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The S-layer differential transform produces subsurface conductivity-depth images from Time Domain

Electromagnetic (TDEM) data. It is a very fast method, but suffers from high noise levels due to the

implementation of two consecutive numerical differentiations that are performed in the algorithm. In

this paper, twelve numerical differentiation strategies are compared in order to find the most efficient

differentiation scheme, specifically for TDEM data and the S-layer differential transform. The twelve

strategies are made up through combinations of three differentiation methods, optional smoothing of

data and optional resampling of data to equally spaced intervals. Comparisons are made on analytical,

synthetic and field data.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Behaviour of time domain electromagnetic (TDEM) fields

The TDEM method used in geophysical exploration utilises a
step function current with a sharp turn-off in a transmitter loop.
The sharp turn-off generates a pulse-shaped electromotive force
(EMF) in the subsurface. This EMF induces currents to flow in the
subsurface. These currents are not connected to a source and will
therefore decay (decrease in amplitude) as a function of time. The
time rate of decay of the associated secondary magnetic field is
measured at a number of time channels. The number of these
logarithmically spaced channels varies between 20 and 100,
depending on the TDEM system being used. The time-dependent
behaviour of this field is well documented in EM literature
(Nabighian, 1979; Nabighian and Macnae, 1988), and is divided
in an early time, middle time and late time behaviour. In the ‘‘late
time’’ the dB/dt field will exhibit either an exponential decay (two-
or three-dimensional subsurface features) or power-law decay
(one-dimensional or layered earth). The ‘‘late-time’’ is a term
dependent not only on the actual time, but also the conductivity of
the subsurface. In some surveys, the acquisition parameters are
chosen carefully to try and ensure that measurements are taken at
late time. Another property of the diffusing currents is that the
diffusion velocity is inversely proportional to time.
ll rights reserved.
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These very specific properties of being logarithmically sampled
and exhibiting power-law or exponential decays make TDEM
distinctly unsuitable for the most common numerical differentia-
tion schemes, which are based on functions exhibiting polynomial
behaviour, for example the Lagrange formulas (Burden and Faires,
1993). A further very important feature of TDEM data is that the
values of interest to the TDEM explorationist are the relatively
small-scale perturbations superimposed on the general decay
curve. Any process that eliminates these perturbations, or worse
still, add perturbations, will lead to erroneous interpretations of
the TDEM data.

1.2. Interpretation of TDEM data

One of the applications of the TDEM technique in exploration
geophysics is to generate conductivity-depth sections, ultimately
leading to an approximate image of the subsurface. The technique
is applied to mineral exploration and groundwater exploration.

There are three different ways to derive a conductivity-depth
section from TDEM data, namely:
1.
ffer
s (
Forward modelling.

2.
 Inversion (or optimization).

3.
 Mathematical transforms.
Methods 1 and 2 require a priori knowledge of the subsurface to
ensure convergence to a plausible solution. Though these methods
are being applied in practice, the two- and three-dimensional
entiation methods applied to time domain electromagnetic
2009), doi:10.1016/j.cageo.2008.08.016
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solutions can require several hours of computer time. In lieu of the
fact that TDEM systems have been operating from airborne
platforms, generating several thousand observations per survey-
day, these methods are of limited value in mineral exploration
programs where turn around time for the interpretation of
geophysical data is critical.

The mathematical transforms as an interpretation technique
are by far the most time efficient. The transforms require no
knowledge of the subsurface and can therefore be fully auto-
mated, making it possible to obtain real-time conductivity-
depth sections from the TDEM data. A transform that seams to
hold great potential for accurate and real-time interpretation of
TDEM data is the S-layer transform, whereby a conductance and
depth is calculated for every time channel that is used by the
TDEM system. This transform is discussed by Tartaras et al. (2000)
and although very elegant in its simplicity, its effectiveness is
limited by the fact that a first- and second-order numerical
differentiation are required in the algorithm, as discussed in
Section 1.3. This is but one of many different schemes for
obtaining conductivity-depth sections. Some algorithms, e.g.,
which are not dependent on the late time approximations are
given by Macnae et al. (1991), Wolfgram and Karlik (1995) and
Nekut (1987).

1.3. The S-layer differential transform

The S-layer (thin, conductive layer) differential transformation
results in two equations that have to be solved for every time
channel value obtained at every station. These are summarised by
Tartaras et al. (2000) as:

S ¼
16p1=3

ð3MAnÞ1=3m4=3
0

ðjV j5=3Þ

ðjV j04=3
Þ

(1)

d ¼
1

m0S
�

4jV j

jV j0
� t

� �
(2)

where S is the cumulative conductance [S]; d is the depth [m]; M is
the magnetic dipole moment of transmitter [Am2]; A is the receiver
area [m2]; n is the number of turns of receiver coil; t is the time [s];
|V| is the electromotive force of ideal receiver loop [V] ¼ �An(qBz/qt);
|V|0 is the time derivative of measured voltage |V| [V/s].

The time derivative of the measured voltage (|V|0) is the
parameter that has to be determined through numerical differ-
entiation. This value is used to calculate both cumulative
conductance (S) and depth (d) of an equivalent S-layer, for
each time channel and noise generated by differentiation
will be consequently introduced into both these numbers.
However, in order to find the earth parameter of interest,
conductivity (s), another numerical differentiation has to be
performed as

sðdÞ ¼ @S

@d
½Siemens m�1� (3)

which follows from the definition of cumulative conductance.
Thus, not only is a new set of errors generated in this step, but all
errors from the first differentiation are carried over and enlarged
by this second differentiation.

The following features are investigated:
�

P
(T
three numerical differentiation techniques are analysed in
terms of the specific nature of TDEM data, as described above,

�
 the most appropriate use of smoothing filters, and

�
 the effects of the resampling of data points to equal time

intervals.
lease cite this article as: Combrinck, M, Analysis of numerical di
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2. Derivative transforms in logarithmic and semi-logarithmic

2.1. Introduction

In the late time, TDEM responses measured over a one-
dimensional subsurface can be described as a power-law function
(Eq. (4)), with k ¼ 2.5 for a half space and k ¼ 4 for a thin
conductive layer (S-layer). This creates the possibilities of using
standard polynomial approximations, but in the logarithmic and
semi-logarithmic domains. Consider the following power-law
decay:

VðtÞ ¼ At�k, (4)

where A is the constant; and k is the decay constant.
If the natural logarithm of this function is taken on both sides,

it becomes

lnðVðtÞÞ ¼ ln A� k lnðtÞ (5)

Substituting ln(V(t)) with y(x), ln(t) with x and �k with m, we
end up with the equation of a straight line (polynomial function)
in the logarithmic domain.

If there is a two- or three-dimensional conductor present, it
will contribute to the late-time response in the form of an
exponential function of the form shown in Eq. (6).

VðtÞ ¼ Ae�kt , (6)

where A is the constant; and k is the decay constant.
If the natural logarithm of this function is taken on both sides,

it becomes

lnðVðtÞÞ ¼ ln A� kt (7)

Substituting y for lnV(t) and x for t, Eq. (7) again becomes a
linear function in the semi-log domain. Eq. (7) is again a linear
function. This behaviour only becomes dominant on TDEM
sounding data if the conductor is much more conductive than
the surrounding host rock or when the host rock response has
been removed from the data through subtraction or deconvolu-
tion. Raw field data (as on which the S-layer differential transform
is normally applied) would mostly exhibit predominantly power-
law decay, although it will be distorted to some extent in the
presence of conductive layers or finite conductors. In fact, these
distortions of the TDEM sounding curves are direct manifestations
of the conductivity contrasts which the TDEM practitioners
map. In the logarithmic domain TDEM, data appear as functions
deviating from a general linear trend and can be locally
approximated by second- or third-order polynomials (Fig. 1).
Finding a relationship between the derivative of a function and
the derivative of the same function in the logarithmic or semi-
logarithmic domains would enable us to apply polynomial-based
differentiation techniques to data in the domain, where they can
be approximated best by polynomial functions.

2.2. Analytical relationship between derivatives in the various

domains

The objective is to find an analytical relationship between the
derivative of a function in the linear domain (V0(t)) and the
derivatives calculated in the semi-logarithmic (g0(t)) and loga-
rithmic domains (h0(ln(t))), respectively. The strategy is simply to
apply the chain rule of differentiation to functions presenting the
data in different domains.

2.2.1. Semi-logarithmic domain

In the semi-logarithmic domain, the natural logarithms of the
V values are taken and treated as a function of (linear) time. It is
fferentiation methods applied to time domain electromagnetic
es (2009), doi:10.1016/j.cageo.2008.08.016
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Fig. 1. TDEM (qBz/qt) data for a 10 Ohm m half space in linear (top), semi-

logarithmic (middle) and logarithmic domains (bottom).
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presented by the function g(t) ¼ ln(V(t)).

gðtÞ ¼ ln VðtÞ

therefore,

V 0ðtÞ ¼ VðtÞ � g0ðtÞ (8)

2.2.2. Logarithmic domain

In the logarithmic domain, the natural logarithms of both the V

values and times are taken and the function h(ln(t)) ¼ ln(V(t)) is
plotted against ln(t). A substitution of variables is made to
Please cite this article as: Combrinck, M, Analysis of numerical di
(TDEM) geophysical data in the S-layer.... Computers and Geoscience
simplify the derivation.

h½lnðtÞ� ¼ ln½VðtÞ�.

h½lnðtÞ� ¼ ln½VðelnðtÞÞ�.

Now, let x ¼ ln(t) and t ¼ ex

Then,

hðxÞ ¼ ln½VðexÞ�

h0ðxÞ � VðexÞ �
1

ex
¼ V 0ðexÞ

therefore,

V 0ðtÞ ¼ h0ðlnðtÞÞ � VðtÞ �
1

t
. (9)

The formulas for transforming the derivatives are straightfor-
ward, trivial to apply, and analytically correct (i.e. no truncation
error is introduced in the transformation process). This enables us
to choose the best domain for performing numerical differentia-
tion based on the nature of data and available differentiation
schemes. Synthetic TDEM data for a 10 Ohm m half space are used
to illustrate this point. The data were calculated using MARCO
software (version 4.0.19, AMIRA Project P223D) with central loop
system geometry and the following specifications:
ffer
s (
Transmitter loop: 50�50 m2

Transmitter current: 5 A
Receiver loop area: 1 m2

Elevation above ground: 0 m
The Lagrange three-point formula was applied to the example
data set in the three different domains and transformed back to the
linear domain using the appropriate formulae. The results were
compared to the analytical derivative of the data and the percentage
errors are shown in Fig. 2. The advantage of differentiating in the
logarithmic domain is very clear. Also indicated on this graph are
derivative values obtained from a two-point power-law formula in
the linear domain. These values are exactly equal to the Lagrange 3-
point formula applied in the logarithmic domain except at the end
points. This formula was derived by fitting a power-law function to
a pair of consecutive points and taking the derivative of this
interpolating function in exactly the same way as the Lagrange
formulae are derived from polynomials.

2.3. Description of three polynomial-based numerical differentiation

techniques

The specific numerical differentiation implemented by Tartaras
et al. (2000) is described only as ‘‘ya numerical differentiation
scheme that computes a first-order derivative for the provided
TDEM data using polynomial interpolation.’’ This is unfortunately
not clear enough to reconstruct with confidence and an exact
comparison of this method with the other methods is not included
in this paper. Tartaras et al. (2000) also applied smoothing of data
‘‘yprior to and following differentiation’’. This is a commonly used
technique applied to reduce noise, but ultimately alters data.

Numerical differentiation is an unstable method, because
although the accuracy of the formulas increases with smaller
values of ‘‘h’’ (distance between successive nodes), this also causes
the round-off error to increase. Divisions by small numbers tend
to exaggerate round-off errors and should be avoided if possible. A
better way of increasing the accuracy is to use formulas derived
from higher order polynomials with the same inter-node distance
‘‘h’’, e.g., the three-point and five-point Lagrange polynomial-
based formulas (Burden and Faires, 1993). Three differentiation
strategies are compared in this study.
entiation methods applied to time domain electromagnetic
2009), doi:10.1016/j.cageo.2008.08.016
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Fig. 2. Percentage errors for differentiation in different domains of TDEM data (10 Ohm m half space).
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2.3.1. Lagrange three-point formula

The Lagrange three-point numerical differentiation formula is
described in most text books on numerical analysis and a detailed
derivation can be found in Burden and Faires (1993). In short,
derivative values of discretely sampled data points are approxi-
mated by the analytical derivative of a second-order Lagrange
polynomial fitted through three consecutive data points, i.e.

f 0ðxÞ � Dx
ðx� xiÞðx� xiþ1Þ

ðxi�1 � xiÞðxi�1 � xiþ1Þ
f ðxi�1Þ þ

ðx� xi�1Þðx� xiþ1Þ

ðxi � xi�1Þðxi � xiþ1Þ

�

�f ðxiÞ þ
ðx� xi�1Þðx� xiÞ

ðxiþ1 � xi�1Þðxiþ1 � xiÞ
f ðxiþ1Þ

�

¼ Dx½Li�1ðxÞf ðxi�1Þ þ LiðxÞf ðxiÞ

þ Liþ1ðxÞf ðxiþ1Þ� for x 2 fxi�1; xi; xiþ1g. (10)

Effectively the method reduces to a sum of weighted function
values and for the special case of calculating f0(xi) (the derivative
at the centre point) for equally spaced data points it reduces to

f 0ðxiÞ �
1

h
�

1

2
� f ðxi�1Þ þ 0 � f ðxiÞ þ

1

2
� f ðxiþ1Þ

� �
(11)

where h ¼ (xi�xi�1).
End points of equally spaced values have weights of (�1.5; 2;

�0.5) and (0.5; �2; 1.5) for first and last points, respectively;
while the weights for unequally spaced data points have to be
calculated for every point using Eq. (10). Errors (or noise) in the
calculated derivative are dependent on sampling interval, errors in
data values (small errors in data are enhanced in derivative
calculations), computer round-off effects and how accurately the
causative function can be approximated locally by a second-order
polynomial.

2.3.2. Derivative of cubic spline interpolated function (referred to as

‘‘cubic spline derivative method’’)

The Lagrange three-point method will give analytically correct
results for functions of order one or two. This approximation can
be extended to a wider range of functions by increasing the degree
of the Lagrange approximating polynomial. However, this does not
always improve the final result. Lagrange interpolation requires
that the approximated function values on the measured positions
be very similar to the discrete data points and this introduces
Please cite this article as: Combrinck, M, Analysis of numerical di
(TDEM) geophysical data in the S-layer.... Computers and Geoscienc
unwanted oscillations which are especially detrimental to any
consecutive derivative calculations. An alternative is to fit higher
order functions using the least squares errors approach. However,
low-order polynomials will result in loss of high-frequency
information and high-degree polynomials still suffer from
oscillations. TDEM is based on the diffusion of electrical currents
into the earth and this is a smooth process, never oscillating in
nature, and therefore not suited to this type of interpolation.
Furthermore, although TDEM data locally approximate polyno-
mial functions in the logarithmic domain, they cannot in general
be represented by the same order polynomial on all time
channels. A better strategy to follow in this case is piecewise
polynomial approximation. One method to interpolate data under
these conditions is known as the cubic spline method that fits
third-order polynomials to each consecutive pair of data points
requiring the function values to be equal to the measured data
values as well as continuity of the first- and second-order
derivatives ensuring smoothness of the function. As with the
Lagrange three-point formula, an approximation to the derivative
of the sampled function is obtained with the analytical derivative
of the third-order cubic spline polynomials at every point. The
cubic spline method is computationally more intensive than the
Lagrange three-point formula, but it can also be used to resample
data to equally spaced intervals (which simplifies smoothing of
data), if required. The free or natural boundary conditions were
invoked in this study (assume that the second derivatives of the
end points are zero), as the information required for clamped
boundary points are not available.
2.3.3. Differentiation as the inverse of integration

In contrast to numerical differentiation, numerical integration
(the inverse of differentiation) is a very stable method and not
particularly sensitive to noise. The same relationship holds for the
downward (unstable) and upward (stable) continuation filters
used in the processing of potential field data. Cooper (2004)
introduced the ‘‘inverse of upward continuation’’ as a more stable
downward continuation filter and also discussed how differentia-
tion can be implemented as an ‘‘inverse of integration’’ filter. This
can be formulated as follows. Define f(xi) as the data points to be
differentiated, f0(xi) as the required derivative values and A an
fferentiation methods applied to time domain electromagnetic
es (2009), doi:10.1016/j.cageo.2008.08.016
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operator of integration. Then,

Af 0ðxiÞ ¼ f ðxiÞ; i ¼ 0; . . . ;n. (12)

For the case where A is singular, not square or a non-linear
operator, Eq. (12) must be solved with a method such as
generalised least squares inversion or other equivalent techniques
(Cooper, 2004). Disadvantages of solving systems of equations in
this way are:
�

P
(T
need for a good initial model,

�
 no guarantee of convergence,

�
 no guarantee of uniqueness of the solution, and

�
 mathematical intensiveness.
However, if A can be formulated to be a non-singular, square
and linear matrix, Eq. (12) becomes a system of linear equations
with the same number of unknowns as equations (implying the
existence of an inverse operator and a unique solution) which can
be solved by multiplying both sides with A�1.

f 0ðxiÞ ¼ A�1
� f ðxiÞ; i ¼ 0; . . . ;n. (13)

Alternatively, Eq. (12) can be solved for the f0(xi) by applying
Gaussian elimination with backward substitution. Depending on
whether A and A�1 will be calculated only once (for a fixed
number of equally spaced data points) or whether it will have to
be recalculated (for unequally spaced data points) for every
sounding data set, the most efficient of the two methods are
chosen. For 20 data points, it will require 3060 multiplications/
divisions and 2850 additions/subtractions to solve equation 4.8,
using Gauss elimination with backward substitution. The equiva-
lent numbers for calculating A�1 are 10,660 and 10,070.
Thereafter, 400 multiplications/divisions and 380 additions/sub-
tractions are required to solve for the f0(xi).
2.3.4. Construction of the integration matrix

Integration and differentiation can be done very simply in the
frequency domain by respective division or multiplication with
the factor (io), where o is the angular frequency and i ¼

ffiffiffiffiffiffiffi
�1
p

.
However, the process of Fourier transformation on discrete data
points adds noise to data and time domain calculations, although
more complex and time consuming, are preferred (especially in
small data sets) to obtain cleaner data. The first point that has to
be addressed in any integration procedure is that of the
integration constant, formulated as
Z

f 0ðxÞdx ¼ f ðxÞ þ c, (14)

where c can take on any value (implying an infinite number of
solutions). An easy solution is to use definite integrals instead, so that

Z b

a
f 0ðxÞdx ¼ f ðbÞ � f ðaÞ. (15)

From Eq. (12), the system of equations that has to be solved now
reduces to a general form as shown in Eq. (16).

a11 a12 : : a1n

a21 : : : :

: : : : :

: : : : :

an1 : : : ann

2
6666664

3
7777775

f 0ðx1Þ

:

:

:

f 0ðxnÞ

2
6666664

3
7777775
¼

f ðxbÞ � f ðxaÞ

:

:

:

f ðxnÞ � f ðxn�1Þ

2
6666664

3
7777775

. (16)

The elements of A (aii) must now be defined so as to produce
numerical integration of the f0(xi). Simpson’s rule (Burden and Faires,
1993) is a standard and very effective method suitable for polynomial
lease cite this article as: Combrinck, M, Analysis of numerical di
DEM) geophysical data in the S-layer.... Computers and Geoscience
functions. For equally spaced points, it is given by
Z xiþ1

xi�1

f 0ðxÞdx ¼ f ðxiþ1Þ � f ðxi�1Þ

�
h

3
½f 0ðxi�1Þ þ 4 � f 0ðxiÞ þ f 0ðxiþ1Þ�, (17)

where h ¼ (xi+1�xi) ¼ (xi�xi�1).
There is one drawback; this formula can only be used to

generate n�2 equations. In order to have a square matrix and
unique solutions, we need two more independent equations. This
is done by deriving two end-point Simpson’s rule formulas.
Normal Simpson’s rule can be derived by fitting a second-order
polynomial through three consecutive points and integrating this
polynomial from the first to the third point. The same strategy is
followed for the end points, except that we integrate from the first
to the second point only at the start of the sequence and from the
second to the third point only at the end. This results in the
following two equations:
Z x2

x1

f 0ðxÞdx ¼ f ðx2Þ � f ðx1Þ �
h

3

5

4
f 0ðx1Þ þ 2 � f 0ðx2Þ �

1

4
f 0ðx2Þ

� �
, (18)

and
Z xn

xn�1

f 0ðxÞdx ¼ f ðxnÞ � f ðxn�1Þ

�
h

3
½�1

4f 0ðxn�2Þ þ 2 � f 0ðxn�1Þ þ
5
4f 0ðxnÞ�, (19)

where h ¼ (xi+1�xi).
For equally spaced points, Eq. (16) can thus be rewritten as

h

3

5

4
2
�1

4
0 : : 0

1 4 1 0 : : 0

0 1 4 1 0 : 0

0 0 1 4 1 : 0

0 : : : : : 0

0 : : 0 1 4 1

0 : : 0
�1

4
2

5

4

2
666666666666664

3
777777777777775

f 0ðx1Þ

f 0ðx2Þ

:

:

:

f 0ðxn�1Þ

f 0ðxnÞ

2
666666666664

3
777777777775

¼

f ðx2Þ � f ðx1Þ

f ðx3Þ � f ðx1Þ

f ðx4Þ � f ðx2Þ

. . .

f ðxn�1Þ � f ðxn�3Þ

f ðxnÞ � f ðxn�2Þ

f ðxnÞ � f ðxn�1Þ

2
666666666664

3
777777777775

(20)

or

2
1

2

� �
4
�1

2
0 : : 0

1 4 1 0 : : 0

0 1 4 1 0 : 0

0 0 1 4 1 : 0

0 : : : : : 0

0 : : 0 1 4 1

0 : : 0
�1

2
4 2

1

2

� �

2
6666666666666664

3
7777777777777775

f 0ðx1Þ

f 0ðx2Þ

:

:

:

f 0ðxn�1Þ

f 0ðxnÞ

2
666666666664

3
777777777775

¼
3

h

2 f ðx2Þ � f ðx1Þ
� �
f ðx3Þ � f ðx1Þ

f ðx4Þ � f ðx2Þ

. . .

f ðxn�1Þ � f ðxn�3Þ

f ðxnÞ � f ðxn�2Þ

2 f ðxnÞ � f ðxn�1Þ
� �

2
6666666666664

3
7777777777775

.

(21)

The matrix A is square and symmetrical with the highest values
on the diagonal as pivot elements, except for the first and last
rows. The inverse of this matrix, A�1, depends on the number of
data points, n, and can be calculated using any standard
algorithm. In the general case where data points are unequally
spaced, the weights (aii) are different for every data set and both
the matrix and its inverse have to be recalculated for every
sounding.
3. Smoothing and resampling of data points

Before testing of the three methods discussed above, one needs
to consider the process and effect of smoothing of the data at
fferentiation methods applied to time domain electromagnetic
s (2009), doi:10.1016/j.cageo.2008.08.016
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various stages of the differentiation process. Smoothing of
data before and after the numerical differentiation is an
accepted method of reducing the noise in data (Tartaras et al.,
2000). However, any smoothing applied to the data will change
the data and influence the final interpretation. In the S-layer
differential transform algorithm, there are four possible opportu-
nities to smooth data and the question arises which of these will
optimise the algorithm with minimum alteration of the data.

The last factor taken into consideration is the spacing of
data points. The time channels at which data are measured
are almost equally spaced in the logarithmic domain. The
calculated depths (to which the second differentiation has to be
performed) will have intervals dependent on the conductivity of
the subsurface. The advantage of resampling data to equal
intervals is that the weights (and inverse matrices) used for
differentiation and smoothing only have to be calculated once.
Applying the transform to unequally spaced data points would
have a minimum impact on the measured data but is much more
time intensive.

The method used for smoothing is the three-point moving
average filter for equally spaced points and a weighted extension
for unequally spaced points (Eq. (22)).

f ðx2ÞWeighted Moving Average ¼
2 � ðx3 � x2Þ

ðx3 � x1Þ
� f ðx1Þ þ f ðx2Þ

�

þ
2 � ðx2 � x1Þ

ðx3 � x1Þ
� f ðx3Þ

�
=3 (22)
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4. Comparison of differentiation methods applied to synthetic
data

4.1. First-order numerical differentiations compared to the analytical

derivative of a function

A TDEM decay curve is simulated by an analytical function
(Eq. (23)), defined as the sum of exponential and power-law
terms. (There are no analytical formulations of complete layered
earth TDEM responses in closed form; therefore an ‘‘equivalent’’
analytical function is used.)

f ðxÞ ¼ 0:000001 � t�5=2 þ 0:00000000001 � t�4 þ 0:00000001 � t�3

þ 2000 � e�2500t þ 12000 � e�8000t þ 10 � e�400t (23)

The first-order analytical derivative of this function is compared
to the following numerical scenarios:
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data. The results are shown in Fig. 3(a).
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 Same as Eq. (1), but with smoothing of the function before the
derivatives were calculated. The results are shown in Fig. 3(b).
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resampled to equally spaced data points using the cubic spline
interpolation method (Fig. 3(c)).
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 The results in Fig. 3(d) are the equally spaced data points’
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A summary of the average errors (absolute values) for every
alternative is given in Fig. 5.

From these comparisons, the following are concluded:
�

P
(T
The inversion method gives the smallest average error,
followed by the cubic spline and three-point methods.

�
 For unsmoothed data, the equally spaced points slightly

outperform the unequally spaced points, but the reverse is
true for smoothed data.

�
 Smoothing of data seems to be the largest contributing factor

to errors in noise-free data.
lease cite this article as: Combrinck, M, Analysis of numerical di
DEM) geophysical data in the S-layer.... Computers and Geoscience
4.2. S-layer differential transform applied to synthetic data

A set of data was calculated for a three-layered earth using
MARCO software developed by AMIRA. The model and data are
shown in Fig. 5. A flow diagram for the numerical calculation of
the S-layer transform is the following:
1.
ffer
s (
Input |V| values ( ¼ qBz/qt if normalised to receiver area of 1 m2).

2.
 Calculate |V|0, i.e. q2Bz/qt2.
3.
 Calculate S from Eq. (1).

4.
 Calculate d from Eq. (2).

5.
 Calculate qS/qd ¼ s.
entiation methods applied to time domain electromagnetic
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Numerical differentiations are performed in steps 2 and 5.
Smoothing filters are applied at various stages in the algorithm
cumulating up to the strategy proposed by Tartaras et al. which is
smoothing before and after each differentiation. Fig. 6 (top) shows
the results of three variations:
�
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As can be expected, the successive smoothing slightly lowers
the maximum amplitude and widens the response curve.
However, it is critical not to smooth |V|0 (Fig. 6, bottom), which
introduces extensive noise. This is due to the ratios of |V| and |V|0

used to calculate S and d.
Please cite this article as: Combrinck, M, Analysis of numerical di
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Fig. 7 shows the output of the S-layer transform
(imaged conductivity versus depth) for twelve different combina-
tions of differentiation method, smoothing and spacing of data.
(Smoothing of data here implies smoothing |V|, S and s.) Both
smoothing and resampling of data reduce the maxima of
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responses leading to an underestimation of the conductivity
contrast.
5. Comparison of differentiation methods on field data

Three soundings are chosen from a field data set (courtesy of
Kumba Resources) to represent both clean and noisy data (Fig. 8)
and all twelve processing combinations are applied to these
soundings. The data were acquired with a Geonics Protem system
in the central loop sounding configuration utilising a 100�100 m2

transmitter loop, 15 A current, 25 Hz base frequency and effective
receiver area of 100 m2. Figs. 9–11 illustrate the results with (a)
unequally spaced data points without smoothing of data, (b)
unequally spaced data points with smoothing of data, (c) equally
spaced data points without smoothing of data and (d) equally
spaced data points, with smoothing of data in each case. Sounding
1 (Fig. 9) would be considered ‘‘noise-free’’ in that none of the
data points would be discarded in the manual interpretation of
data. However, comparing the smoothed and unsmoothed results,
it is clear that it does contain some noise which can be filtered out
successfully with the weighted moving average filter. The
unequally spaced points appear less sensitive to the noise and
after smoothing there is no noticeable difference between the
three different methods of differentiation. (With field data it is not
possible to calculate percentage errors and smoothness of
conductivity-depth curves are used as an indication of accuracy
based on the smoothly dissipative nature of TDEM currents.)
Sounding 2 contains slightly more noise. The most noticeable
effect is how the resampling to equally spaced data points acts as
an additional smoothing filter. For Sounding 3 (Fig. 11), a data set
was chosen with noise already visible from channel 14 onwards.
Here, the advantage of smoothing is very clear and the indication
is that this method can be applied successfully to field data.
Resampling data points to equal intervals in this case reduces the
Please cite this article as: Combrinck, M, Analysis of numerical di
(TDEM) geophysical data in the S-layer.... Computers and Geoscienc
number of significant (smooth) data points to five compared to
the twelve of the unequally spaced data, although the effective
depth coverage remains the same. The unequally spaced points
thus, have better vertical resolution.
6. Concluding remarks

The S-layer differential transform (and other imaging techni-
ques) are useful tools in automated interpretation of TDEM data,
as it is fast and does not require a starting model. It is not as
accurate as inversion methods, but remains useful to provide
starting models for these more time-consuming procedures. As
numerical differentiation is very unstable, it is important to take
great care when applying this operator in deriving the S-layer
transform. When working with field data, data have to be
smoothed but with cognizance of the influence on the final result.
Also, even though time-effectiveness can be increased in using
algorithms for equally spaced data points, it produces an under-
estimation of conductivity values and loss of resolution when
applied to the S-layer transform. As for the method of differentia-
tion, the ‘‘inverse of integration’’ performed best on synthetic
data, but it is arguable whether the 0.4% increase in accuracy is
worth the additional time compared to the Lagrange three-point
formula. The S-layer transform remains very fast (less than five
seconds on a PC for 1500 soundings), no matter which
differentiation method is chosen.
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