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Abstract 
 

We implement several Bayesian and classical models to forecast housing prices in 20 US states. 
In addition to standard vector-autoregressive (VAR) and Bayesian vector autoregressive (BVAR) 
models, we also include the information content of 308 additional quarterly series in some 
models. Several approaches exist for incorporating information from a large number of series. 
We consider two approaches – extracting common factors (principle components) in a Factor-
Augmented Vector Autoregressive (FAVAR) or Factor-Augmented Bayesian Vector 
Autoregressive (FABVAR) models or Bayesian shrinkage in a large-scale Bayesian Vector 
Autoregressive (LBVAR) models. In addition, we also introduce spatial or causality priors to 
augment the forecasting models. Using the period of 1976:Q1 to 1994:Q4 as the in-sample 
period and 1995:Q1 to 2003:Q4 as the out-of-sample horizon, we compare the forecast 
performance of the alternative models. Based on the average root mean squared error (RMSE) 
for the one-, two-, three-, and four–quarters-ahead forecasts, we find that one of the factor-
augmented models generally outperform the large-scale models in the 20 US states examined in 
this paper. 
 
Keywords:  Housing prices, Forecasting, Factor Augmented Models, Large-

Scale BVAR models 
 
JEL classification:  C32, R31 
 
* We acknowledge the assistance of D. Liu and D. W. Jansen, who provided the data on the 308 
macroeconomic indicators, as well as for clarifying all the data related issues. 
 
** Corresponding author 



 3 

1. Introduction 

This paper considers the dynamics of housing prices and the ability of different pure time-series 

models to forecast housing prices. The main focus considers how the researcher can incorporate 

large data sets into forecasting equations, using dynamic factor analysis or shrinking large-scale 

BVAR models. We illustrate the process using housing prices from the most-populous 20 US 

states – Arizona, California, Florida, Georgia, Illinois, Indiana, Massachusetts, Maryland, 

Michigan, Missouri, North Carolina, New Jersey, New York, Ohio, Pennsylvania, Tennessee, 

Texas, Virginia, Washington, and Wisconsin.  

We begin by searching for evidence of Granger temporal causality between housing 

prices in the 20 US states. UK housing experts found a “ripple” effect of housing prices that 

begins in the Southeast UK and proceeds toward the Northwest. Meen (1999) outlines four 

different theories to justify the ripple effect – migration, equity conversion, spatial arbitrage, and 

exogenous shocks with different timing of spatial effects. 1  The ripple effect receives little 

support in the US. For example, most analyses relate to a given geographic housing market, such 

as a metropolitan area (Tirtirglou 1992; Clapp and Tirtirglou 1994; and Gupta and Miller 2009b). 

More recent evidence across census regions also exists, which may reflect the fourth of Meen’s 

explanations (Pollakowski and Ray, 1997; Meen 2002). Gupta and Miller (2009a) find evidence 

of a ripple effect from Los Angeles to Las Vegas and from Las Vegas to Phoenix, which they 

attribute to the first three of Meen’s (1999) rationalizations. Our study adds to the evidence of 

ripple effects in the US. 

                                                 
1 The migration explanation requires that households move from one metropolitan area to another to take advantage 
of regional housing price differences. The equity conversion explanation requires that residents of one region sell 
their home and move to a lower cost region where they can buy a similar quality home for a lower price and pocket 
the residual equity. The spatial arbitrage explanation means that investors acquire properties in lower priced regions, 
where higher anticipated return on housing investment exist. The exogenous shocks explanation implies that if the 
determinants of housing prices in different regions experience a correlated movement, then housing prices will also 
exhibit the same correlated movement. 
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We next examine the explanatory power of including information from a large set of 

economic variables, using dynamic factors or Bayesian shrinkage approaches. More specifically, 

we compare the out-of-sample forecasting performance of various time-series models – vector 

autoregressive (VAR), factor augmented VAR (FAVAR), and various Bayesian time-series 

models. For the Bayesian models, we estimate Bayesian VAR (BVAR), factor augmented 

BVAR (FABVAR), and large-scale BVAR (LBVAR) models that include spatial and causality 

priors (LeSage 2004, Gupta and Miller 2009a, 2009b). The factor-augmented models, frequently 

with spatial priors, generally perform the best across the 20 states, using the average root-mean-

squared-error (RMSE) criteria. Large-scale models usually come in a close second to the factor-

augmented models, and actually outperform the factor-augmented models in two states. Finally, 

the models that exclude the information from the large set of data come in a distant third in 

forecast performance, implying that the macroeconomic fundamentals partly drive housing 

prices. 

We organize the rest of the paper as follows. Section 2 provides a brief review of the 

literature on using large data sets in forecasting models. Section 3 discusses the literature on 

forecasting housing prices. Section 4 specifies the various time-series models estimated and used 

for forecasting. Section 5 discusses the data and the results. Section 6 concludes. 

2. Forecasting with Large Data Sets 

For forecasting purposes, time-series models generally perform as well as or better than dynamic 

structural econometric specifications. Zellner and Palm (1974) provide the theoretical 

rationalization.2  An important issue involves determining how additional information can or 

                                                 
2 Any dynamic structural model implicitly generates a series of univariate time-series models for each endogenous 
variable. The dynamic structural model, however, imposes restrictions on the parameters in the reduced-form time-
series specification. Dynamic structural models prove most effective in performing policy analysis, albeit subject to 
the Lucas critique. Time-series models prove most effective at forecasting. That is, in both cases errors creep in 
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cannot improve the forecasting performance over a simple univariate autoregressive or 

autoregressive-moving-average representation.  

A simple approach uses an autoregressive distributed lag (ARDL) model (Stock and 

Watson 1999, 2003, 2004). That is, the researcher runs an ARDL, or transfer function, model, 

where the variable to forecast enters as an autoregressive process and one driver variable enters 

as a distributed lag. The researcher compares the baseline model, the pure autoregressive 

specification forecasts with the forecasts for the ARDL specification. Extending this further, the 

researcher can repeat the process for a whole series of potential driver variables. In this extended 

case, one aggregates across all of the individual forecasts to generate the combined forecast. 

Combination forecasts range from simple means or medians to more complicated principal-

components- or mean-square-forecast-error-weighted forecasts. 

Another method uses “atheoretical” VAR models. These models do not impose 

exogeneity assumptions on the included variables. Unlike the single-equation ARDL model, the 

VAR approach assumes that lagged values of each variable may provide valuable information in 

forecasting each endogenous variable. VAR models, however, face problems of over-

parameterization, since the number of parameters to estimate increases dramatically with 

additional variables or additional lags in the system. Given this problem, one approach for using 

more data in the VAR model involves the extraction of common factors from a large data set that 

researchers can then add to the VAR specification (Bernanke, Boivin, and Eliazs 2005, Stock 

and Watson 2002, 2005). Adding a couple of common factors from the large dataset to a VAR 

system economizes on the number of new parameters to estimate. 

                                                                                                                                                             
whenever the researcher makes a decision about the specification. Clearly, more researcher decisions relate to a 
dynamic structural model than a univariate time-series model, suggesting that fewer errors enter the time-series 
model and allowing the model to produce better forecasts. 
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Bayesian VAR (BVAR) models address the over-parameterization problem by estimating 

a small number of hyper-parameters in the specification that define all the parameters in the 

system. Since the Bayesian approach already solves the over-parameterization problem, 

researchers can add a large set of variables to the estimation of a BVAR system, obviating the 

need to extract common factors. Nothing prevents, however, the extraction of common factors 

from the large set of macroeconomic variables to include in a factor-augmented VAR system, 

which we also do. 

The ADRL method uses information in the large dataset one variable at a time and then 

aggregates across all forecasts. As a result, this approach does not differentiate between common 

factors and non-common factors in the large dataset. Each exhibits the same effect on the 

forecast, over and above the autoregressive part of the model. In the factor-augmented approach, 

the researcher potentially leaves information on the table by only extracting the common factor 

information and leaving the remaining information out of the analysis. On the other hand, the 

Bayesian approach, includes all the information from the large set of data, but restricts the 

estimation by imposing conditions on the parameters of the estimating equation. In sum, all 

methods introduce restrictions on the way information from the large dataset affects the 

estimation process. Thus, any of the individual approaches may lead to better forecasts a priori. 

In this paper, we consider the factor-augmented and large-scale Bayesian methods for 

incorporating the information from a large dataset. These methods provide the natural extension 

of the VAR and BVAR models. The ARDL model involves a single-equation, whereas the VAR 

and BVAR models involve multiple equations. Thus, we exclude the ARDL approach from our 

analysis. 
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3. Forecasting Housing Prices 

Traditionally, the housing market and its cycle played an important role in understanding the 

business cycle. More recently, several authors argue that asset prices help forecast both inflation 

and output (Forni et al., 2003; Stock and Watson, 2003, Gupta and Das, 2008a, 2008b and Das et 

al., 2008a, 2008b). Since homes imbed much individual wealth, housing price movements may 

provide important signals for consumption, output, and inflation. That is, housing market 

adjustments play an important role in the business cycle (Iacoviello and Neri, 2008), not only 

because housing investment proves a volatile component of demand (Bernanke and Gertler, 

1995), but also because housing price changes generate important wealth effects on consumption 

(International Monetary Fund, 2000; ) and investment (Topel and Rosen, 1988).  

In sum, models that forecast real housing price inflation can give policy makers an idea 

about the future direction of the overall macroeconomy, and hence, can provide important 

information for designing better and more-appropriate policies. In other words, the housing 

sector acts as a leading indicator for the real sector of the economy. The recent world-wide credit 

crunch began with the burst of the housing price bubble, which, in turn, led the real sector of the 

world’s economy toward an economic slump. 

A large number of economic variables affect housing price growth (Cho, 1996; Abraham 

and Hendershott, 1996; Johnes and Hyclak, 1999; and Rapach and Strauss, 2007, 2008). For 

instance, income, interest rates, construction costs, labor market variables, stock prices, industrial 

production, consumer confidence index, and so on act as potential predictors.  

Rapach and Strauss (2007, 2008) consider forecasting housing prices in states, using a 

large data set of economic variables. Rapach and Strauss (2007) use an autoregressive distributed 

lag (ARDL) model framework, containing 25 determinants, to forecast real housing price growth 
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for the individual states of the Federal Reserve’s Eighth District – Arkansas, Illinois, Indiana, 

Kentucky, Missouri, Mississippi, and Tennessee. Given the difficulty in determining a priori the 

particular variables that prove the most important in forecasting real housing price growth, the 

authors also use various methods to combine the individual ARDL model forecasts, which result 

in better forecast of real housing price growth. Rapach and Strauss (2008) perform the same 

analysis for 20 largest US states based on ARDL models containing large number of potential 

predictors, including state, regional and national level variables. Once again, the authors reach 

similar conclusions on the importance of combining forecasts. 

Vargas-Silva (2008a) uses a factor-augmented VAR (FAVAR) model, containing 120 

monthly series, to analyze the effect of monetary policy actions on the housing sector of four 

different regions of the United States. To our knowledge, this is the first attempt to look into the 

ability of FAVARs in forecasting regional real housing price growth rates. 3 Das et al., (2009) 

consider the forecasting performance of regional real housing price growth rates in the nine US 

Census regions, using FAVAR and LBVAR models. They find that the FAVAR models 

generally outperform the LBVAR models. 

Our paper extends the above mentioned studies, in the sense that we use large-scale 

models that allow for not only the role of a wide possible set of fundamentals to affect the 

housing sector, but also spatial and causal influences amongst the prices of the 20 largest US 

states. 

 

                                                 
3 Note that Dua and Smyth (1995), Dua and Miller (1996) and Dua et al. (1999) used coincident and leading indexes 
in BVAR models to forecast home sales for the Connecticut and the overall US economy, respectively. Coincident 
and leading indexes incorporate information from component series, using the procedures established by the 
Department of Commerce and described in U.S. Department of Commerce (1977, 1984) and in Niemira and Klein 
(1994). 
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4. VAR, BVAR, FAVAR, FABVAR, and LBVAR Specifications and Estimation4 

4.1  VAR, BVAR, and LBVAR: 

Following Sims (1980), we can write an unrestricted VAR model as follows: 

0 ( )t t ty A A L y ε= + + ,        (1) 

where y equals a ( 1n× ) vector of variables to forecast; 0A �equals an ( 1n× ) vector of constant 

terms; A(L) equals an ( n n× ) polynomial matrix in the backshift operator L with lag length p,5 

and ε  equals an ( 1n× ) vector of error terms. In our case, we assume that 2~ (0, )nN Iε σ , where 

In equals an ( n n× ) identity matrix. 

The VAR method typically use equal lag lengths for all variables, which implies that the 

researcher must estimate many parameters, including many that prove statistically insignificant. 

This over-parameterization problem can create multicollinearity and a loss of degrees of 

freedom, leading to inefficient estimates, and possibly large out-of-sample forecasting errors. 

Some researchers exclude lags with statistically insignificant coefficients. Alternatively, 

researchers use near VAR models, which specify unequal lag lengths for the variables and 

equations. 

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer 

(1993) use the BVAR model to overcome the over-parameterization problem. Rather than 

eliminating lags, the Bayesian method imposes restrictions on the coefficients across different 

lag lengths, assuming that the coefficients of longer lags may more closely approach zero than 

the coefficients on shorter lags. If, however, stronger effects come from longer lags, the data can 

override this initial restriction. Researchers impose the constraints by specifying normal prior 
                                                 
4 The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2006), Gupta (2006), Gupta and 
Miller (2009a, 2009b), and Das et al., (2009). 
5 That is, A(L) = 2

1 2 ... p
pA L A L A L+ + + ; 
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distributions with zero means and small standard deviations for most coefficients, where the 

standard deviation decreases as the lag length increases and implies that the zero-mean prior 

holds with more certainty. The first own-lag coefficient in each equation proves the exception 

with a unitary mean. Finally, Litterman (1981) imposes a diffuse prior for the constant. We 

employ this “Minnesota prior” in our analysis, where we implement Bayesian variants of the 

classical VAR models. 

Formally, the means of the Minnesota prior take the following form: 

2~ (1, )
ii N ββ σ  and 2~ (0, )

jj N ββ σ       (2) 

where iβ  equals the coefficients associated with the lagged dependent variables in each equation 

of the VAR model (i.e., the first own-lag coefficient), while jβ  equals any other coefficient. In 

sum, the prior specification reduces to a random-walk with drift model for each variable, if we 

set all variances to zero. The prior variances, 2
iβσ  and 2

jβσ , specify uncertainty about the prior 

means, iβ  = 1, and jβ  = 0.  

Doan et al., (1984) propose a formula to generate standard deviations that depend on a 

small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to reduce the over-

parameterization in the VAR models. This approach specifies individual prior variances for a 

large number of coefficients, using only a few hyper-parameters. The specification of the 

standard deviation of the distribution of the prior imposed on variable j in equation i at lag m, for 

all i, j and m, equals S1(i, j, m), defined as follows: 

1

ˆ
( , , ) [ ( ) ( , )]

ˆ
i

j

S i j m w g m f i j
σ
σ

= × × ,      (3) 

where f(i, j) = 1, if i = j and ijk  otherwise, with ( 0 1ijk≤ ≤ ), and g(m) = dm− , with d > 0. The 
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estimated standard error of the univariate autoregression for variable i equals ˆiσ . The ratio ˆ
ˆ

i

j

σ
σ  

scales the variables to account for differences in the units of measurement and, hence, causes the 

specification of the prior without consideration of the magnitudes of the variables. The term w 

indicates the overall tightness, with the prior getting tighter as the value falls. The parameter 

g(m) measures the tightness on lag m with respect to lag 1, and equals a harmonic shape with 

decay factor d, which tightens the prior at longer lags. The parameter f(i, j) equals the tightness 

of variable j in equation i relative to variable i, and by increasing the interaction (i.e., the value of 

ijk ), we loosen the prior.6  

The overall tightness (w) and the lag decay (d) hyper-parameters equal 0.1 and 1.0, 

respectively, in the standard Minnesota prior, while ijk  = 0.5, implying a 20x20 weighting matrix 

(F) for our 20 states as follows: 

1.0 0.5 . . 0.5
0.5 1.0 . . 0.5

(20 20) . . . . .
. . . . .

0.5 0.5 . . 1.0

F x

� �
� �
� �
� �=
� �
� �
� �� �

.      (4) 

Since researchers believe that the lagged dependant variable in each equation proves most 

important, F imposes iβ =1 loosely. The jβ coefficients, however, that associate with less-

important variables receive a coefficient in the weighting matrix (F) that imposes the prior means 

of zero more tightly. Since the Minnesota prior treats all variables in the VAR, except for the 

first own-lag of the dependent variable, in an identical manner, several researchers attempt to 

alter this fact. Usually, this means increasing the value for the overall tightness (w) hyper-

                                                 
6 For an illustration, see Dua and Ray (1995). 
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parameter from 0.10 to 0.20, so that more influence comes from other variables in the model. In 

addition, Dua and Ray (1995) introduce a prior that imposes fewer restrictions on the other 

variables in the VAR model (i.e., w = 0.30 and d = 0.50). 

Alternatively, LeSage and Pan (1995) propose spatial BVAR (SBVAR) models. They 

adopt a weight matrix that uses the first-order spatial contiguity (FOSC) prior, implying a non-

symmetric F matrix with more importance given to variables from neighboring states than those 

from non-neighboring states. Figure 1 maps the locations of the 20 states. They impose a value 

of one for both the diagonal elements of the weight matrix, as in the Minnesota prior, as well as 

for place(s) that correspond to variable(s) from states with which the specific state shares a 

common border(s). For the elements in the F matrix that correspond to variable(s) from states 

that do not share common borders, Lesage and Pan (1995) impose a weight of 0.1. In sum, the 

0.5 weights in the specification shown in equation (5) become 1.0 for neighbors and 0.1 for non-

neighbors.  

Gupta and Miller (2009a, 2009b) propose new specifications, causality BVAR (CBVAR) 

models, where the weight matrix depends on tests for Granger temporal causality –- the temporal 

causality (TC) prior. They modify the LeSage and Pan (1995) first-order spatial-contiguity 

(FOSC) prior in that they consider some neighbors as more important than other neighbors. In 

fact, non-neighbors may exert more influence than neighbors. If one state’s housing prices 

temporally cause another state’s housing prices, then they code the weight matrix for that off-

diagonal entry at 1.0. If no temporal causality exists, then they code the off-diagonal entry as 0.1.  

In the current application, we use 328 quarterly series, housing price growth rates of the 

20 largest states as well as 308 national macroeconomic variables. Logic and prior research 

argues that state-level variables should exert minimal, if any, effect on national indicators, while 
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the latter set of variables surely influences the former. Thus, setting ijk = 0.5 seems unrealistic. 

Hence, borrowing from the BVAR models used for regional forecasting, involving both regional 

and national variables, such as Kinal and Ratner (1986), Shoesmith (1992), Dua and Ray (1995), 

Das et al. (2008a, 2009), and Gupta and Kabundi (2008a, b), we set the weight of a national 

variable in a national equation, as well as a state equation, at 0.6. We set the weight of a state 

variable in other state equation at 0.1 and in a national equation at 0.01. Finally, we set the 

weight of the state variable in its own equation at 1.0. These weights implement Litterman’s 

circle-star structure. Star (national) variables affect both star and circle (state) variables, while 

circle variables primarily influence only other circle variables.7 Thus, we estimate the large-scale 

BVARs with asymmetric priors, incorporating spatial and causal influences as well as unequal 

influences amongst the state- and national-level variables.   

We estimate the alternative BVARs, whether based on 20 or 328 variables, using Theil's 

(1971) mixed estimation technique. Specifically, we denote a single equation of the VAR model 

as: 1 1y X β ε= + , with 2
1( )Var Iε σ= . Then, we can write the stochastic prior restrictions for this 

single equation as follows: 

111
111 111 111

112112 112 112

113 113 113
113

0 0 . . 0

0 0 . . 0

0 0. . . .
. . .

. . . . . .
. . .

. . . . . .

0 . . . .
nnp nnp nnp

nnp

r u

r u

r u

r u

σ
σ

β
σ

σ β
βσ

σ

β
σ

σ

� �
� �

� � � � � �� �
� � � � � �� �
� � � � � �� �
� � � � � �� �= +� � � � � �� �
� � � � � �� �
� � � � � �� �
� � � � � �� �
� � � � � �� � � � � �� �

� �� �

  (5) 

                                                 
7 We also experimented by assigning higher and lower interaction values, in comparison to those specified above, to 
the star variables in both the star and circle equations. The rank ordering of the alternative forecasts remained the 
same. 



 14 

Note that 2( )Var u Iσ= , and the prior means ijmr  and the prior variance ijmσ 8 take the 

forms shown in equations (2) and (3) for the Minnesota prior. With equation (5) written as 

follows: 

r uβ= Σ + ,         (6) 

we derive the estimates for a typical equation as follows: 

1
1

ˆ ( ' ') ( ' ')X X X y rβ −= + Σ Σ + Σ       (7) 

Essentially then, the method involves supplementing the data with prior information on 

the distribution of the coefficients. The number of observations and degrees of freedom increase 

artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of 

degrees of freedom from over-parameterization in the classical VAR models does not emerge as 

a concern in the alternative BVAR specifications. 

4.2 FAVAR and FABVAR: 
 
This study uses the Dynamic Factor Model (DFM) to extract common components between 

macroeconomic series and then uses these common components to forecast real housing price 

growth rates of the 20 largest US states, adding the extracted factors to the 20-variable VAR 

model to create a FAVAR in the process. Furthermore, we estimate idiosyncratic component (see 

below) with AR(p) processes as suggested by Boivin and Ng (2005). 

The DFM expresses individual times series as the sum of two unobserved components: a 

common component driven by a small number of common factors and an idiosyncratic 

component for each variable. The DFM extracts the few factors that explain the co-movement of 

the US economy. Forni et al. (2005) demonstrate that for a small number of factors relative to 

                                                 
8 Note ijmσ  in equation (12) is a generic term used to describe Sk(i, j, m), k=1, 2, 3. 
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the number of variables and a heterogeneous panel, we can recover the factors from present and 

past observations. 

Consider a 1n×  covariance stationary process 1( ,...., )'t t ntY y y= . Suppose that tX  equals 

the standardized version of tY  (i.e., tX  possesses a mean zero and a variance equal to one). 

Under DFM, we write tX  as the sum of two orthogonal components as follows: 

  t t tX Fλ ξ= +          (8) 

where tF  equals a 1r ×  vector of static factors, λ equals an n r×  matrix of factor loadings, and 

tξ  equals a 1n×  vector of idiosyncratic components. In a DFM, tF  and tξ  are mutually 

orthogonal stationary process, while, t tFχ λ=  equals the common component. 

Since dynamic common factors are latent, we must estimate them. We note that the 

estimation technique used matters for factor forecasts. This paper adopts the Stock and Watson 

(2002b) method, which employs the static principal component approach (PCA) on tX . The 

factor estimates, therefore, equal the first principal components of tX , (i.e., ˆ ˆ
t tF X′= Λ , where Λ̂  

equals the n r×  matrix of the eigenvectors corresponding to the r  largest eigenvalues of the 

sample covariance matrix Σ̂ ). 

For forecasting purposes, we use a 20-variable VAR augmented by extracted common 

factors using the Stock and Watson (2002a) approach. This approach is similar to the univariate 

Static and Unrestricted (SU) approach of Bovin and Ng (2005). Therefore, the forecasting 

equation to predict tY  is given by 

  
ˆ

ˆ ( )
ˆ
t h t

tt h

Y Y
L

FF
+

+

� � � �
= Φ� � � �

� � � �� �
        (9) 
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where h equals the forecasting horizon, ˆ ( )LΦ  equal lag polynomials, which we estimate with 

and without restrictions. As Boivin and Ng (2005) clearly note, VAR models are special cases of 

equation (9). With known factors and the parameters, the FAVAR approach should produce 

smaller mean squared errors. In practice, however, one does not observe the factors and we must 

estimate them. Moreover, the forecasting equation should reflect a correct specification. We 

consider the following DFM specifications: 

- FAVAR:  includes the real housing price growth rates of the 20 states and the 

common static factors; and 

- BFAVAR:  the FAVAR specification with Bayesian restrictions on lags of the real 

housing price growth rates based on the alternative types of priors outlined 

above. 

5. Data Description, Model Estimation, and Results 

5.1  Data 

While the small-scale VARs, both the classical and Bayesian variants, include data of only the 

annualized real housing price growth rates of the 20 largest US states, the large-scale BVARs 

and the DFM also include the 308 quarterly national series. Nominal housing prices come from 

the Freddie Mac database, the Conventional Mortgage Home Price Index (CMHPI). The CMHPI 

uses matched transactions on the same property over time to account for quality changes and 

consists of both purchase and refinance-appraisal transactions on over 33 million homes. We 

deflate the state-level nominal CMHPI housing price by the personal consumption expenditure 

(PCE) deflator from the Bureau of Economic Analysis (BEA) to generate our real housing price 

series. We then compute annualized growth rates as 400 times the differences in the natural logs 

of real housing prices.   
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For the remaining 308 national variables, we use the macroeconomic indicators in the 

data set of Liu and Jansen (2007). All data were transformed to induce stationarity.9 Since this 

data set ends in 2003, our sample also ends at the same point.10 Amongst the 308 macroeconomic 

indicators, 172 variables relate to real activity, 80 relate to prices or inflation, and 56 relate to the 

monetary sector. Appendix A in Liu (2004) details the variables and their transformations. The 

real activity group consists of variables such as industrial production, capacity utilization, 

manufacturers’ inventories, retail inventories, retail sales, real personal consumption, real 

personal income, new housing starts, employment, average working hours, and so on. The price 

and inflation group consists of variables such as the consumer price index, the producer price 

index, the personal consumption expenditure deflator, average hourly earnings, and so on. The 

monetary sector group consists of variables such as monetary aggregates, various interest rates, 

credit outstanding, and so on. Following Liu and Jansen (2007), we extract four static factors 

from the DFM estimated with one lag.11  

5.2 Estimation and Results 

This section reports our econometric findings. First, we determine whether temporal (Granger) 

causality exists between the variables in our model. Second, we select the optimal model for 

forecasting each market’s housing price, using the minimum average root mean squared error 

(RMSE) across the one-, two-, three-, and four-quarter-ahead out-of-sample forecasts.  

The data sample for all 20 states runs from 1976:Q1 through 2003:Q4. First, the temporal 

                                                 
9 Using non-stationary data, however, is not required with the BVAR. Sims et al. (1990) indicate that with the 
Bayesian approach entirely based on the likelihood function, the associated inference does not require special 
treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape regardless of the 
presence of non-stationarity.  
10 Since the state-level housing prices exist only at a quarterly frequency, we transform the monthly data set of  Liu 
and Jansen (2007) into quarterly values by taking the averages over three months. 
11 We also confirm the choice of the four factors by the cumulative variance share, under which, the fifth eigenvalue 
fell below the threshold of 5 percent. 



 18 

(Granger) causality tests use data from 1976:Q1 through 1994:Q4. Second the out-of-sample 

forecasting experiment covers 1995:Q1 through 2003:Q4. 

5.3 Evidence on Temporal Causality 

We first test for Granger temporal causality between the 20 state housing price series. Temporal 

causality tests emerge from the VAR model. We consider various lag-length selection criteria for 

the VAR specification, including the sequential modified likelihood ratio (LR) test statistic (each 

test at the 5-percent level), the final prediction error (FPE), the Akaike information criterion 

(AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information criterion 

(HQIC). All criteria except the SIC choose two lags. Table 1 reports the results. 

Running the VAR specification and using the block exogeneity test, we discover that 96 

pairs of states do not exhibit any temporal (Granger) causality between each other. With 20 

states, we need to consider a total of 190 bivariate pairs of states.12 Of the remaining pairs, 74 

exhibit one-way temporal causality while 20 pairs exhibit two-way causality. 

The most influential, and least influenced, states include California, Massachusetts, New 

Jersey, and Pennsylvania. Housing prices in Pennsylvania temporally lead housing prices in nine 

other states; California, in eight; and Massachusetts and New Jersey, in six. In addition, only one 

state’s housing prices each, North Carolina, Pennsylvania, Massachusetts, and Georgia, 

temporally lead the housing prices in California Massachusetts, New Jersey, and Pennsylvania, 

respectively. North Carolina temporally causes only two states, Arizona and Wisconsin, whereas 

Georgia only temporally causes three, Illinois, Indiana, and Pennsylvania. 

Switching to examine the most linkages, Indiana and Michigan housing prices respond to 

the most other states housing prices – 11 states each. Further, Michigan, along with Ohio and 
                                                 

12 The number of combinations of 20 states taken two at a time equals ( )
20! 190.

2! 18!
� �

=� �⋅� �
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Virginia, housing prices also temporally lead the housing prices in eight other states. Thus, 

Michigan exhibits two-way temporal causality with five other states -- Florida, Illinois, 

Maryland, Virginia, and Wisconsin. Two-way temporal causality also exists between Florida, 

Illinois, and Indiana and four other states. The most influential states, California, Massachusetts, 

New Jersey, and Pennsylvania, and Washington do not exhibit two-way temporal causality with 

any other state. Washington, even though geographically isolated, temporally causes five states 

and is temporally caused by five other states.  

While the reader may expect to see housing prices in one state influencing the housing 

prices in its geographic neighbors, we find little evidence of that. For the 20 instances of 

bivariate temporal causality, only Michigan and Wisconsin share a common border, and that 

only along the upper peninsula. Figure 1 reveals that 20 pairs of states share a contiguous border. 

One-way causality between contiguous states only occurs seven times out of the remaining 19 

cases, excluding the two-way causality between Michigan and Wisconsin.  

Typically, the geographic reach of the housing market reflects the commuting shed for 

the metropolitan area. That is, homes compete with each other within the same metropolitan 

area. Tirtirglou (1992) and Clapp and Tirtirglou (1994) provided some of the earliest tests of 

whether the housing market exhibited efficiency in a spatial market in Hartford, Connecticut. 

Gupta and Miller (2009b) provide a more recent examination for 8 MSAs in the Southern 

California housing market. 

Since we cannot transport homes from one geographic region to another, does this 

necessarily imply that the housing markets in the states do not exhibit linkages? Trade theory 

shows that although labor and capital frequently do not move between countries, factor prices 

equalize (Samuelson 1948). The flows of goods and services between countries act as surrogates 
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for labor and capital flows and cause the prices of labor and capital to equalize even though 

capital and labor do not move between countries. Since housing cannot flow between markets, 

do other flows exist that can cause housing price convergence? Yes. First, the migration of home 

buyers between metropolitan areas can link the housing markets. Second, home builders can also 

move their operations between metropolitan areas in response to differential returns on home 

building activity. In sum, the movement of home buyers and home builders between regions in 

response to price differences can arbitrage the prices of homes, even though the homes 

themselves cannot move between regions. 

We argue that housing prices between geographic regions affect each other if either home 

buyers or home builders move between the markets in response to price incentives. On the home 

buyer side, different types of buyers or motivations may assist in the arbitrage process. One, 

migration between states for jobs or retirement may link geographically separated states. Two, 

equity conversion may allow some longtime residents of one state that experienced significant 

appreciation to cash in their accumulated equity and buy a “better” home in another state with 

lower housing prices, possibly linked to retirement decisions. Three, investors may use spatial 

arbitrage to allocate their housing investment funds.13 In sum, we find more evidence of temporal 

causality occurring between non-adjacent states and not occurring between adjacent states than 

we initially hypothesized.  

5.4 One- to Four-Quarter-Ahead Forecast Accuracy 

Given the specification of priors in Section 4, we estimate the alternative small- and large-scale 

models for the 20 states in our sample over the period 1976:Q1 to 1994:Q4 using quarterly data. 

We then compute out-of-sample one- to four-quarters-ahead forecasts for the period of 1995:Q1 
                                                 
13 Meen (1999) offers a similar discussion of UK for housing price arbitrage between the Southeast to the Northwest, 
which he calls the “ripple effect.” He defines four explanations -- migration, equity conversion, spatial arbitrage, and 
exogenous shocks with different timing of spatial effects. 
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to 2003:Q4, and compare the forecast accuracy relative to the forecasts generated by an 

unrestricted VAR. Note that the choice of the in-sample period, especially the starting date, 

depends on data availability. The starting point of the out-of-sample period follows Rapach and 

Strauss (2007, 2008), who observe marked differences in housing price growth across U.S. 

regions since the mid-1990s. As indicated above, the end-point of the horizon is 2003:Q4, since 

the Liu and Jansen (2007) data on the national 308 variables ends there.  

We estimate the multivariate versions of the classical VAR, the small-scale BVARs, the 

large-scale BVARs, and the classical and Bayesian FAVARs over the period 1976:Q1 to 

1994:Q4, and then forecast from 1995:Q1 through 2003:Q4. Since we use two lags, the initial 

two quarters from 1976:Q1 to 1976:Q2 feed the lags. We re-estimate the models each quarter 

over the out-of-sample forecast horizon in order to update the estimate of the coefficients, before 

producing the four-quarters-ahead forecasts. We implemented this iterative estimation and the 

four-quarters-ahead forecast procedure for 36 quarters, with the first forecast beginning in 

1995:Q1. This produced a total of 36 one-quarter-ahead forecasts, …, up to 36 four-quarters-

ahead forecasts.14 We calculate the root mean squared errors (RMSE)15 for the 36 one-, two-, 

three-, and four-quarters-ahead forecasts for the 20 annualized real housing price growth rates of 

the models. We then examine the average of the RMSE statistic for one-, two-, three-, and four-

quarters ahead forecasts over 1995:Q1 to 2003:Q4.  

For the BVAR and FABVAR models, we start with a value of w = 0.1 and d = 1.0, and 

then increase the value to w = 0.2 to account for more influences from variables other than the 

                                                 
14 For this, we used the algorithm in the Econometric Toolbox of MATLAB, version R2007a. 
15 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF +  equals the forecast made 

in period t for t + n, the RMSE statistic equals the following: ( )2
1
N

t t n t nF A
N

+ +
� �−�
� �
� �� �

 where N equals the number 

of forecasts.  
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first own lags of the dependant variables of the model. In addition, as in Dua and Ray (1995), 

Gupta and Sichei (2006), Gupta (2006), and Gupta and Miller (2009a, 2009b), we also estimate 

the BVARs and FABVARs with w = 0.3 and d = 0.5. We also introduce d = 2 to increase the 

tightness on lag m. We select the model that produces the lowest average RMSE values as the 

‘optimal’ specification for a specific state. 

Table 3 reports the average of the one-, two-, three-, and four-quarter-ahead RMSEs 

across all 20 states. The benchmark for all forecast evaluations is the VAR model forecast 

RMSEs. Thus, the 0.141 entry for the FAVAR model means that the FAVAR model experienced 

a forecast RMSE of only 14.1 percent of the forecast RMSE for the VAR model. The results fall 

into three different categories. The spatial and causality Bayesian VAR models (SBVAR and 

CBVAR, respectively) do not perform much better than the VAR model with improvements in 

RMSE in the neighborhood of 11 to 16 percent. Next, the large-scale spatial and causality 

Bayesian VAR models (LSBVAR and LCBVAR, respectively) show more improvement in 

RMSE over the VAR model, gaining between 73 to 75 percent. Finally, the factor augmented 

models – VAR, spatial BVAR, and causality BVAR – experienced the most improvement over 

the simple VAR RMSE forecast errors, improving by 81 to 86 percent. As such, the SBVAR and 

CBVAR models forecast performance do not improve much over the benchmark VAR model 

forecasts and the factor-augmented and large-scale Bayesian models exhibit improved 

performance over the VAR (SBVAR and CBVAR) model, but do not differ too much for each 

other in forecasting performance. 

The factor augmented spatial Bayesian VAR model with w=0.1 and d=2.0 provides the 

lowest average RMSE at 13.7-percent of the RMSE of the benchmark VAR model, which we 

identify as the optimal specification. This specification deviates from the Minnesota prior in that 
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the decay factor reduces the influence of lagged values more quickly. The SFABVAR model 

with w=0.1 and d=1.0, the Minnesota prior, emerged as the second best performing model with a 

RMSE of 14.1 percent of the VAR model, barely edging out the FAVAR model. 

Table 4 reports the average one-, two-, three-, and four-quarter-ahead RMSE forecast 

errors for each of the 20 states. First, the factor-augmented models generally performed better 

than the large-scale models. A large-scale model emerged as the best performing model in terms 

of minimum RMSE in only two states – Massachusetts and Virginia. In both states, the large-

scale causality BVAR achieved the best forecast performance, albeit with different priors w=0.2 

and d=2.0 and w=0.3 and d=0.5, respectively. In the remaining 18 states, factor-augmented 

models performed the best. In seven states the FAVAR model without spatial or causality priors 

achieved the lowest RMSEs – California, Florida, Georgia, Maryland, New Jersey, Texas, and 

Washington. For 10 states, the spatial factor-augmented model achieved the best performance – 

six states with w=0.1 and d=2.0 – Arizona, Michigan, New York, Ohio, Pennsylvania, and 

Wisconsin; three states with w=0.3 and d=0.5 – Indiana, Missouri, and Tennessee; and one state 

with w=0.2 and d=1.0 -- Illinois. North Carolina achieved the best forecast performance for the 

Causality factor-augmented BVAR model with the Minnesota prior. 

In sum, different specifications yield the lowest RMSE in different states. No common 

pattern emerges. Comparing the forecasting performance across states, however, we see that the 

five best performing forecast models in order from best to worst include Michigan (2.6 percent 

of the VAR RMSE), Virginia (5.7 percent), Florida (8.4 percent), Washington (8.5 percent), and 

Illinois (9.2 percent). The five worst performing forecast models, although the best in each state, 

in order from worst to best include Pennsylvania (16.8 percent of the VAR RMSE), Ohio (15.9 

percent), Texas (14.9 percent), Georgia (14.5 percent), and New York (13.5 percent).  
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6. Conclusion 

We forecast housing prices in 20 US states, using the VAR and BVAR models, both with and 

without the information content of 308 additional quarterly economic series. Two approaches 

exist for incorporating information from a large number of data series – extracting common 

factors (principle components) in a Factor-Augmented Vector Autoregressive (FAVAR) or 

Factor-Augmented Bayesian Vector Autoregressive (FABVAR) models or Bayesian shrinkage 

in a large-scale Bayesian Vector Autoregressive (LBVAR) models. 16  In addition, we also 

introduce spatial or causality priors to augment the forecasting models.  

Using the period of 1976:Q1 to 1994:Q4 as the in-sample period and 1995:Q1 to 

2003:Q4 as the out-of-sample horizon, we compare the forecast performance of the alternative 

models for one- to four-quarters ahead forecasts. Based on the average root mean squared error 

(RMSE) for the one-, two-, three-, and four–quarter-ahead forecasts, we find that the factor-

augmented models, sometimes with spatial or causality priors, generally outperform the large-

scale models in the 20 US states examined. In two states, the large-scale BVAR models provide 

the best forecasts. But, the differences between the factor-augmented and large scale Bayesian 

models average RMSEs generally prove small in size. Both the factor-augmented and large-scale 

Bayesian models produce much lower average RMSEs than the spatial or causality VAR or 

BVAR models. 

In sum, the utilization of a large dataset of economic variables improves the forecasting 

performance over models that do not use this data. In other words, macroeconomic fundamentals 

do matter when forecasting real housing prices. 

                                                 
16 Another approach also exists, the ADRL method. This approach estimates a series of bivariate transfer function 
models with forecasted variable as the dependent variable and then aggregates forecasts with various weighting 
methods. We do not pursue this single-equation method and only consider the multiple-equation FAVAR and 
LBVAR models. 
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Table 1: Lag-Length Selection Tests 

 Lag LogL LR FPE AIC SC HQ 
0 -4801.889 NA   8.88e+31  130.3213   130.9440*  130.5697 
1 -3966.763  1196.261  9.55e+26  118.5612  131.6383  123.7778 
2 -3097.724   775.0886*   3.58e+22*   105.8844*  131.4160   116.0693* 

Note: The star indicates lag order selected by the criterion. The criterion include the sequential modified 
likelihood ratio (LR) test statistic (each test at 5% level), the final prediction error (FPE), the Akaike 
information criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information 
criterion (HQIC). 

 
 
 
 
 



Table 2: Granger Temporal Causality Tests 

States AZ CA FL GA IL IN MA MD MI MO NC NJ NY OH PA TN TX VA WA WI 

AZ  2.850 3.432 0.160 1.265 3.164 0.190 0.439 4.196 0.873 4.744‡ 3.501 1.058 3.428 10.516* 1.548 2.208 1.456 7.125† 0.220 

CA 0.749  4.010 1.003 2.081 1.547 0.492 2.198 1.677 6.742† 2.514 0.855 0.741 2.158 1.728 2.456 1.275 0.346 2.490 0.896 

FL 0.812 9.435*  4.434 0.714 6.253† 4.769‡ 8.201† 10.162* 2.659 3.319 1.864 8.099† 0.761 6.757† 1.992 5.426‡ 3.785 5.610‡ 1.870 

GA 4.250 0.175 2.954  8.031† 12.644* 4.215 0.165 6.752† 2.546 3.411 0.740 3.041 0.779 4.056 4.329 1.834 0.209 7.864† 0.011 

IL 0.898 6.865† 23.347* 4.698‡  1.072 0.501 0.726 18.365* 13.470* 2.907 1.718 0.006 1.123 1.493 6.706† 22.187* 34.438* 4.544 1.530 

IN 3.207 12.407* 8.765† 8.232† 2.788  5.527‡ 6.175† 1.282 12.780* 0.278 2.559 5.296‡ 15.491* 12.503* 1.738 4.633‡ 10.058* 4.437 1.097 

MA 1.723 1.711 1.574 0.754 0.670 0.064  0.761 0.783 2.181 3.044 0.174 1.370 0.641 4.909‡ 4.190 1.265 3.864 0.151 0.266 

MD 2.501 13.451* 5.198‡ 0.949 5.045‡ 1.506 0.728  6.393† 2.649 2.029 3.386 1.414 4.338 0.336 2.730 6.269† 5.657‡ 3.399 4.141 

MI 23.111* 2.803 12.694* 0.587 9.447* 2.009 6.663† 10.343*  13.879* 0.867 0.320 3.309 7.207† 23.995* 2.620 10.684* 7.369† 3.918 10.676* 

MO 6.334† 1.892 2.839 0.079 2.520 5.594‡ 1.167 2.240 1.334  2.337 1.060 16.220* 10.040* 21.569* 6.258† 1.268 5.079‡ 0.042 9.123† 

NC 8.644† 0.766 2.835 0.032 1.933 5.220‡ 1.318 1.301 5.875‡ 2.499  1.017 5.503‡ 3.105 4.113 11.981* 1.824 1.780 6.228† 2.570 

NJ 2.280 0.369 2.109 1.766 0.028 0.867 6.227† 0.674 1.879 0.930 0.792  0.122 0.450 0.377 3.522 1.837 0.884 0.884 2.184 

NY 19.033* 1.215 9.521* 0.998 8.517† 4.438 4.203 4.324 7.340† 7.049† 2.469 35.284*  6.169† 20.294* 2.735 0.727 7.898† 0.117 2.631 

OH 0.324 2.271 5.992† 0.351 2.018 4.018 1.553 0.927 1.185 0.283 1.593 6.191† 20.447*  5.884‡ 0.693 1.448 2.395 1.330 1.943 

PA 0.932 1.467 4.274 5.264‡ 0.250 2.005 3.787 2.745 0.012 3.777 2.158 1.072 2.038 1.177  0.392 1.220 0.184 2.392 2.188 

TN 4.369 0.553 6.529 4.010 0.282 0.473 13.220* 1.474 0.083 2.940 0.564 4.983‡ 3.525 3.086 0.099  0.114 3.427 7.867† 18.831* 

TX 0.655 5.485‡ 0.738† 0.056 5.298‡ 5.309‡ 4.106 7.614† 2.858 1.722 0.546 5.251‡ 1.404 6.031† 0.170 1.132  0.724 1.978 13.070* 

VA 1.521 9.088† 0.624 3.345 6.057† 3.473 7.436† 3.203 6.062† 0.285 0.257 9.355* 2.199 21.673* 3.398 2.677 0.030  2.370 13.518* 

WA 1.647 16.669* 1.295 0.440 3.249 4.863‡ 4.118 0.457 0.023 3.210 1.384 5.775‡ 1.371 5.496‡ 2.453 0.027 1.392 10.230*  1.085 

WI 0.174 0.051 0.899 4.376 1.279 7.534† 4.582 0.361 8.180† 3.782 5.586‡ 1.462 29.678* 5.127‡ 20.469* 10.545* 1.219 5.179‡ 1.292  

Note: Numbers are χ2 tests with 2 degrees of freedom. The test determines whether the column state temporally (Granger) causes the row state. 
 
* Means significant at the 1-percent level. 
† Means significant at the 5-percent level. 
‡ Means significant at the 10-percent level. 



Table 3: Forecast Results for the Real Housing Price Index: All 20 States 

Model Parameters All 
States Model Parameters All 

States Model Parameters All 
States 

FAVAR   0.141             
w=0.3,d=0.5 0.877 w=0.3,d=0.5 0.155 w=0.3,d=0.5 0.256 
w=0.2,d=1 0.871 w=0.2,d=1 0.147 w=0.2,d=1 0.257 
w=0.1,d=1 0.846 w=0.1,d=1 0.141 w=0.1,d=1 0.257 
w=0.2,d=2 0.871 w=0.2,d=2 0.145 w=0.2,d=2 0.253 

SBVAR 

w=0.1,d=2 0.846 

SFABVAR 

w=0.1,d=2 0.137* 

LSBVAR 

w=0.1,d=2 0.252 
w=0.3,d=0.5 0.884 w=0.3,d=0.5 0.184 w=0.3,d=0.5 0.267 
w=0.2,d=1 0.869 w=0.2,d=1 0.181 w=0.2,d=1 0.270 
w=0.1,d=1 0.843 w=0.1,d=1 0.177 w=0.1,d=1 0.270 
w=0.2,d=2 0.869 w=0.2,d=2 0.178 w=0.2,d=2 0.268 

CBVAR 

w=0.1,d=2 0.843 

CFABVAR 

w=0.1,d=2 0.168 

LCBVAR 

w=0.1,d=2 0.267 
Note: Numbers all relative to the RMSE forecast error of the simple VAR model as the benchmark. Thus, values 

less than one mean that the model exhibits a lower RMSE than the VAR model. The star (*) indicates the 
forecasting model in all states with the minimum RMSE. 



Table 4: Forecast Results for the Real Housing Price Index: 20 States 

MODEL Parameters AZ CA FL GA IL IN MA MD MI MO NC NJ NY OH PA TN TX* VA WA WI 

FAVAR  0.187 0.101* 0.084* 0.145* 0.100 0.242 0.143 0.092* 0.171 0.120 0.162 0.110* 0.137 0.185 0.229 0.155 0.149 0.096 0.085* 0.133 

w=0.3,d=0.5 1.026 0.939 1.035 1.122 0.776 0.843 0.924 1.041 0.802 0.792 0.859 0.958 0.733 0.828 0.883 0.660 1.007 0.954 0.599 0.753 

w=0.2,d=1 1.025 0.942 1.019 1.093 0.770 0.852 0.922 1.028 0.765 0.827 0.839 0.972 0.730 0.821 0.896 0.645 0.981 0.958 0.603 0.740 

w=0.1,d=1 0.975 0.937 0.928 0.953 0.751 0.857 0.926 0.995 0.695 0.870 0.799 0.979 0.727 0.799 0.932 0.616 0.909 0.920 0.625 0.721 

w=0.2,d=2 1.025 0.942 1.019 1.093 0.770 0.852 0.922 1.028 0.765 0.827 0.839 0.972 0.730 0.821 0.896 0.645 0.981 0.958 0.603 0.740 

SBVAR 

w=0.1,d=2 0.975 0.937 0.928 0.953 0.751 0.857 0.926 0.995 0.695 0.870 0.799 0.979 0.727 0.799 0.932 0.616 0.909 0.920 0.625 0.721 

w=0.3,d=0.5 0.999 0.913 0.880 1.021 0.839 0.811 0.929 1.015 0.849 0.738 0.845 0.914 0.821 0.890 0.904 0.870 1.042 0.910 0.733 0.755 

w=0.2,d=1 1.010 0.914 0.851 0.999 0.842 0.794 0.927 1.022 0.803 0.696 0.799 0.915 0.815 0.896 0.920 0.820 1.026 0.892 0.703 0.737 

w=0.1,d=1 0.940 0.917 0.799 0.894 0.852 0.808 0.927 1.027 0.720 0.733 0.766 0.927 0.838 0.868 0.920 0.688 0.952 0.840 0.687 0.749 

w=0.2,d=2 1.010 0.914 0.851 0.999 0.842 0.794 0.927 1.022 0.803 0.696 0.799 0.915 0.815 0.896 0.920 0.820 1.026 0.892 0.703 0.737 

CBVAR 

w=0.1,d=2 0.940 0.917 0.799 0.894 0.852 0.808 0.927 1.027 0.720 0.733 0.766 0.927 0.838 0.868 0.920 0.688 0.952 0.840 0.687 0.749 

w=0.3,d=0.5 0.167 0.204 0.100 0.167 0.142 0.109* 0.181 0.113 0.061 0.100* 0.152 0.110 0.197 0.195 0.222 0.108* 0.210 0.142 0.233 0.192 

w=0.2,d=1 0.140 0.178 0.093 0.172 0.0928 0.113 0.197 0.116 0.055 0.108 0.147 0.116 0.183 0.184 0.189 0.125 0.205 0.140 0.217 0.165 

w=0.1,d=1 0.139 0.146 0.095 0.171 0.099 0.129 0.208 0.111 0.040 0.132 0.148 0.118 0.152 0.168 0.169 0.137 0.198 0.128 0.202 0.134 

w=0.2,d=2 0.139 0.156 0.091 0.169 0.103 0.120 0.213 0.120 0.045 0.124 0.147 0.116 0.173 0.175 0.173 0.139 0.200 0.141 0.207 0.141 

SFABVAR 

w=0.1,d=2 0.126* 0.130 0.092 0.162 0.106 0.144 0.216 0.109 0.026* 0.149 0.138 0.116 0.135* 0.159* 0.168* 0.145 0.190 0.115 0.196 0.1208 

w=0.3,d=0.5 0.196 0.210 0.152 0.201 0.175 0.137 0.199 0.143 0.101 0.151 0.182 0.132 0.210 0.227 0.316 0.125 0.264 0.152 0.231 0.175 

w=0.2,d=1 0.162 0.163 0.155 0.218 0.136 0.159 0.216 0.141 0.160 0.185 0.149 0.133 0.207 0.222 0.301 0.161 0.267 0.132 0.197 0.163 

w=0.1,d=1 0.185 0.123 0.156 0.211 0.115 0.181 0.220 0.140 0.182 0.206 0.124* 0.135 0.197 0.198 0.282 0.177 0.263 0.124 0.168 0.148 

w=0.2,d=2 0.168 0.133 0.147 0.208 0.109 0.183 0.239 0.142 0.143 0.208 0.129 0.136 0.191 0.217 0.293 0.173 0.261 0.130 0.177 0.166 

CFABVAR 

w=0.1,d=2 0.173 0.113 0.132 0.182 0.128 0.208 0.228 0.138 0.125 0.205 0.132 0.135 0.167 0.190 0.258 0.169 0.238 0.129 0.155 0.146 

w=0.3,d=0.5 0.267 0.214 0.100 0.405 0.166 0.446 0.161 0.222 0.254 0.263 0.333 0.350 0.296 0.373 0.308 0.214 0.169 0.074 0.196 0.311 

w=0.2,d=1 0.222 0.193 0.097 0.405 0.191 0.414 0.147 0.230 0.221 0.256 0.295 0.410 0.286 0.388 0.332 0.238 0.221 0.082 0.243 0.272 

w=0.1,d=1 0.218 0.192 0.098 0.397 0.190 0.414 0.150 0.228 0.218 0.258 0.294 0.413 0.287 0.387 0.330 0.234 0.224 0.082 0.244 0.275 

w=0.2,d=2 0.152 0.157 0.125 0.432 0.184 0.382 0.136 0.217 0.215 0.207 0.244 0.457 0.251 0.388 0.349 0.252 0.302 0.080 0.315 0.210 

LSBVAR 

w=0.1,d=2 0.141 0.157 0.119 0.419 0.186 0.382 0.141 0.215 0.225 0.217 0.242 0.457 0.256 0.385 0.344 0.248 0.304 0.077 0.315 0.217 

w=0.3,d=0.5 0.366 0.199 0.116 0.368 0.175 0.455 0.154 0.143 0.289 0.239 0.351 0.347 0.363 0.307 0.474 0.164 0.314 0.057* 0.203 0.256 

w=0.2,d=1 0.299 0.193 0.117 0.392 0.189 0.426 0.142 0.158 0.253 0.272 0.321 0.395 0.374 0.321 0.450 0.221 0.375 0.071 0.231 0.206 

w=0.1,d=1 0.294 0.192 0.117 0.384 0.188 0.426 0.146 0.158 0.258 0.269 0.319 0.397 0.376 0.321 0.448 0.218 0.374 0.071 0.232 0.205 

w=0.2,d=2 0.192 0.179 0.140 0.446 0.190 0.404 0.131* 0.154 0.253 0.265 0.278 0.430 0.374 0.308 0.388 0.259 0.470 0.087 0.265 0.147 

LCBVAR 

w=0.1,d=2 0.191 0.178 0.133 0.433 0.190 0.404 0.136 0.152 0.259 0.269 0.276 0.430 0.379 0.304 0.387 0.255 0.466 0.085 0.266 0.147 

Note: Numbers all relative to the RMSE forecast error of the simple VAR model as the benchmark. Thus, values less than one mean that the model exhibits a lower 
RMSE than the VAR model. The star (*) indicates the forecasting model in each state with the minimum RMSE. 
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