University of Pretoria

University of Pretoria
Department of Economics Working Paper Series

Using Large Data Sets to Forecast Housing Prices: A Case Study of 20 US States
Rangan Gupta

University of Pretoria

Alain Kabundi

University of Johannesburg

Stephen M. Miller

University of Nevada

Working Paper: 2009-12

May 2009

Department of Economics
University of Pretoria
0002, Pretoria

South Africa

Tel: +27 12 420 2413
Fax: 427 12 362 5207



Using Large Data Sets to Forecast Housing Prices:
A Case Study of Twenty US States™

Rangan Gupta
Department of Economics
University of Pretoria
Pretoria, 0002, SOUTH AFRICA

Alain Kabundi
Department of Economics and Econometrics
University of Johannesburg
Johannesburg, 2006, SOUTH AFRICA

Stephen M. Miller**
Department of Economics
College of Business
University of Nevada, Las Vegas
Las Vegas, Nevada, USA 89154-6005
stephen.miller@unlv.edu

Abstract

We implement several Bayesian and classical models to forecast housing prices in 20 US states.
In addition to standard vector-autoregressive (VAR) and Bayesian vector autoregressive (BVAR)
models, we also include the information content of 308 additional quarterly series in some
models. Several approaches exist for incorporating information from a large number of series.
We consider two approaches — extracting common factors (principle components) in a Factor-
Augmented Vector Autoregressive (FAVAR) or Factor-Augmented Bayesian Vector
Autoregressive (FABVAR) models or Bayesian shrinkage in a large-scale Bayesian Vector
Autoregressive (LBVAR) models. In addition, we also introduce spatial or causality priors to
augment the forecasting models. Using the period of 1976:Q1 to 1994:Q4 as the in-sample
period and 1995:Q1 to 2003:Q4 as the out-of-sample horizon, we compare the forecast
performance of the alternative models. Based on the average root mean squared error (RMSE)
for the one-, two-, three-, and four—quarters-ahead forecasts, we find that one of the factor-
augmented models generally outperform the large-scale models in the 20 US states examined in
this paper.
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1. Introduction

This paper considers the dynamics of housing prices and the ability of different pure time-series
models to forecast housing prices. The main focus considers how the researcher can incorporate
large data sets into forecasting equations, using dynamic factor analysis or shrinking large-scale
BVAR models. We illustrate the process using housing prices from the most-populous 20 US
states — Arizona, California, Florida, Georgia, Illinois, Indiana, Massachusetts, Maryland,
Michigan, Missouri, North Carolina, New Jersey, New York, Ohio, Pennsylvania, Tennessee,
Texas, Virginia, Washington, and Wisconsin.

We begin by searching for evidence of Granger temporal causality between housing
prices in the 20 US states. UK housing experts found a “ripple” effect of housing prices that
begins in the Southeast UK and proceeds toward the Northwest. Meen (1999) outlines four
different theories to justify the ripple effect — migration, equity conversion, spatial arbitrage, and
exogenous shocks with different timing of spatial effects.’ The ripple effect receives little
support in the US. For example, most analyses relate to a given geographic housing market, such
as a metropolitan area (Tirtirglou 1992; Clapp and Tirtirglou 1994; and Gupta and Miller 2009b).
More recent evidence across census regions also exists, which may reflect the fourth of Meen’s
explanations (Pollakowski and Ray, 1997; Meen 2002). Gupta and Miller (2009a) find evidence
of a ripple effect from Los Angeles to Las Vegas and from Las Vegas to Phoenix, which they
attribute to the first three of Meen’s (1999) rationalizations. Our study adds to the evidence of

ripple effects in the US.

! The migration explanation requires that households move from one metropolitan area to another to take advantage
of regional housing price differences. The equity conversion explanation requires that residents of one region sell
their home and move to a lower cost region where they can buy a similar quality home for a lower price and pocket
the residual equity. The spatial arbitrage explanation means that investors acquire properties in lower priced regions,
where higher anticipated return on housing investment exist. The exogenous shocks explanation implies that if the
determinants of housing prices in different regions experience a correlated movement, then housing prices will also
exhibit the same correlated movement.



We next examine the explanatory power of including information from a large set of
economic variables, using dynamic factors or Bayesian shrinkage approaches. More specifically,
we compare the out-of-sample forecasting performance of various time-series models — vector
autoregressive (VAR), factor augmented VAR (FAVAR), and various Bayesian time-series
models. For the Bayesian models, we estimate Bayesian VAR (BVAR), factor augmented
BVAR (FABVAR), and large-scale BVAR (LBVAR) models that include spatial and causality
priors (LeSage 2004, Gupta and Miller 2009a, 2009b). The factor-augmented models, frequently
with spatial priors, generally perform the best across the 20 states, using the average root-mean-
squared-error (RMSE) criteria. Large-scale models usually come in a close second to the factor-
augmented models, and actually outperform the factor-augmented models in two states. Finally,
the models that exclude the information from the large set of data come in a distant third in
forecast performance, implying that the macroeconomic fundamentals partly drive housing
prices.

We organize the rest of the paper as follows. Section 2 provides a brief review of the
literature on using large data sets in forecasting models. Section 3 discusses the literature on
forecasting housing prices. Section 4 specifies the various time-series models estimated and used
for forecasting. Section 5 discusses the data and the results. Section 6 concludes.

2. Forecasting with Large Data Sets
For forecasting purposes, time-series models generally perform as well as or better than dynamic
structural econometric specifications. Zellner and Palm (1974) provide the theoretical

rationalization.” An important issue involves determining how additional information can or

2 Any dynamic structural model implicitly generates a series of univariate time-series models for each endogenous
variable. The dynamic structural model, however, imposes restrictions on the parameters in the reduced-form time-
series specification. Dynamic structural models prove most effective in performing policy analysis, albeit subject to
the Lucas critique. Time-series models prove most effective at forecasting. That is, in both cases errors creep in



cannot improve the forecasting performance over a simple univariate autoregressive or
autoregressive-moving-average representation.

A simple approach uses an autoregressive distributed lag (ARDL) model (Stock and
Watson 1999, 2003, 2004). That is, the researcher runs an ARDL, or transfer function, model,
where the variable to forecast enters as an autoregressive process and one driver variable enters
as a distributed lag. The researcher compares the baseline model, the pure autoregressive
specification forecasts with the forecasts for the ARDL specification. Extending this further, the
researcher can repeat the process for a whole series of potential driver variables. In this extended
case, one aggregates across all of the individual forecasts to generate the combined forecast.
Combination forecasts range from simple means or medians to more complicated principal-
components- or mean-square-forecast-error-weighted forecasts.

Another method uses “atheoretical” VAR models. These models do not impose
exogeneity assumptions on the included variables. Unlike the single-equation ARDL model, the
VAR approach assumes that lagged values of each variable may provide valuable information in
forecasting each endogenous variable. VAR models, however, face problems of over-
parameterization, since the number of parameters to estimate increases dramatically with
additional variables or additional lags in the system. Given this problem, one approach for using
more data in the VAR model involves the extraction of common factors from a large data set that
researchers can then add to the VAR specification (Bernanke, Boivin, and Eliazs 2005, Stock
and Watson 2002, 2005). Adding a couple of common factors from the large dataset to a VAR

system economizes on the number of new parameters to estimate.

whenever the researcher makes a decision about the specification. Clearly, more researcher decisions relate to a
dynamic structural model than a univariate time-series model, suggesting that fewer errors enter the time-series
model and allowing the model to produce better forecasts.



Bayesian VAR (BVAR) models address the over-parameterization problem by estimating
a small number of hyper-parameters in the specification that define all the parameters in the
system. Since the Bayesian approach already solves the over-parameterization problem,
researchers can add a large set of variables to the estimation of a BVAR system, obviating the
need to extract common factors. Nothing prevents, however, the extraction of common factors
from the large set of macroeconomic variables to include in a factor-augmented VAR system,
which we also do.

The ADRL method uses information in the large dataset one variable at a time and then
aggregates across all forecasts. As a result, this approach does not differentiate between common
factors and non-common factors in the large dataset. Each exhibits the same effect on the
forecast, over and above the autoregressive part of the model. In the factor-augmented approach,
the researcher potentially leaves information on the table by only extracting the common factor
information and leaving the remaining information out of the analysis. On the other hand, the
Bayesian approach, includes all the information from the large set of data, but restricts the
estimation by imposing conditions on the parameters of the estimating equation. In sum, all
methods introduce restrictions on the way information from the large dataset affects the
estimation process. Thus, any of the individual approaches may lead to better forecasts a priori.

In this paper, we consider the factor-augmented and large-scale Bayesian methods for
incorporating the information from a large dataset. These methods provide the natural extension
of the VAR and BVAR models. The ARDL model involves a single-equation, whereas the VAR
and BVAR models involve multiple equations. Thus, we exclude the ARDL approach from our

analysis.



3. Forecasting Housing Prices

Traditionally, the housing market and its cycle played an important role in understanding the
business cycle. More recently, several authors argue that asset prices help forecast both inflation
and output (Forni et al., 2003; Stock and Watson, 2003, Gupta and Das, 2008a, 2008b and Das et
al., 2008a, 2008b). Since homes imbed much individual wealth, housing price movements may
provide important signals for consumption, output, and inflation. That is, housing market
adjustments play an important role in the business cycle (Iacoviello and Neri, 2008), not only
because housing investment proves a volatile component of demand (Bernanke and Gertler,
1995), but also because housing price changes generate important wealth effects on consumption
(International Monetary Fund, 2000; ) and investment (Topel and Rosen, 1988).

In sum, models that forecast real housing price inflation can give policy makers an idea
about the future direction of the overall macroeconomy, and hence, can provide important
information for designing better and more-appropriate policies. In other words, the housing
sector acts as a leading indicator for the real sector of the economy. The recent world-wide credit
crunch began with the burst of the housing price bubble, which, in turn, led the real sector of the
world’s economy toward an economic slump.

A large number of economic variables affect housing price growth (Cho, 1996; Abraham
and Hendershott, 1996; Johnes and Hyclak, 1999; and Rapach and Strauss, 2007, 2008). For
instance, income, interest rates, construction costs, labor market variables, stock prices, industrial
production, consumer confidence index, and so on act as potential predictors.

Rapach and Strauss (2007, 2008) consider forecasting housing prices in states, using a
large data set of economic variables. Rapach and Strauss (2007) use an autoregressive distributed

lag (ARDL) model framework, containing 25 determinants, to forecast real housing price growth



for the individual states of the Federal Reserve’s Eighth District — Arkansas, Illinois, Indiana,
Kentucky, Missouri, Mississippi, and Tennessee. Given the difficulty in determining a priori the
particular variables that prove the most important in forecasting real housing price growth, the
authors also use various methods to combine the individual ARDL model forecasts, which result
in better forecast of real housing price growth. Rapach and Strauss (2008) perform the same
analysis for 20 largest US states based on ARDL models containing large number of potential
predictors, including state, regional and national level variables. Once again, the authors reach
similar conclusions on the importance of combining forecasts.

Vargas-Silva (2008a) uses a factor-augmented VAR (FAVAR) model, containing 120
monthly series, to analyze the effect of monetary policy actions on the housing sector of four
different regions of the United States. To our knowledge, this is the first attempt to look into the
ability of FAVARs in forecasting regional real housing price growth rates.’ Das et al., (2009)
consider the forecasting performance of regional real housing price growth rates in the nine US
Census regions, using FAVAR and LBVAR models. They find that the FAVAR models
generally outperform the LBVAR models.

Our paper extends the above mentioned studies, in the sense that we use large-scale
models that allow for not only the role of a wide possible set of fundamentals to affect the
housing sector, but also spatial and causal influences amongst the prices of the 20 largest US

states.

? Note that Dua and Smyth (1995), Dua and Miller (1996) and Dua et al. (1999) used coincident and leading indexes
in BVAR models to forecast home sales for the Connecticut and the overall US economy, respectively. Coincident
and leading indexes incorporate information from component series, using the procedures established by the
Department of Commerce and described in U.S. Department of Commerce (1977, 1984) and in Niemira and Klein
(1994).



4. VAR, BVAR, FAVAR, FABVAR, and LBVAR Specifications and Estimation®
4.1 VAR, BVAR, and LBVAR:

Following Sims (1980), we can write an unrestricted VAR model as follows:

y,=A+AL)y, +¢, (1)
where y equals a (nx1) vector of variables to forecast; A, equals an (nx1) vector of constant
terms; A(L) equals an (nXn) polynomial matrix in the backshift operator L with lag length p,5

and ¢ equals an (nx1) vector of error terms. In our case, we assume that £ ~ N (0, O'ZIn) , where

I, equals an (nXxn) identity matrix.

The VAR method typically use equal lag lengths for all variables, which implies that the
researcher must estimate many parameters, including many that prove statistically insignificant.
This over-parameterization problem can create multicollinearity and a loss of degrees of
freedom, leading to inefficient estimates, and possibly large out-of-sample forecasting errors.
Some researchers exclude lags with statistically insignificant coefficients. Alternatively,
researchers use near VAR models, which specify unequal lag lengths for the variables and
equations.

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer
(1993) use the BVAR model to overcome the over-parameterization problem. Rather than
eliminating lags, the Bayesian method imposes restrictions on the coefficients across different
lag lengths, assuming that the coefficients of longer lags may more closely approach zero than
the coefficients on shorter lags. If, however, stronger effects come from longer lags, the data can

override this initial restriction. Researchers impose the constraints by specifying normal prior

* The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2006), Gupta (2006), Gupta and
Miller (2009a, 2009b), and Das et al., (2009).

> Thatis, A(L)= AL+AL +..+A L



distributions with zero means and small standard deviations for most coefficients, where the
standard deviation decreases as the lag length increases and implies that the zero-mean prior
holds with more certainty. The first own-lag coefficient in each equation proves the exception
with a unitary mean. Finally, Litterman (1981) imposes a diffuse prior for the constant. We
employ this “Minnesota prior” in our analysis, where we implement Bayesian variants of the
classical VAR models.

Formally, the means of the Minnesota prior take the following form:
/)’l.~N(1,0'/23’_)and ,3/~N(0,6§f) 2)
where [, equals the coefficients associated with the lagged dependent variables in each equation
of the VAR model (i.e., the first own-lag coefficient), while [, equals any other coefficient. In

sum, the prior specification reduces to a random-walk with drift model for each variable, if we

set all variances to zero. The prior variances, 0'/2),, and 0'/2,, specify uncertainty about the prior
i j

means, E =1, andﬁj =0.

Doan et al., (1984) propose a formula to generate standard deviations that depend on a
small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to reduce the over-
parameterization in the VAR models. This approach specifies individual prior variances for a
large number of coefficients, using only a few hyper-parameters. The specification of the
standard deviation of the distribution of the prior imposed on variable j in equation i at lag m, for

all i, j and m, equals S;(i, j, m), defined as follows:

Sl(i,J',M)=[W><g(m)><f(i,j)]%, 3)

J

where f(i, j) = 1, if i = j and k; otherwise, with (0<k, <1), and g(m) = m™, with d > 0. The

10



A

. o . . . A .G,
estimated standard error of the univariate autoregression for variable i equals &;. The ratio ! %
i

scales the variables to account for differences in the units of measurement and, hence, causes the
specification of the prior without consideration of the magnitudes of the variables. The term w
indicates the overall tightness, with the prior getting tighter as the value falls. The parameter
g(m) measures the tightness on lag m with respect to lag 1, and equals a harmonic shape with
decay factor d, which tightens the prior at longer lags. The parameter f{i, j) equals the tightness
of variable j in equation i relative to variable i, and by increasing the interaction (i.e., the value of

ky ), we loosen the prior.6

The overall tightness (w) and the lag decay (d) hyper-parameters equal 0.1 and 1.0,

respectively, in the standard Minnesota prior, while k; = 0.5, implying a 20x20 weighting matrix

(F) for our 20 states as follows:

(1.0 05 . . 0.5]
05 10 . . 05

F(20x20)=| . A “4)
105 05 . . 1.0]

Since researchers believe that the lagged dependant variable in each equation proves most
important, F imposes E =1 loosely. The S j coefficients, however, that associate with less-
important variables receive a coefficient in the weighting matrix (F) that imposes the prior means
of zero more tightly. Since the Minnesota prior treats all variables in the VAR, except for the
first own-lag of the dependent variable, in an identical manner, several researchers attempt to

alter this fact. Usually, this means increasing the value for the overall tightness (w) hyper-

® For an illustration, see Dua and Ray (1995).
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parameter from 0.10 to 0.20, so that more influence comes from other variables in the model. In
addition, Dua and Ray (1995) introduce a prior that imposes fewer restrictions on the other
variables in the VAR model (i.e., w = 0.30 and d = 0.50).

Alternatively, LeSage and Pan (1995) propose spatial BVAR (SBVAR) models. They
adopt a weight matrix that uses the first-order spatial contiguity (FOSC) prior, implying a non-
symmetric ' matrix with more importance given to variables from neighboring states than those
from non-neighboring states. Figure 1 maps the locations of the 20 states. They impose a value
of one for both the diagonal elements of the weight matrix, as in the Minnesota prior, as well as
for place(s) that correspond to variable(s) from states with which the specific state shares a
common border(s). For the elements in the F' matrix that correspond to variable(s) from states
that do not share common borders, Lesage and Pan (1995) impose a weight of 0.1. In sum, the
0.5 weights in the specification shown in equation (5) become 1.0 for neighbors and 0.1 for non-
neighbors.

Gupta and Miller (2009a, 2009b) propose new specifications, causality BVAR (CBVAR)
models, where the weight matrix depends on tests for Granger temporal causality — the temporal
causality (TC) prior. They modify the LeSage and Pan (1995) first-order spatial-contiguity
(FOSC) prior in that they consider some neighbors as more important than other neighbors. In
fact, non-neighbors may exert more influence than neighbors. If one state’s housing prices
temporally cause another state’s housing prices, then they code the weight matrix for that off-
diagonal entry at 1.0. If no temporal causality exists, then they code the off-diagonal entry as 0.1.

In the current application, we use 328 quarterly series, housing price growth rates of the
20 largest states as well as 308 national macroeconomic variables. Logic and prior research

argues that state-level variables should exert minimal, if any, effect on national indicators, while

12



the latter set of variables surely influences the former. Thus, settingk; = 0.5 seems unrealistic.

Hence, borrowing from the BVAR models used for regional forecasting, involving both regional
and national variables, such as Kinal and Ratner (1986), Shoesmith (1992), Dua and Ray (1995),
Das et al. (2008a, 2009), and Gupta and Kabundi (2008a, b), we set the weight of a national
variable in a national equation, as well as a state equation, at 0.6. We set the weight of a state
variable in other state equation at 0.1 and in a national equation at 0.01. Finally, we set the
weight of the state variable in its own equation at 1.0. These weights implement Litterman’s
circle-star structure. Star (national) variables affect both star and circle (state) variables, while
circle variables primarily influence only other circle variables.” Thus, we estimate the large-scale
BVARs with asymmetric priors, incorporating spatial and causal influences as well as unequal
influences amongst the state- and national-level variables.

We estimate the alternative BVARSs, whether based on 20 or 328 variables, using Theil's

(1971) mixed estimation technique. Specifically, we denote a single equation of the VAR model
as:y, = X f+¢,, with Var(g,)=0"1 . Then, we can write the stochastic prior restrictions for this

single equation as follows:

o 0 0 .o 0
oo /0-111 rooo

Ut . B U
0 / 0O .. 0
Ut O B, Uy

his | | 0O 0. %_ .o . B + U3 )
= 113

r;mp ﬁ nnp unnp
o 0 . . .. O -
O-nnp i

" We also experimented by assigning higher and lower interaction values, in comparison to those specified above, to
the star variables in both the star and circle equations. The rank ordering of the alternative forecasts remained the
same.

13



Note that Var(u)=0’I, and the prior means r, and the prior variance O'U,m8 take the

ijm
forms shown in equations (2) and (3) for the Minnesota prior. With equation (5) written as
follows:

r=YXf+u, (6)
we derive the estimates for a typical equation as follows:

B=(X"X+Z') (X 'y, +Z'r) (7)

Essentially then, the method involves supplementing the data with prior information on

the distribution of the coefficients. The number of observations and degrees of freedom increase
artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of
degrees of freedom from over-parameterization in the classical VAR models does not emerge as
a concern in the alternative BVAR specifications.

4.2 FAVAR and FABVAR:

This study uses the Dynamic Factor Model (DFM) to extract common components between
macroeconomic series and then uses these common components to forecast real housing price
growth rates of the 20 largest US states, adding the extracted factors to the 20-variable VAR
model to create a FAVAR in the process. Furthermore, we estimate idiosyncratic component (see
below) with AR(p) processes as suggested by Boivin and Ng (2005).

The DFEM expresses individual times series as the sum of two unobserved components: a
common component driven by a small number of common factors and an idiosyncratic
component for each variable. The DFM extracts the few factors that explain the co-movement of

the US economy. Forni et al. (2005) demonstrate that for a small number of factors relative to

8 Note O in equation (12) is a generic term used to describe Si(i, j, m), k=1, 2, 3.
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the number of variables and a heterogeneous panel, we can recover the factors from present and

past observations.

Consider a nx1 covariance stationary process Y, =(y,,,....,y,,)' . Suppose that X, equals
the standardized version of Y, (i.e., X, possesses a mean zero and a variance equal to one).
Under DFM, we write X, as the sum of two orthogonal components as follows:

X, =AF +¢ 8)
where F, equals a rx1 vector of static factors, Aequals an nXr matrix of factor loadings, and
& equals a nx1 vector of idiosyncratic components. In a DFM, F, and & are mutually
orthogonal stationary process, while, ¥, = AF, equals the common component.

Since dynamic common factors are latent, we must estimate them. We note that the
estimation technique used matters for factor forecasts. This paper adopts the Stock and Watson

(2002b) method, which employs the static principal component approach (PCA) on X,. The
factor estimates, therefore, equal the first principal components of X, , (i.e., 13“, =A'X ,» Where A

equals the nxr matrix of the eigenvectors corresponding to the r largest eigenvalues of the

sample covariance matrix ).

For forecasting purposes, we use a 20-variable VAR augmented by extracted common
factors using the Stock and Watson (2002a) approach. This approach is similar to the univariate
Static and Unrestricted (SU) approach of Bovin and Ng (2005). Therefore, the forecasting

equation to predict Y is given by
Y . Y
[ o ]= <I>(L){ : } 9)
., F,

15



where h equals the forecasting horizon, (L) equal lag polynomials, which we estimate with

and without restrictions. As Boivin and Ng (2005) clearly note, VAR models are special cases of

equation (9). With known factors and the parameters, the FAVAR approach should produce

smaller mean squared errors. In practice, however, one does not observe the factors and we must

estimate them. Moreover, the forecasting equation should reflect a correct specification. We

consider the following DFM specifications:

- FAVAR: includes the real housing price growth rates of the 20 states and the
common static factors; and

- BFAVAR: the FAVAR specification with Bayesian restrictions on lags of the real
housing price growth rates based on the alternative types of priors outlined
above.

5. Data Description, Model Estimation, and Results

5.1 Data

While the small-scale VARSs, both the classical and Bayesian variants, include data of only the

annualized real housing price growth rates of the 20 largest US states, the large-scale BVARs

and the DFM also include the 308 quarterly national series. Nominal housing prices come from

the Freddie Mac database, the Conventional Mortgage Home Price Index (CMHPI). The CMHPI

uses matched transactions on the same property over time to account for quality changes and

consists of both purchase and refinance-appraisal transactions on over 33 million homes. We

deflate the state-level nominal CMHPI housing price by the personal consumption expenditure

(PCE) deflator from the Bureau of Economic Analysis (BEA) to generate our real housing price

series. We then compute annualized growth rates as 400 times the differences in the natural logs

of real housing prices.
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For the remaining 308 national variables, we use the macroeconomic indicators in the
data set of Liu and Jansen (2007). All data were transformed to induce stationarity.9 Since this
data set ends in 2003, our sample also ends at the same point.'” Amongst the 308 macroeconomic
indicators, 172 variables relate to real activity, 80 relate to prices or inflation, and 56 relate to the
monetary sector. Appendix A in Liu (2004) details the variables and their transformations. The
real activity group consists of variables such as industrial production, capacity utilization,
manufacturers’ inventories, retail inventories, retail sales, real personal consumption, real
personal income, new housing starts, employment, average working hours, and so on. The price
and inflation group consists of variables such as the consumer price index, the producer price
index, the personal consumption expenditure deflator, average hourly earnings, and so on. The
monetary sector group consists of variables such as monetary aggregates, various interest rates,
credit outstanding, and so on. Following Liu and Jansen (2007), we extract four static factors
from the DFEM estimated with one lag."’

5.2 Estimation and Results

This section reports our econometric findings. First, we determine whether temporal (Granger)
causality exists between the variables in our model. Second, we select the optimal model for
forecasting each market’s housing price, using the minimum average root mean squared error
(RMSE) across the one-, two-, three-, and four-quarter-ahead out-of-sample forecasts.

The data sample for all 20 states runs from 1976:Q1 through 2003:Q4. First, the temporal

? Using non-stationary data, however, is not required with the BVAR. Sims ez al. (1990) indicate that with the
Bayesian approach entirely based on the likelihood function, the associated inference does not require special
treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape regardless of the
presence of non-stationarity.

10 Since the state-level housing prices exist only at a quarterly frequency, we transform the monthly data set of Liu
and Jansen (2007) into quarterly values by taking the averages over three months.

"' We also confirm the choice of the four factors by the cumulative variance share, under which, the fifth eigenvalue
fell below the threshold of 5 percent.
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(Granger) causality tests use data from 1976:Q1 through 1994:Q4. Second the out-of-sample
forecasting experiment covers 1995:Q1 through 2003:Q4.

5.3 Evidence on Temporal Causality

We first test for Granger temporal causality between the 20 state housing price series. Temporal
causality tests emerge from the VAR model. We consider various lag-length selection criteria for
the VAR specification, including the sequential modified likelihood ratio (LR) test statistic (each
test at the S5-percent level), the final prediction error (FPE), the Akaike information criterion
(AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information criterion
(HQIC). All criteria except the SIC choose two lags. Table 1 reports the results.

Running the VAR specification and using the block exogeneity test, we discover that 96
pairs of states do not exhibit any temporal (Granger) causality between each other. With 20
states, we need to consider a total of 190 bivariate pairs of states.'* Of the remaining pairs, 74
exhibit one-way temporal causality while 20 pairs exhibit two-way causality.

The most influential, and least influenced, states include California, Massachusetts, New
Jersey, and Pennsylvania. Housing prices in Pennsylvania temporally lead housing prices in nine
other states; California, in eight; and Massachusetts and New Jersey, in six. In addition, only one
state’s housing prices each, North Carolina, Pennsylvania, Massachusetts, and Georgia,
temporally lead the housing prices in California Massachusetts, New Jersey, and Pennsylvania,
respectively. North Carolina temporally causes only two states, Arizona and Wisconsin, whereas
Georgia only temporally causes three, [llinois, Indiana, and Pennsylvania.

Switching to examine the most linkages, Indiana and Michigan housing prices respond to

the most other states housing prices — 11 states each. Further, Michigan, along with Ohio and

"2 The number of combinations of 20 states taken two at a time equals {2%2 3 18')} =190.
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Virginia, housing prices also temporally lead the housing prices in eight other states. Thus,
Michigan exhibits two-way temporal causality with five other states -- Florida, Illinois,
Maryland, Virginia, and Wisconsin. Two-way temporal causality also exists between Florida,
Illinois, and Indiana and four other states. The most influential states, California, Massachusetts,
New Jersey, and Pennsylvania, and Washington do not exhibit two-way temporal causality with
any other state. Washington, even though geographically isolated, temporally causes five states
and is temporally caused by five other states.

While the reader may expect to see housing prices in one state influencing the housing
prices in its geographic neighbors, we find little evidence of that. For the 20 instances of
bivariate temporal causality, only Michigan and Wisconsin share a common border, and that
only along the upper peninsula. Figure 1 reveals that 20 pairs of states share a contiguous border.
One-way causality between contiguous states only occurs seven times out of the remaining 19
cases, excluding the two-way causality between Michigan and Wisconsin.

Typically, the geographic reach of the housing market reflects the commuting shed for
the metropolitan area. That is, homes compete with each other within the same metropolitan
area. Tirtirglou (1992) and Clapp and Tirtirglou (1994) provided some of the earliest tests of
whether the housing market exhibited efficiency in a spatial market in Hartford, Connecticut.
Gupta and Miller (2009b) provide a more recent examination for 8 MSAs in the Southern
California housing market.

Since we cannot transport homes from one geographic region to another, does this
necessarily imply that the housing markets in the states do not exhibit linkages? Trade theory
shows that although labor and capital frequently do not move between countries, factor prices

equalize (Samuelson 1948). The flows of goods and services between countries act as surrogates
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for labor and capital flows and cause the prices of labor and capital to equalize even though
capital and labor do not move between countries. Since housing cannot flow between markets,
do other flows exist that can cause housing price convergence? Yes. First, the migration of home
buyers between metropolitan areas can link the housing markets. Second, home builders can also
move their operations between metropolitan areas in response to differential returns on home
building activity. In sum, the movement of home buyers and home builders between regions in
response to price differences can arbitrage the prices of homes, even though the homes
themselves cannot move between regions.

We argue that housing prices between geographic regions affect each other if either home
buyers or home builders move between the markets in response to price incentives. On the home
buyer side, different types of buyers or motivations may assist in the arbitrage process. One,
migration between states for jobs or retirement may link geographically separated states. Two,
equity conversion may allow some longtime residents of one state that experienced significant
appreciation to cash in their accumulated equity and buy a “better” home in another state with
lower housing prices, possibly linked to retirement decisions. Three, investors may use spatial
arbitrage to allocate their housing investment funds." In sum, we find more evidence of temporal
causality occurring between non-adjacent states and not occurring between adjacent states than
we initially hypothesized.

54 One- to Four-Quarter-Ahead Forecast Accuracy
Given the specification of priors in Section 4, we estimate the alternative small- and large-scale
models for the 20 states in our sample over the period 1976:Q1 to 1994:Q4 using quarterly data.

We then compute out-of-sample one- to four-quarters-ahead forecasts for the period of 1995:Q1

3 Meen (1999) offers a similar discussion of UK for housing price arbitrage between the Southeast to the Northwest,
which he calls the “ripple effect.” He defines four explanations -- migration, equity conversion, spatial arbitrage, and
exogenous shocks with different timing of spatial effects.
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to 2003:Q4, and compare the forecast accuracy relative to the forecasts generated by an
unrestricted VAR. Note that the choice of the in-sample period, especially the starting date,
depends on data availability. The starting point of the out-of-sample period follows Rapach and
Strauss (2007, 2008), who observe marked differences in housing price growth across U.S.
regions since the mid-1990s. As indicated above, the end-point of the horizon is 2003:Q4, since
the Liu and Jansen (2007) data on the national 308 variables ends there.

We estimate the multivariate versions of the classical VAR, the small-scale BVARs, the
large-scale BVARs, and the classical and Bayesian FAVARs over the period 1976:Q1 to
1994:Q4, and then forecast from 1995:Q1 through 2003:Q4. Since we use two lags, the initial
two quarters from 1976:Q1 to 1976:Q2 feed the lags. We re-estimate the models each quarter
over the out-of-sample forecast horizon in order to update the estimate of the coefficients, before
producing the four-quarters-ahead forecasts. We implemented this iterative estimation and the
four-quarters-ahead forecast procedure for 36 quarters, with the first forecast beginning in
1995:Q1. This produced a total of 36 one-quarter-ahead forecasts, ..., up to 36 four-quarters-
ahead forecasts.'* We calculate the root mean squared errors (RMSE)15 for the 36 one-, two-,
three-, and four-quarters-ahead forecasts for the 20 annualized real housing price growth rates of
the models. We then examine the average of the RMSE statistic for one-, two-, three-, and four-
quarters ahead forecasts over 1995:Q1 to 2003:Q4.

For the BVAR and FABVAR models, we start with a value of w = 0.1 and d = 1.0, and

then increase the value to w = 0.2 to account for more influences from variables other than the

 For this, we used the algorithm in the Econometric Toolbox of MATLAB, version R2007a.

" Note that if A, denotes the actual value of a specific variable in period 7 + n and , F, equals the forecast made

N _ 2
in period ¢ for ¢ + n, the RMSE statistic equals the following: \/{Zl (’F’*” A ) 4 } where N equals the number

of forecasts.
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first own lags of the dependant variables of the model. In addition, as in Dua and Ray (1995),
Gupta and Sichei (2006), Gupta (2006), and Gupta and Miller (2009a, 2009b), we also estimate
the BVARs and FABVARs with w = 0.3 and d = 0.5. We also introduce d = 2 to increase the
tightness on lag m. We select the model that produces the lowest average RMSE values as the
‘optimal’ specification for a specific state.

Table 3 reports the average of the one-, two-, three-, and four-quarter-ahead RMSEs
across all 20 states. The benchmark for all forecast evaluations is the VAR model forecast
RMSE:s. Thus, the 0.141 entry for the FAVAR model means that the FAVAR model experienced
a forecast RMSE of only 14.1 percent of the forecast RMSE for the VAR model. The results fall
into three different categories. The spatial and causality Bayesian VAR models (SBVAR and
CBVAR, respectively) do not perform much better than the VAR model with improvements in
RMSE in the neighborhood of 11 to 16 percent. Next, the large-scale spatial and causality
Bayesian VAR models (LSBVAR and LCBVAR, respectively) show more improvement in
RMSE over the VAR model, gaining between 73 to 75 percent. Finally, the factor augmented
models — VAR, spatial BVAR, and causality BVAR — experienced the most improvement over
the simple VAR RMSE forecast errors, improving by 81 to 86 percent. As such, the SBVAR and
CBVAR models forecast performance do not improve much over the benchmark VAR model
forecasts and the factor-augmented and large-scale Bayesian models exhibit improved
performance over the VAR (SBVAR and CBVAR) model, but do not differ too much for each
other in forecasting performance.

The factor augmented spatial Bayesian VAR model with w=0.7 and d=2.0 provides the
lowest average RMSE at 13.7-percent of the RMSE of the benchmark VAR model, which we

identify as the optimal specification. This specification deviates from the Minnesota prior in that
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the decay factor reduces the influence of lagged values more quickly. The SFABVAR model
with w=0.1 and d=1.0, the Minnesota prior, emerged as the second best performing model with a
RMSE of 14.1 percent of the VAR model, barely edging out the FAVAR model.

Table 4 reports the average one-, two-, three-, and four-quarter-ahead RMSE forecast
errors for each of the 20 states. First, the factor-augmented models generally performed better
than the large-scale models. A large-scale model emerged as the best performing model in terms
of minimum RMSE in only two states — Massachusetts and Virginia. In both states, the large-
scale causality BVAR achieved the best forecast performance, albeit with different priors w=0.2
and d=2.0 and w=0.3 and d=0.5, respectively. In the remaining 18 states, factor-augmented
models performed the best. In seven states the FAVAR model without spatial or causality priors
achieved the lowest RMSEs — California, Florida, Georgia, Maryland, New Jersey, Texas, and
Washington. For 10 states, the spatial factor-augmented model achieved the best performance —
six states with w=0.1 and d=2.0 — Arizona, Michigan, New York, Ohio, Pennsylvania, and
Wisconsin; three states with w=0.3 and d=0.5 — Indiana, Missouri, and Tennessee; and one state
with w=0.2 and d=1.0 -- llinois. North Carolina achieved the best forecast performance for the
Causality factor-augmented BVAR model with the Minnesota prior.

In sum, different specifications yield the lowest RMSE in different states. No common
pattern emerges. Comparing the forecasting performance across states, however, we see that the
five best performing forecast models in order from best to worst include Michigan (2.6 percent
of the VAR RMSE), Virginia (5.7 percent), Florida (8.4 percent), Washington (8.5 percent), and
Ilinois (9.2 percent). The five worst performing forecast models, although the best in each state,
in order from worst to best include Pennsylvania (16.8 percent of the VAR RMSE), Ohio (15.9

percent), Texas (14.9 percent), Georgia (14.5 percent), and New York (13.5 percent).
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6. Conclusion

We forecast housing prices in 20 US states, using the VAR and BVAR models, both with and
without the information content of 308 additional quarterly economic series. Two approaches
exist for incorporating information from a large number of data series — extracting common
factors (principle components) in a Factor-Augmented Vector Autoregressive (FAVAR) or
Factor-Augmented Bayesian Vector Autoregressive (FABVAR) models or Bayesian shrinkage
in a large-scale Bayesian Vector Autoregressive (LBVAR) models.'® In addition, we also
introduce spatial or causality priors to augment the forecasting models.

Using the period of 1976:Q1 to 1994:Q4 as the in-sample period and 1995:Q1 to
2003:Q4 as the out-of-sample horizon, we compare the forecast performance of the alternative
models for one- to four-quarters ahead forecasts. Based on the average root mean squared error
(RMSE) for the one-, two-, three-, and four—quarter-ahead forecasts, we find that the factor-
augmented models, sometimes with spatial or causality priors, generally outperform the large-
scale models in the 20 US states examined. In two states, the large-scale BVAR models provide
the best forecasts. But, the differences between the factor-augmented and large scale Bayesian
models average RMSEs generally prove small in size. Both the factor-augmented and large-scale
Bayesian models produce much lower average RMSEs than the spatial or causality VAR or
BVAR models.

In sum, the utilization of a large dataset of economic variables improves the forecasting
performance over models that do not use this data. In other words, macroeconomic fundamentals

do matter when forecasting real housing prices.

' Another approach also exists, the ADRL method. This approach estimates a series of bivariate transfer function
models with forecasted variable as the dependent variable and then aggregates forecasts with various weighting
methods. We do not pursue this single-equation method and only consider the multiple-equation FAVAR and
LBVAR models.
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Table 1:

Lag-Length Selection Tests

Lag LogL LR FPE AIC SC HQ
0 -4801.889 NA 8.88e+31 130.3213 130.9440* 130.5697
1 -3966.763 1196.261 9.55e+26 118.5612 131.6383 123.7778
2 -3097.724 775.0886* 3.58e+22* 105.8844* 131.4160 116.0693*
Note: The star indicates lag order selected by the criterion. The criterion include the sequential modified

likelihood ratio (LR) test statistic (each test at 5% level), the final prediction error (FPE), the Akaike
information criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information
criterion (HQIC).
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Table 2:

Granger Temporal Causality Tests

States AZ CA FL GA IL IN MA MD MI MO NC NJ NY OH PA TN TX VA WA WI
AZ 2850 3432 0160 1265 3164 0190 0439 4196 0873  4744f 3501 1.058 3428 10516% 1548 2208 1456 7.125f  0.220
CA 0.749 4.010 1003 2.081 1547 0492 2198 1677 6742% 2514 0855 0741 2.158 1728 2456 1275 0346 2490  0.896
FL 0812 9.435% 4434 0714 6253F  4769%  8201%  10.162*  2.659 3319 1864  8099% 0761 6757+ 1992 54268 3785 5610  1.870
GA 4250 0175 2954 8.031%  12.644* 4215 0165  6752f 2546 3411 0740 3.041 0779 4056 4329 1834 0209  7.864f  0.011
IL 0.898  6.865F 23347  4.698% 1072 0501 0726 18.365%  13.470%  2.907 1718 0.006 1123 1493 6706  22.187*  34.438% 4544 1.530
IN 3207 12407%  8765f  8232f 2788 5527¢  6.175F 1282 12780% 0278 2559  5296f  15491%  12503* 1738  4.633%  10.058%  4.437 1.097
MA 1.723 1711 1574 0754 0670  0.064 0.761 0783 2181 3044  0.174 1370 0641 4909%  4.190 1.265 3864  0.151 0.266
MD 2501 13451%  5.198% 0949  5.045% 1506  0.728 63931 2649 2029 3386 1414 4338 0336 2730  6269f  5.657% 3399 4141
MI  23.111% 2803  12.694* 0587  9.447% 2009  6.663F  10.343* 13.879* 0867 0320 3309  7.207f  23.995% 2620  10.684*  7.369% 3918  10.676*
MO  6334f  1.892 2839 0079 2520 55943 1167  2.240 1.334 2337 1060 16220%  10.040%  21.569%  6258f 1268  5.079% 0042  9.123%
NC  8644f 0766 2835 0032 1933 5220 1318 1301 58758 2499 1017 5503  3.005 4113  11.981* 1824 1780  6228% 2570
NJ 2280 0369 2109 1766 0028 0867  6227f  0.674 1879 0930 0792 0122 0450 0377 3522 1837 0884 0884  2.184
NY  19.033* 1215  9.521% 0998  8517f 4438 4203 4324 73401  7.049% 2469  35284% 6.169t  20294* 2735 0727  7.898f  0.117  2.631
OH 0324 2271 5992f 0351 2018 4018 1553 0927 1185 0.283 1593 6.191%  20.447* 5.884f  0.693 1448 2395 1330 1.943
PA 0.932 1467 4274 5264f 0250 2005 3787 2745 0012 3777 2158 1072 2.038 1177 0392 1220 0184 2392 2188
TN 4369 0553 6529 4010 0282 0473  13220% 1474 0083 2940 0564  4983%  3.525 3086 0.099 0.114 3427 7867  18.831%
TX 0.655 5485t  0738f 0056  5298%  5309f 4106  7.614f  2.858 1722 0546 52513 1404 6031t  0.170 1.132 0.724 1978 13.070%
VA 1521 9.088F  0.624 3345  6.057f 3473 7436f 3203  6.062f 0285 0257  9355% 2199  21673* 3398 2677  0.030 2370 13518%
WA 1647 16669% 1295 0440 3249  4863% 4118 0457  0.023 3.210 1384 5775 1371 5496% 2453 0.027 1392 10.230% 1.085
WI 0.174  0.051 0899 4376 1279  7.534% 4582 0361  8.180f 3782  5586% 1462  29.678*  5.127%  20.469* 10.545% 1219  5179% 1292

Note: Numbers are %2 tests with 2 degrees of freedom. The test determines whether the column state temporally (Granger) causes the row state.
* Means significant at the 1-percent level.

¥ Means significant at the 5-percent level.

kS Means significant at the 10-percent level.



Table 3: Forecast Results for the Real Housing Price Index: All 20 States

Model Parameters S:::i:les Model Parameters StI:i:les Model Parameters St:lltles
FAVAR 0.141

w=0.3,d=0.5 0.877 w=0.3,d=0.5 0.155 w=0.3,d=0.5 0.256

w=0.2,d=1 0.871 w=0.2,d=1 0.147 w=0.2,d=1 0.257

SBVAR  w=0.1,d=1 0.846 SFABVAR w=0.1,d=1 0.141 LSBVAR w=0.1,d=1 0.257

w=0.2,d=2 0.871 w=0.2,d=2 0.145 w=0.2,d=2 0.253

w=0.1,d=2 0.846 w=0.1,d=2 0.137* w=0.1,d=2 0.252

w=0.3,d=0.5 0.884 w=0.3,d=0.5 0.184 w=0.3,d=0.5 0.267

w=0.2,d=1 0.869 w=0.2,d=1 0.181 w=0.2,d=1 0.270

CBVAR  w=0.1,d=1 0.843 CFABVAR w=0.1,d=1 0.177 LCBVAR w=0.1,d=1 0.270

w=0.2,d=2 0.869 w=0.2,d=2 0.178 w=0.2,d=2 0.268

w=0.1,d=2 0.843 w=0.1,d=2 0.168 w=0.1,d=2 0.267

Note: Numbers all relative to the RMSE forecast error of the simple VAR model as the benchmark. Thus, values
less than one mean that the model exhibits a lower RMSE than the VAR model. The star (*) indicates the
forecasting model in all states with the minimum RMSE.



Table 4:

Forecast Results for the Real Housing Price Index: 20 States

MODEL Parameters  AZ CA FL GA IL IN MA MD MI MO NC NJ NY OH PA N TX* VA WA WI
FAVAR 0.187  0.101* 0.084* 0.145% 0100 0242 0143  0092* 0171 0120 0162 0.110%* 0137 0185 0229 0155 0149 009  0.085*  0.133
w=0.3,d=0.5 1.026 0939 1035 1122 0776 0843 0924 1041 0802 0792 0859 0958 0733 0828 0883 0660 1007 0954 0599  0.753
w=0.2,d=1 1025 0942 1019  1.093 0770 0852 0922 1028 0765 0827 0839 0972 0730  0.821 089  0.645 0981 0958  0.603  0.740
SBVAR w=0.1,d=1 0975 0937 0928 0953 0751 0857 0926 0995 0695 0870 0799 0979 0727 0799 0932 0616 0909 0920 0625 0721
w=0.2,d=2 1025 0942 1019  1.093 0770 0852 0922 1028 0765 0827 0839 0972 0730 0821 089 0645 0981 0958  0.603  0.740
w=0.1,d=2 0975 0937 0928 0953 0751 0857 0926 0995 0695 0870 0799 0979 0727 0799 0932 0616 0909 0920 0625 0721
w=0.3,d=0.5 0999 0913 0880 1021 0839 0811 0929 1015 0849 0738 0845 0914 0821 0890 0904 0870 1042 0910 0733 0755
w=0.2,d=1 1010 0914 0851 0999 0842 0794 0927 1022 0803  0.69% 0799 0915 0815 0896 0920 0820  1.026 0892 0703  0.737
CBVAR w=0.1,d=1 0940 0917 0799  0.894 0852 0808 0927 1027 0720 0733 0766 0927 0838 0868 0920 0688 0952 0840 0687  0.749
w=0.2,d=2 1010 0914 0851 0999 0842 0794 0927 1022 0803  0.69% 0799 0915 0815 0896 0920 0820  1.026 0892 0703  0.737
w=0.1,d=2 0940 0917 0799  0.894 0852 0808 0927 1027 0720 0733 0766 0927 0838 0868 0920 0688 0952 0840 0687  0.749
w=0.3,d=0.5 0.167 0204  0.100 0.167 0.142 0.109* 0181  0.13 0061 0.100* 0.152 0110 0.97 0.95 0222 0.108% 0210 0.042 0233  0.192
w=0.2,d=1 0.140 0178 0093 0172 00928 0113 0197 0116 0055 0108 0147 0116 0183 0184 0189 0125 0205 0140 0217  0.165
SFABVAR  w=0.1,d=1 0.139  0.146 0095 0171 0099 0129 0208 0111 0040 0132 0148 0118 0152 0168 0169 0137 0198 0128 0202  0.134
w=0.2,d=2 0139 0156 0091 0169 0103 0120 0213 0120 0045 0124 0147 0116 0173 0175 0173 0139 0200 0141 0207  0.141
w=0.1,d=2  0.26* 0130 0092 0162 0106 0144 0216  0.109 0026* 0149 0138 0116 0.35% 0159% 0.168* 0.145  0.190  0.115 0.196  0.1208
w=0.3,d=0.5 0.196 0210 0152 0201 0175 0137 0199 0143 0101 0151 0182 0132 0210 0227 0316 0125 0264 0152 0231 0175
w=0.2,d=1 0162 0163 0155 0218 0136 0159 0216 0141 0160 0185 0149 0133 0207 0222 0301 0161 0267 0132 0197  0.163
CFABVAR  w=0.1,d=1 0.185 0123 0156 0211 0115 0181 0220 0140 0182 0206 0.124* 0135 0197 0198 0282 0177 0263 0124 0168  0.148
w=0.2,d=2 0.168 0133 0147 0208 0109 0183 0239 0142 0143 0208 0129 0136 0191 0217 0293 0173 0261 0130 0177  0.166
w=0.1,d=2 0173 0113 0132 0182 0128 0208 0228 0138 0125 0205 0132 0135 0167 0190 0258 0169 0238 0129 0155  0.146
w=0.3,d=0.5 0267 0214  0.00 0405 0.166 0446  0.61 0222 0254 0263 0333 0350 0296 0373 0308 0214 0169 0074 0.196 0311
w=0.2,d=1 0222 0193 0097 0405 0191 0414 0147 0230 0221 0256 0295 0410 028 0388 0332 0238 0221 0082 0243 0272
LSBVAR  w=0.1,d=1 0218 0192 0098 0397 0190 0414 0150 0228 0218 0258 0294 0413 0287 0387 0330 0234 0224 0082 0244 0275
w=0.2,d=2 0152 0157 0125 0432 0184 0382 0136 0217 0215 0207 0244 0457 0251 0388 0349 0252 0302 0080 0315 0210
w=0.1,d=2 0.141 0157 0119 0419 0.8 0382 0141 0215 0225 0217 0242 0457 0256 0385 0344 0248 0304 0077 0315 0217
w=0.3,d=0.5 0366  0.199  0.116 0368 0.175 0455 0.54 0.43 0289 0239 0351 0347 0363 0307 0474 0.64 0314 0057% 0203 0256
w=0.2,d=1 0299 0193 0117 0392 0189 0426 0142 0158 0253 0272 0321 0395 0374 0321 0450 0221 0375 0071 0231  0.206
LCBVAR  w=0.1,d=1 0294 0192 0117 0384 0188 0426 0146 0158 0258 0269 0319 0397 0376 0321 0448 0218 0374 0071 0232 0205
w=0.2,d=2 0.192 0179 0140 0446 0190 0404 0.131* 0154 0253 0265 0278 0430 0374 0308 0388 0259 0470 0087 0265  0.147
w=0.1,d=2 0.191 0178 0133 0433 0190 0404 0136 0152 0259 0269 0276 0430 0379 0304 0387 0255 0466 0085 0266  0.147
Note: Numbers all relative to the RMSE forecast error of the simple VAR model as the benchmark. Thus, values less than one mean that the model exhibits a lower

RMSE than the VAR model. The star (*) indicates the forecasting model in each state with the minimum RMSE.



Figure 1: United States




