not restricted to the polynomial cases, i.e. n need not necessarily be an integer,
as long as the corresponding functions are oscillating on the interval under consideration. In addition, the results can be
extended to parameter values where the polynomials are no longer orthogonal, since quasi-orthogonality ensures the
existence of some zeros on the interval of orthogonality (cf. [15]).

3. Laguerre polynomials

The differential equation

tx′′ + (α + 1− t)x′ + nx = 0

satisfied by the Laguerre polynomials, Lαn (t), orthogonal on (0,∞)with respect to the weight function t
αe−t when α > −1,

is transformed to

y′′ + F(t)y = 0

by (1) where

F(t) =
−t2 + 2αt + 2t + 4nt − α2 + 1

4t2
. (2)

F ′(t) changes sign at

t0 :=
α2 − 1

α + 2n+ 1
. (3)
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Theorem 3.1. The zeros of Lαn (t) on (0,∞) are
1. all convex if n > 0 and−1 < α ≤ 3
2. all convex if α > 3 and 0 < n < α+1

α−3
3. concave for t < t0 and convex for t > t0 when α > 3, n > α+1

α−3 and t0 is defined by (3).

Moreover, for the distance between consecutive zeros we have the general estimate

∆xk >
π
√
2

√
2αn+ α + 2n2 + 2n+ 1

k = 1, . . . , n− 1 (4)

and also if xk > t0 then

∆xk >
π

√
F(xk)

k = 1, . . . , n− 1 (5)

and

∆xk <
π

√
F(xk+1)

k = 1, . . . , n− 2 (6)

where F is defined by (2).

Proof. For |α| < 1, t0 < 0, hence F(t)will be decreasing on (0,∞). Whenα ≥ 1, F(t) is increasing on (0, t0) and decreasing
on (t0, ∞). Let x1 denote the smallest zero of Lαn , then we know that x1 >

α+1
n (cf. [16]). This implies that when t0 <

α+1
n ,

F(t) will be decreasing on the interval (x1,∞). An easy calculation shows that this condition is equivalent to either α ≤ 3
or α > 3 and n < α+1

α−3 . The estimates on the distance ∆xk follow from Theorem 2.1(3), (4). The maximum of F is at t0 and
F(t0) > 0, therefore we can take F(t0) asM to obtain (4). For (5) and (6), we use the fact that when xk > t0, F is monotone
decreasing on (xk, xk+1). In fact, F is monotone decreasing on (0,∞) and tends to−1/4 as t →∞, so there is exactly one
point t1 on (t0, ∞), where F crosses the x-axis. The form of the differential equation implies that if F(t) < 0 and y(t) > 0,
the graphwill be concave up and similarly, if y(t) < 0, the graphwill be concave down. Hence there can be at most one zero
of the Laguerre polynomial to the right of t1. This means that F(xn−1) is positive, but F(xn) may be negative and therefore
the index in (6) only runs up to n− 2. �

Remark 3.2. An interesting question is whether it is possible to find α and n values so that the first several zeros of the
Laguerre polynomial are concave. This would require t0 to be greater than x1. In this regard we note that t0 is always less
than (α+1)(α+2)

α+n+1 , which is the upper bound for x1 given in [16]. It is also always less than
(α+1)(α+3)
α+2n+1 , the upper bound given

in [7].

4. Jacobi polynomials

The differential equation for Jacobi polynomials, P (α,β)n (t), orthogonal on (−1, 1) with respect to the weight function
(1− t)α(1+ t)β when α, β > −1, is

(1− t2)x′′(t)+ (β − α − (α + β + 2)t)x′(t)+ n(n+ α + β + 1)x(t) = 0.

In the normal form, y′′ + F(t)y = 0, we have

F(t) =
−zt2 − 2(x− y)t − 2x− 2y+ z

4(t2 − 1)2
(7)

with x = α2 − 1
y = β2 − 1
z = (α + β + 2n)(α + β + 2n+ 2).

Also

F ′(t) =
zt3 + 3(x− y)t2 + (4x+ 4y− z)t + (x− y)

2(t2 − 1)3
:=

j(t)
2(t2 − 1)3

and we denote the discriminant of j′(t) by

D := 12(3x2 + 3y2 + z2 − 6xy− 4xz − 4yz).

For the convexity theorem to be applicable, we need oscillating solutions. The condition on the parameters for this is (cf. [8])

n > 0, n+ α + β > 0, n+ α > 0, n+ β > 0.

From now on we shall assume that the coefficients satisfy these conditions.
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Theorem 4.1. If |α| > 1, |β| < 1 and D < 0, all the zeros of P (α,β)n on the interval (−1, 1) are convex.

Proof. F(t) is a rational function with vertical asymptotes at t = ±1. If |α| > 1 and |β| < 1, then j(−1) = −8y > 0 and
j(1) = 8x > 0, so that limt→−1 F(t) = ∞ and limt→1 F(t) = −∞. D < 0 implies that j′(t) 6= 0 for t ∈ (−1, 1) and hence
j(t)will have no extreme values on this interval. It follows that F(t) is monotone decreasing on (−1, 1) and Theorem 2.1(2)
yields the result. �

Note that the conditions of Theorem 4.1 are satisfied if, for example, y is sufficiently small and x < z < 3x. This is true if,
for instance, β is sufficiently close to−1, α > 1, and n < 1

2 (−α +
√
3α2 − 2). Also D < 0 will be satisfied for sufficiently

large α if we fix β and n. However, for fixed α and β the discriminant D is positive for large n.
More results of this type can be obtained by ensuring the positivity of j(t) on (−1, 1). Denote the zeros of j′(t) by

t1,2 =
6(y− x)±

√
D

6z
,

then we have that the zeros of P (α,β)n on (−1, 1) are convex if |α| > 1 and |β| < 1 and if ti ∈ (−1, 1) for some i = 1, 2 then
j(ti) > 0. One can prove conditions for concavity of the zeros of P

(α,β)
n on the whole interval (−1, 1) in a similar manner.

The general study of the convexity of the zeros is difficult, since the convexity intervals are determined by the roots of
j(t), which are hard to handle due to the 3 parameters. However, there are still some things that can be said about the general
case.
The oscillation condition z > 0 implies that j has a concave part, followed by a convex part, the inflection point being at

t0 :=
y−x
z . Therefore it follows from the shape of j(t) that there may be up to 4 different intervals of changing concavity for

the zeros on (−1, 1): (from left to right) concave–convex–concave–convex. Any of these intervals may be missing from the
sequence, for example, concave–convex–concave or convex–concave are possible for certain parameter values.
It is interesting to analyse the convexity of the zeros of P (α,β)n for sufficiently large degree.

Theorem 4.2. Let α and β be fixed and let n→∞, then the convexity of the zeros of P (α,β)n on (−1, 1) changes in the following
way (from left to right):

1. if |α| ≤ 1 and |β| ≤ 1 then convex–concave,
2. if |α| ≤ 1 and |β| > 1 then concave–convex–concave,
3. if |α| > 1 and |β| ≤ 1 then convex–concave–convex,
4. if |α| > 1 and |β| > 1 then concave–convex–concave–convex.

Proof. If α and β are fixed and n→∞, an easy calculation shows that the local extremum locations of j(t) tend to±
√
3/3.

Since z > 0, the local extremum near t = −
√
3/3 will be the maximum and this maximum value tends to∞. Similarly,

the minimum value near
√
3/3 tends to −∞. Since the inflection point t0 =

y−x
z → 0, there is at least one change of

concavity in (−1, 1) (from convex to concave) and whether there are more, depends on the sign of j(−1) and j(1). Now
j(−1) = 8(1− β2) and j(1) = 8(α2 − 1) and the result follows. �

5. Ultraspherical polynomials

An important special case of the Jacobi polynomials is the ultraspherical polynomials, P (α,α)n (t)where α = β . In this case

F(t) =
−(α + n)(α + n+ 1)t2 + (1+ n+ n2 + α + 2αn)

(t2 − 1)2
,

the numerator of F ′(t) is j(t) = 4[(α + n)(α + n+ 1)t3 − (2+ n+ n2 + α + 2αn− α2)t] and the discriminant of j′(t) is
D = 192(α+ n)(α+ n+ 1)(2+ n+ n2+ α+ 2αn− α2). Note that the leading coefficient of j(t) is positive when α > −1.
The point of inflection of j(t) is t0 = 0 and hence the convexity of zeros changes exactly at themiddle of the interval (−1, 1).
The local extrema of j(t) are at

t1,2 = ±

√
(n+ α)(n+ α + 1)− 2(α2 − 1)

3(n+ α)(n+ α + 1)
,

and the two remaining zeros of j(t) are

T1,2 = ±

√
(n+ α)(n+ α + 1)− 2(α2 − 1)

(n+ α)(n+ α + 1)
= t1,2

√
3 (8)

where T1 denotes the negative zero and T2 the positive zero.
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Theorem 5.1. If |α| ≤ 1, the zeros of P (α,α)n on (−1, 0) are convex and those on (0, 1) are concave. In addition

∆xk <
π
√
F(0)
=

π
√
2αn+ α + n2 + n+ 1

,

and for the positive zeros we have
π

√
F(xk+1)

< ∆xk <
π

√
F(xk)

.

Proof. For |α| ≤ 1 we have T1 < −1 and T2 > 1, so j is positive on (−1, 0) and negative on (0, 1). Therefore F(t) is
decreasing on (−1, 0) and increasing on (0, 1) and the convexity of the zeros follows from Theorem 2.1(1), (2). In addition,
F(0) > 0 is a minimum value, so we have an upper bound on the distance between any two consecutive zeros from
Theorem 2.1(4). Finally, since F(t) is increasing on (0, 1), 0 < F(xi) < F(x) < F(xi+1) for x ∈ (xi, xi+1), where xi xi+1
are any two consecutive positive zeros and the last inequality follows from Theorem 2.1(3), (4). �

Note that this result also applies to Chebyshev and Legendre polynomials as special cases with α = 1
2 and α = 0

respectively.

Theorem 5.2. Let |α| > 1 and (n+ α)(n+ α + 1) ≤ 2(α2 − 1) then the zeros of P (α,α)n on (−1, 0) are concave and those on
(0, 1) are convex. Furthermore

∆xk >
π
√
F(0)

.

Proof. If |α| > 1, and D < 0, j has no local extremum and is monotone increasing on (−1, 1). This, together with the fact
that j(0) = 0, implies that F(t) is increasing on (−1, 0) and decreasing on (0, 1), and the result follows. �

Note that we cannot obtain estimates involving xk, xk+1, because F →−∞ as t →±1.

Theorem 5.3. Let |α| > 1 and (n+ α)(n+ α + 1) > 2(α2 − 1) then the zeros of P (α,α)n are concave on (−1, T1) and (0, T2)
and convex on (T1, 0) and (T2, 1), where T1,2 are as in (8). We also have that

∆xk >
π

√
F(T2)

,

moreover, if (xk, xk+1) ⊂ (T1, T2) then

∆xk <
π
√
F(0)

,

and if (xk, xk+1) ⊂ (0, T2), then
π

√
F(xk+1)

< ∆xk <
π

√
F(xk)

.

Proof. When |α| > 1 and D > 0, j(t) has 3 zeros on (−1, 1), namely at T1, 0 and T2 with F(t) having local maxima at T1,2
and a local minimum at t = 0. �

Acknowledgements

The first author’s research is partially supported by the National Research Foundation under grant number 2054423. The
second author’s research is partially supported by OTKA 49448.

References

[1] C. Sturm, Memoire sur les équations différentielles du second ordre, J. Math. Pures Appl. 1 (1836) 106–186.
[2] E. Makai, On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952) 165–172.
[3] A. Laforgia, M.E. Muldoon, Some consequences of the Sturm comparison theorem, Amer. Math. Monthly 93 (2) (1986) 89–94.
[4] G. Szegő, Inequalities for the zeros of Legendre polynomials and related functions, Trans. Amer. Math. Soc. 39 (1936) 1–17.
[5] R. Redheffer, Differential Equations, Theory and Applications, Jones and Bartlett Publishers, Inc, Boston, 1991.
[6] A. Kalamajska, A. Stryjek, On maximum principles in the class of oscillating functions, Aequationes Math. 69 (2005) 201–211.
[7] G. Szegő, Orthogonal Polynomials, American Mathematical Society, Providence, 1975.
[8] A. Deaño, A. Gil, J. Segura, New inequalities from classical Sturm theorems, J. Approx. Theory 131 (2004) 208–243.
[9] M.E. Muldoon, Convexity properties of special functions and their zeros, in: G.V. Milovanovic (Ed.), Recent progress in inequalities. Dedicated to Prof.
Dragoslav S. Mitrinovic. Kluwer Academic Publishers, Dordrecht, Math. Appl., Dordr. 430 (1998), 309–323. Publishers, Inc., Boston, 1991.

[10] E. Hille, Über die Nulstellen der Hermiteschen Polynome, Jahresber. Deutsch. Math.-Verein. 44 (1933) 162–165.
[11] A. Deaño, J. Segura, LG transformations and global inequalities for real zeros of Gauss hypergeometric functions, J. Approx. Theory 148 (2007) 92–110.
[12] S. Ahmed, A. Laforgia, M.E. Muldoon, On the spacing of the zeros of some classical orthogonal polynomials, J. LondonMath. Soc. 25 (2) (1982) 246–252.

Please cite this article in press as: K. Jordaan, F. Tookos, Convexity of the zeros of some orthogonal polynomials and related functions, Journal of
Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.02.045



ARTICLE  IN  PRESS
6 K. Jordaan, F. Tookos / Journal of Computational and Applied Mathematics ( ) –

[13] L. Lorch, P. Szegő, Higher monotonicity properties of certain Sturm-Louisville functions, Acta Math. 109 (1963) 55–73.
[14] L.N. Gori, A. Laforgia, M.E. Muldoon, Higher monotonicity properties and inequalities for zeros of Bessel functions, Proc. Amer. Math. Soc. 112 (2)

(1991) 513–520.
[15] C. Brezinski, K.A. Driver, M. Redivo-Zaglia, Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer.

Math. 48 (2) (2004) 157–168.
[16] W. Hahn, Bericht über die Nullstellen der Laguerrschen und der Hermiteschen Polynome, Jahresber. Deutsch. Math.-Verein. 44 (1933) 215–236.

Please cite this article in press as: K. Jordaan, F. Tookos, Convexity of the zeros of some orthogonal polynomials and related functions, Journal of
Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.02.045


	Convexity of the zeros of some orthogonal polynomials and related functions
	Introduction
	Convexity and spacing of zeros
	Laguerre polynomials
	Jacobi polynomials
	Ultraspherical polynomials
	Acknowledgements
	References


