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Abstract   
 
Over the past four decades, software engineering has emerged as a discipline in its own 
right, though it has roots both in computer science and in classical engineering. Its 
philosophical foundations and premises are not yet well understood. In recent times, 
members of the software engineering community have started to search for such 
foundations. In particular, the philosophies of Kuhn and Popper have been used by 
philosophically-minded software engineers in search of a deeper understanding of their 
discipline. It seems, however, that professional philosophers of science are not yet aware 
of this new discourse within the field of software engineering. Therefore, this article aims 
to reflect critically upon recent software engineers’ attempts towards a philosophy of 
software engineering and to introduce our own philosophical thoughts in this context. 
Finally, we invite the professional philosophers of science to participate in this interesting 
new discourse.  
 
 

1   Introduction  
 
Software engineering (Sommerville 2007) is still a young discipline—just 40 years went 
by since its ‘declaration of existence’ in 1968—and, perhaps for this reason, it has not yet 
come to the attention of professional philosophers of science. There have been attempts 
by some software engineers (and also information scientists) to apply philosophical 
concepts to their discipline in order to reflect on their activities, but these attempts appear 
rather limited or unsystematic. Our article aims to apply especially the ideas of Kuhn and 
Popper to relevant software engineering methodologies—with the School of Frankfurt as 
a critical corrective—and invites professional philosophers to participate in the debate.  



The main emphasis of our work will be on epistemology and scientific methodology, but 
there will also be a brief exploration of the ontological status of software. However, 
ethics of software engineering, though certainly an important topic as well, is not within 
the scope of this essay.1 It will be argued that Popper’s philosophy is more suitable than 
Kuhn’s to explain the nature and role of contemporary software engineering, in particular 
the so-called ‘Agile’ methodologies, in an ‘open society’ of accountable computer 
scientists and software engineers.  
 
Computer software, though invisible and immaterial, is pervasive and ubiquitous. Our 
‘Lebenswelt’ has reached a state of development in which, without software engineering, 
we could not make a phone call, watch television, receive any weather forecast nor fly by 
plane to a philosophy conference. Furthermore, software is truly global (or universal) and 
permeates all cultural barriers: oriental theocracies have it and use it as well as occidental 
democracies, although the cultural purposes and mindsets behind its construction and 
usage might be completely different from case to case.2  
 
The difficulty of our subject, as far as philosophical reflections are concerned, is its 
hybrid character. Software engineering relates itself methodologically to classical 
engineering which is based on material sciences. However, software engineering is not 
equivalent to classical engineering: it does not deal with matter; Newton’s law of gravity 
is not relevant here. Neither is software engineering to be identified with its parent—
computer science—and its parent’s parent—mathematics—though traces of both can still 
be found in it. Idiographic and hermeneutic issues play a role in software engineering, 
too, because software projects have unique histories which cannot be repeated, and 
software documents are made of texts and pictures which require human understanding 
and interpretation; see for example Kroeze (2007). Last but not least social and cultural 
aspects play a role as well, because software is engineered by people for people 
according to specifications stipulated by other people—which can lead to conflicts of 
interests that make our subject accessible through various philosophical concepts (e.g. 
Habermas’ ‘erkenntnisleitendes Interesse’, or Apelt’s ‘Transzendentalpragmatik’, etc.)  
The application of classical philosophy of science to software engineering is made 
difficult by the fact that software engineering is not primarily aiming at ‘Erkenntnis’ for 
its own sake, but at the purposeful construction of usable artefacts, to which ‘Erkenntnis’ 
is only a means. Therefore, ‘Erkenntnis’ in our field seems to be more ‘idiographic’ than 
‘nomothetic’ (to use Windelband’s terminology), which raises the question whether or 
not the practice of software engineering can be justly called a ‘science’ at all, though 
there is no shortage of software engineers and computer scientists who speak—with a 
mixture of confidence and optimism—about ‘software science’ instead of ‘software 
engineering’ or ‘software technology’. Similarly, the application of classical philosophy 
of technics (or technology, or engineering) also has its limits, as far as the specific 
differences between software engineering and classical engineering are concerned.3  
 
1.1   Conceptual and Terminological Preliminaries  
‘Evolution’ and ‘revolution’ are two key concepts in this essay that need to be clarified 
before they are further used. In the usual sense of the word, ‘evolution’ can be defined as 
“a gradual development, especially to a more complex form”, and ‘revolution’ as “a far-



reaching and drastic change, especially in ideas, methods, etc.” (Hanks 1991, pp. 539, 
1325).4 Evolutionary change thus involves small cumulative steps over a long duration, 
whereas revolutionary change occurs in sudden and radical leaps. With respect to the 
methodologies of science and software engineering, both these terms are significant. 
Other relevant notions are those of ‘emergent’ evolution, “a philosophical doctrine that, 
in the course of evolution, some entirely new properties, such as life and consciousness, 
appear at certain critical points, usually because of an unpredictable rearrangement of the 
already existing properties” (Hanks 1991, p. 509), as well as ‘punctuated equilibrium’, 
namely the theory that evolution proceeds mainly in fits and starts, rather than at a 
constant rate (Bullock and Trombley 1999, p. 771). These latter two terms enable us to 
refine our understanding of the opposition between the evolution and revolution.  
We assume that the reader of our essay is generally familiar with the philosophy of 
Thomas Kuhn (1962), the philosophy of Karl Popper (1963), some key ideas of the 
School of Frankfurt, for example Marcuse (1964), as well as with the fundamental 
problems and main positions of a general philosophy of technics, engineering and 
technology (Mitcham and Mackey 1973). In-depth knowledge about software 
engineering, however, is not required, because a sufficient overview of software 
engineering is given in the subsequent section. For technical details we refer the reader to 
standard works such as Sommerville (2007).  
 
The following abbreviations will be used throughout this article:  

•   AM = Agile Methods, Agile Movement: A software engineering discipline and 
community of software engineers which advocates iterative incremental 
development throughout the life-cycle of a project (Cockburn 2002).  

•   OOP = Object-Oriented Programming: An Aristotelian programming concept 
based on conceptual hierarchies of classes, super-classes, sub-classes, entities, 
properties and relationships.  

•   RUP = Rational Unified Process: A particular, iterative software development 
framework.  

•   SE = Software Engineering, SD = Software Development: SE and SD will be 
regarded as synonyms in this essay, since we are mainly concerned about the 
software development methodologies in software engineering. (Thus, strictly 
speaking, SD occurs within SE.)  

•   UML = Unified Modeling Language: A standardized graphical notation for 
creating abstract models of software systems.  

•   XP = Extreme Programming: A discipline of SD which advocates the adoption of 
specific maxims, principles and practices and which is fundamentally focused on 
being adaptable to changing circumstances. XP emphasizes the activity of 
computer programming itself, rather than the activity of documenting and writing 
project reports.  
 

 



1.2   Structure of this Essay  
The remainder of this essay is structured as follows: In Sect. 2, we outline some historical 
aspects of SE, especially as far as the issue of change is concerned. The purpose of that 
section is to serve as a second introductory section for those readers who are not familiar 
with SE, such that they will be able to understand the philosophy of SE in the subsequent 
sections. Related work by other philosophically-minded software engineers is sketched in 
Sect. 3. In Sects. 4, 5, and 6 we offer our own philosophical thoughts about SE, whereby 
we emphasise the issue of change and use the philosophers Kuhn and Popper as our 
initial (though not necessarily final) landmarks for orientation in this difficult intellectual 
landscape. Those sections are based on two of our computer science symposium papers 
(Northover et al. 2006, 2007) which were well received in the related communities. In 
Sect. 7 we reach some—however preliminary—conclusions, and we invite the 
professional philosophers to join us in a new interdisciplinary discourse about this 
relevant, novel topic.  
 

2   Change in Software Engineering and Software 
Development  
 
To introduce the non-specialist reader to our topic, we shall briefly survey a chain of 
historical shifts from one type of SD methodology to another. It will be seen that, overall, 
change has taken place in a way that can be characterised as ‘punctuated equilibrium’. 
These changes in SD methodology are related to—and mutually dependent on—changes 
in associated ‘tools’ and artefacts.The introduction of the compiler (a particular type of 
software artefact), for example, had an irreversible impact on the SD process, producing, 
in turn, better and more complex software artefacts. Attention below is focused on major 
historical changes in SD methodology, rather than the resulting software artefacts.  
 
2.1   Historic Overview  
In the early years of computing, there was no clear notion of SD methodology. Software 
was developed in a rather ad-hoc fashion, based on the available computer technology. 
Initially this meant hand-wiring connections, then coding in machine language, later in 
mnemonic code, and eventually in conceptually ‘high-level’ programming and 
specification languages. The main stimulus for adopting some sort of methodological 
standpoint about how software should be developed was the need to control the ever-
growing complexity associated with SD, notwithstanding the continuous improvement of 
tools and symbolic notations for doing so.  
 
‘Software Engineering’ as a term, and as a profession, was unknown until 1968 though 
programmable computers were already known and used in those days. Computer 
engineering before 1968 was mainly concerned with hardware development (electronic 
engineering) on the one hand and conceptually ‘low-level’ programming (mostly 
scientific-numeric calculations known as ‘number crunching’) on the other hand 
(Methner et al. 1997). The situation changed when computers started to be equipped with 
what we now call ‘operating systems’ (which early computers did not have). Operating 
systems are software systems which can be understood as ‘sitting in-between’ a 



computer’s hardware and its users’ application programs, mediating between both of 
them, such that the user’s application programs can be conveniently specified without 
tedious reference to the technical details of the underlying computer machinery.5 Before 
the invention of operating systems the users’ application programs had to run directly ‘on 
hardware’, without the mediation of system software. As soon as the advantages of 
operating systems were discovered there came a growing need for ‘bigger’ and ‘nicer’ 
operating systems, which confronted the makers of operating systems—the system 
programmers—with ever increasing and complex tasks. At the culmination of this early 
period of operating system development, operating systems were such complex and 
cumbersome software systems that even their developers got confused; they were not 
able to comprehend and maintain their own developments any more. At this point in 
history it was felt that a less ‘home-grown’, more systematic and better structured way of 
SD was urgently needed. From this perspective we can say that SE, as an activity and 
profession, was born out of operating systems development—which was, in turn, a 
consequence of ever more powerful and complex computer hardware, which could not 
have been controlled without the use of operating systems. At about the same time, the 
term software crisis was coined, when, for the first time in history, the costs of computer 
software started to grow above the costs of computer hardware—a trend which has never 
been reverted since then.  
 
The term Software Engineering itself was coined at the NATO Science Conference in 
Garmisch, 1968, which was attended by many prominent computer scientists of that time 
(Naur and Randell 1968).6 That conference was organised in order to address problems 
such as achieving sufficient reliability in data systems (which were becoming 
increasingly integrated into the central activities of modern society), as well as the 
notorious difficulties of meeting the schedules and fulfilling the specifications and 
requirements of large software projects (carried out under the conditions of work-sharing 
amongst large numbers of specialised and hierarchically organised project members). The 
40th anniversary of that event is being commemorated this year.7  
 
At a ‘Dagstuhl-Seminar’ on the history of software engineering (Brennecke and Keil-
Slawik 1996),8 Mary Shaw, a leading researcher in her field, reflected on the use of 
‘software engineering’ as a technical term (Shaw 1996). To a large extent, according to 
Shaw, the term ‘software engineering’ is (and has always been) a phrase of enthusiastic 
aspiration rather than a phrase of sober description: Software practitioners hope to reach 
the status of an ‘engineering’ discipline wherein the construction of artefacts of high 
quality is predictable, reliable, and repeatable. However, an honest appraisal of the field 
reveals a practice that is falling short of this ideal (with too many software projects still 
being late, over budget, and not delivering what was expected). Indeed, the quality 
difference between classical engineering and SE, which is closely related to Arageorgis 
and Baltas’ (1989, p. 213) discussion of ‘craft technology’ , is still widely (and 
sometimes painfully) recognized.  
 
In this historical context, Dijkstra (who had also been at the above-mentioned Garmisch 
conference) identified a major cause of trouble in form of the GOTO commands (Dijkstra 
1968) which were widely applied in computer programs in those days. Though Dijkstra’s 



remedy was initially regarded as too radical,9 the subsequent rapid and universal adoption 
of ‘structured programming’ as a SD style had all the hallmarks of a ‘revolutionary’ 
change.  
 
As software projects grew in size it was perhaps natural for project managers with 
classical engineering backgrounds to look to their traditional style of management in an 
attempt to control the challenging extent of system complexity.10 This meant viewing a 
project as a sequence of discrete phases, each of which needed to be articulated, 
documented, executed and ‘signed off’ before proceeding to the next phase. Thus, once 
the requirements had been elicited, documented and approved by the client, an analysis 
phase was entered. Here the task was to determine beforehand various modules of 
software that could be written by different developers. This task was supported 
technically by advances in the field of programming languages, where ‘modularisation’ 
was becoming an ever-stronger theme. For example, the language ‘Modula’ (Wirth’s 
nomenclature for his programming language that followed on the language ‘Pascal’) 
bears testimony to this. Its successor, ‘Modula-2’, was widely used in the early 1980’s, 
and ‘Modula-3’ was available in the 1990s; (see Bishop 1991 for a brief history of 
programming). Further software project phases were to follow the initial phase, 
including: design, implementation, testing, deployment, and maintenance. This phased 
approach was eventually termed the ‘Waterfall Model’11 and it hallmarked a change from 
informally to formally and rigorously managed SD projects. Such a change clearly 
involved an important conceptual shift, and in this sense, the adoption of the ‘Waterfall’ 
model could be seen as ‘revolutionary’. However, since there were relatively few large 
projects in the emerging software industry of the time, the uptake in applying the 
‘Waterfall’ model was gradual. Nevertheless, it became the orthodoxy of the day and also 
came to be considered mandatory for proper management of large software projects.  
By the late 1980s, the inappropriate nature of this rigid ‘ceremony-laden’ phased SD 
process had become increasingly apparent, not least because of the large number of 
unsuccessful software projects (Brooks 1995). Particularly troublesome was the dogmatic 
requirement of committing to one phase before proceeding to the next. Consequently, 
there was a strong shift to ‘Iterative Incremental Development’, as advocated by Boehm 
(2002), which later evolved into the more elaborate RUP. This shift away from ‘big 
upfront design’ relied on object-oriented analysis and design and was, once more, 
supported by appropriate new programming languages. In other words, the way in which 
software was modularised was changed by the introduction of OOP. A module no longer 
represented a set of similar tasks that changed the state of a large number of 
heterogeneous objects in a domain. Instead, the focus shifted to identifying homogeneous 
software objects from the same software class, whose state is encapsulated and 
manipulated by functions particular to that class of objects. Since software objects closely 
reflect so-called ‘real world’-objects in the problem domain, the problem and solution 
spaces were brought closer together. This shift towards gradual commitment of smaller 
parts of the project, coupled with a new way of partitioning the software into objects 
could arguably be classified as ‘revolutionary’, although the uptake of this approach was 
also somewhat gradual.  
 



However, some people found even modernised concepts of SD processes, such as RUP, 
to be too ‘heavy’ on upfront requirements. Furthermore, these methodologies seemed 
unable to cope with the challenges of the ‘Internet era’, including tighter ‘time-to-market’ 
constraints, rapid technological progress, as well as increasingly volatile business 
contexts in a ‘globalised’ economy. Arguably, all these challenges can be reduced to the 
problem of accommodating change. This provided the impetus for various AM proposals. 
While these were ‘lightweight’ as far as formal and so-called ‘ceremonial’ requirements 
are concerned, they retained an iterative incremental development nature. For example, 
instead of relying on the modeling language UML to articulate requirements, emphasis 
was placed on frequent, informal interaction with the client. Instead of requiring 
comprehensive documentation of the system’s code and architecture, emphasis was 
placed on co-ownership of program code, and the production of so-called ‘self-
documenting’ program code.  
 
Undoubtedly it was Kent Beck’s methodology,12 XP, which established the popularity of 
those so-called ‘lightweight’ SD methods. In February 2001, seventeen representatives of 
these lightweight SD methodologies met to discuss the similarities of their various 
approaches. The meeting resulted in an agreement to adopt the term ‘agile’ instead of 
‘lightweight’ and to issue their ‘Manifesto for Agile Software Development’ (Beck and 
Fowler 2001), which includes a statement of the following four central values underlying 
the AM approach:  
 

(i)  individuals and interactions over processes and tools,  

(ii)  working software over comprehensive documentation,  

(iii)  customer collaboration over contract negotiation, and  

(iv)  responding to change over following a plan.13  

 
Later, in order to support these four ‘values’ (or maxims), a further dozen principles were 
formulated. All this culminated in the formation of the ‘Agile Alliance’, a non-profit 
organisation whose stated ‘mission’ it was to promote these principles and values.  
AM are therefore, in one sense, an ‘evolutionary’ offshoot of iterative incremental SD 
processes. However, in another sense, they represent a radical, ‘revolutionary’, departure 
from all previous SD processes, in that they spurn an ‘ideological’ commitment to the 
velocity of software production, whilst at the same time taking cognisance of the human 
needs of the members of the ‘agile’ development team. Cockburn, for example, is one of 
a growing number of AM advocates who would eschew an upfront commitment to any 
particular SD process, albeit an AM one. Instead, he recommends that the SD process be 
tailored specifically to the demands of each individual project (Cockburn 1999).  
 
2.2   What is Software?  
In the historic overview of above we sketched the various ways in which software has 
been developed throughout the recent four decades. However, we did not yet speak about 
what software actually is, or how software can be characterised. Therefore we will round 
up this section with a few remarks in this regard. Unlike the classical sciences, SE does 



not produce theories in order to explain aspects of nature, but rather, like classical 
engineering, it produces artefacts to serve practical ends. However, unlike classical 
engineering, software engineering does not produce physical structures, hence our need 
to understand the ontological status of software as the product of SE.  
 
The term ‘software architecture’ is often used to describe the structural aspects of 
software, relating it not only to classical engineering (the building of complex physical 
structures) but also to the arts (to which architecture is related). The transfer of structural 
knowledge (‘design patterns’) from the building architect Christopher Alexander into the 
software architecture community is widely acknowledged (Alexander 1999).14 An 
important difference, however, is the fact that, whereas buildings can be more or less 
permanent and complete, software structures tend to be more prone to change and 
incompleteness. It was mentioned above that engineering produces artefacts. 
Etymologically, ‘art’ and ‘artefact’ share the Latin root ars, meaning craftsmanship or 
skill. The second part of ‘artefact’ is from the Latin facere, meaning ‘to make’. Thus 
software and SD share features of the sciences, engineering and the arts; see Bishop 
(1991) for comparison.  
 
Despite the term ‘software architecture’, software—computer programs, or ‘code’—more 
closely resembles the temporal arts (music, literature) than the plastic arts (architecture, 
sculpture, painting, printing). Software code can be compared to the score (or notation) of 
a symphony or to the text of a novel or poem, which have to be interpreted and performed 
in time. We speak of ‘programming languages’, all of which have to be ‘interpreted’ by 
compilers until they are translated into the Zeros and Ones enacted at the most basic level 
of machine language. A programming language resembles the rules of inference of 
formal logic, although, unlike an argument, a program serves a practical end. Each time a 
program is run (executed) it can be considered a performance. Thus software is not solely 
to be identified with its code, but must also be regarded with respect to the performance 
(execution) of the code, and successful code is judged on its actual performance. Just as 
all artworks are physically embodied, but not identical with the physical body, so too is 
all software embodied in but not identical with hardware.  
 
Nonetheless, software differs in its nature and function from art. Whereas art might be 
considered an end in itself, software is a means to some further end, hence its status as a 
type of engineering. Also, artworks often have an expressive or symbolic or 
representative function whereby the artwork expresses an emotion, or stands for 
something other than itself, or provides an interpretation of some aspect of reality. In this 
latter function, artworks might resemble ‘theories’, whereas software serves a practical, 
non-interpretive function. Finally, unlike most artworks, software programs are almost 
never complete but rather are subject to continuous modifications and maintenance. From 
this perspective, software artefacts might perhaps better be named processes, not only in 
terms of their continual development by programmers, but also in terms of their ongoing 
application by users.  
 
Another important point about software is that it comes in different versions and is 
distributed to the end-users in plenty of identical copies. Also from this perspective—and 



not only from the perspective of creation or creativity—software has something in 
common with artworks such as books, printings, or musical performances. For this 
reason, it might be useful to have a look at the philosophy of arts, in order to gain deeper 
insights into the ‘essence’ or ‘nature’ of software, by comparison. The arts-philosopher 
Margolis, for example, argued that artworks cannot be universals, since artworks are 
created and can be destroyed, whereas universals cannot. Margolis referred to 
Glickman’s conjecture that “particulars are made, types created” and assumed that all 
artworks are tokens of a type, the tokens being physically embodied and the types 
existing only in the form of its tokens (Margolis 1980, p. 17). Types are abstract 
particulars, and the type-token concept is distinguished from the kind-instance and set-
member concepts.15 For example, every performance of a symphony would be a token of 
that type, but in this case a temporal rather than spatial token. By analogy, software 
(programs) could be considered to be tokens of a type existing in a temporal and 
sequential mode like the performance of a symphony or the reading of a novel. A further 
elaboration of such an ontology involves the terms ‘prime instance’ and ‘megatype’, 
whereby “two tokens belong to the same megatype if and only if they approximately 
share some design from the range of alternative, and even contrary, designs that may be 
defensibly imputed to each” (Margolis 1980, p. 54). In art, the prime instance would be 
the original painting or manuscript of a poem or novel. All other tokens of that type 
would be variations or copies, including non-identical copies, of the megatype of which 
the original poem is the prime instance. Other art forms, such as printings of etchings will 
have no prime instance at all, while an original painting would be a prime instance and all 
printings or copies of it would be tokens of the megatype. This provides us with a 
terminology that allows us to identify different versions of an artwork as tokens of the 
same megatype, for instance, the different performances of a theatre play in different 
periods, cultures and languages, and even in different media such as different movie 
(film) adaptations of a theatre play for cinema. In terms of software engineering, this 
terminology could be helpful to describe the different versions of applications (programs) 
that are continuously released. Each new version of a piece of software which is released 
to a customer, for example some new photo-software, would be a token of the megatype 
‘photo-software’, whereas each individual use (performance) of this specific copy or 
instance (probably with its own serial-number on the box in which it is sold) of the photo-
software would be a token of this specific type.  
 
Mathematical Platonists like Penrose have located algorithms (which are, metaphorically 
speaking, the ‘soul’ of a computer program) in a Platonic realm of eternal forms (Penrose 
1989). We would locate software programs not in such a static Platonic realm but rather 
in Popper’s dynamic ‘World (iii)’, the realm of ‘objective knowledge’ which is inhabited 
by scientific and metaphysical theories. Popper was willing to locate artworks in his 
‘World (iii)’, but was equally happy to call the realm reserved for art “World (iv)” 
(Popper 1999, p. 25). His point was that theories and artworks are not merely subjective 
experiences in the minds of their creators and contemplators, but have an objective and 
non-physical existence independent of individual minds.16 Unlike Plato’s realm of pure 
forms, however, Popper’s ‘World (iii)’ is regarded as open to change, in the sense of an 
evolutionary development towards increasing complexity.  
 



In their article on the distinction between science and technology, Arageorgis and Baltas 
have spoken about how “theoretical models (…) tend to bridge the gap between what a 
scientific theory accounts for, and what a particular technology aims to bring about” 
(Arageorgis and Baltas 1989, p. 214). In this context it is interesting to note that software 
can also play the role of such ‘models’. Classically, science had known basically two 
methods of enquiry, namely the rationalist ‘Gedankenexperiment’, and the empiricist 
‘real’ experiment. The advent of computer technology has brought us a new, third 
method of scientific enquiry, in the form of computer simulations, including both 
rationalist and empiricist aspects (namely: model development and programming, and 
runtime observation), from which a whole new branch of science, namely ‘simulation 
theory’, has emerged. ‘Executable models’ (in form of software) are thus crucial 
epistemological entities in the ontology of those new sciences (Vangheluwe 2008).  
Finally, at the end of this sub-section, we also want to mention that software can be of 
‘Zeug’ character in the sense of Martin Heidegger’s ‘fundamental ontology’ (Heidegger 
1927). However, it is only through the mediation of another ‘Zeug’, namely the computer 
underneath, that software can reveal its character as ‘Zeug’. Whereas a simple material 
tool, for example a hammer, can be immediately grabbed by a human hand in a naive, 
pre-technological ‘Lebenswelt’ (as phenomenologically analysed by Husserl, Heidegger 
and followers), no such direct (manual) access to software is possible. Without the 
computer as underlying platform, the usage of software as ‘Zeug’ is impossible. 
Nevertheless the modern software engineer speaks about ‘software tools’ in the same 
attitude in which a naive handyman or farmer would speak about his simple material 
tools. In this regard we may speak of software as of ‘abstract Zeug’, or ‘virtual Zeug’, or 
‘Zeug of second degree’. This, again, corresponds well with Heidegger’s notion of a 
‘reference property’ (‘Verweisungs-Charakter’) of ‘Zeug’, in which (for example) a 
hammer refers to the nails, and so on. Software without a computer is as useless as a 
computer without software. In other words, the ‘Verweisungs-Charakter’ is evident even 
for this ‘abstract Zeug’ in the form of immaterial software and software systems.  
 
 

3   Related Work  
 
As this essay puts strong emphasis on the question of change in software engineering, we 
focus our literature review especially on those authors who also deal with this question. 
Our literature review has two aspects: a technical one and a philosophical one:  

•   Our technical review is only brief. Its main purpose is to provide some orientation 
for those readers who are familiar with the history and philosophy of classical 
engineering so they may find it easier to relate our new topic of software 
engineering to their existing knowledge about classical engineering and 
technology.  

•   Our review of the philosophy of software engineering constitutes the larger part of 
this section. Its main purpose is to introduce the professional philosopher to the 
ideas and thoughts that have been produced by philosophically-minded members 
of the SE community, so that the professional philosopher may be encouraged to 
participate in this interdisciplinary discourse.  



 
Much current debate in the field of software engineering methodology concerns the 
question whether to use traditional SD methods or AM. Members of the traditionalist 
camp prefer to follow a strictly pre-defined development procedure, whereas members of 
the AM camp, possibly with sympathy even for the ideas of Feyerabend,17 would prefer 
to act as independently as possible and react ad-hoc to events and circumstances as they 
emerge. From a social-philosophical viewpoint (which shall soon lead us to thinkers like 
Kuhn and the School of Frankfurt), it is interesting to note that membership to the one or 
the other methodological camp is not only a question of knowledge or reasonable insight, 
but also a question of authority and power.18 For the historian and philosopher of 
technology it will be interesting to note that also in the field of classical mechanical 
engineering—long before software engineering came into existence—there were 
examples of AM. In the field of classical engineering, this is called ‘concurrent 
engineering’, as explained by Robert Smith (1997).19  
 
Now let us now turn our attention from the technical to the more philosophical part of our 
literature review. In this part, we shall review how philosophically-minded members of 
the SE community have applied the theories or thoughts of various professional 
philosophers to the software engineering discipline. Firstly, we consider some who have 
applied the work of Plato, Aristotle, Lakatos, Feyerabend and Dooyeweerd. Secondly, we 
focus on the literature that specifically applies the theories of Kuhn and Popper to 
software engineering and especially to AM.20  
 
Marick argues that the decision to discard an existing software methodology in favour of 
a new one requires a “gestalt switch” from one ontology to another (Marick 2004). In 
particular, he discusses the AM ontology and turns to science in an attempt to understand 
why so many software engineers have adopted this particular ontology. He conjectures 
that Kuhn’s concept of paradigm shift may provide one possible explanation. However, 
Marick believes that the theory of Lakatos provides an even better understanding of this 
switch than Kuhn’s or Popper’s theories do. Marick describes the four central aspects of 
Lakatos’ methodology of scientific research programmes and finds each of these aspects 
to be evident in the AM ontology in some form. The author takes an anti-rational stance 
by emphasising perception and practice rather than reflection in relation to ontology. The 
paper concludes that there is no “platonic right way to build software” (Marick 2004, p. 
71) and that for a methodology to be progressive, one must find the correct ontology.21  
Guigette provides a compelling argument for adopting a Platonic view of objects in an 
OOP language. The class to which an object belongs is compared to a ‘Platonic Form’ 
because it generalises all possible class instances (Giguette 2006).22 Rayside and 
Campbell argue in a similar direction and claim that the object-oriented community at 
times maintains that OOP has drawn inspiration from philosophy, specifically that of 
Aristotle (Rayside and Campbell 2000). That paper goes into great detail applying 
Aristotle’s system of syllogistic logic to OOP and points out the similarity, on the one 
hand, between Aristotle’s concept of matter and OOP’s notion of ‘object’ and, on the 
other hand, Aristotle’s concept of form and OOP’s notion of ‘class’.  
 



Furthermore, Brooks, a well-known software engineer and computer scientist, 
acknowledges Aristotle and uses the Aristotelian terms ‘essence’ and ‘accident’ in 
distinguishing the essential difficulties—those inherent in the nature of software, like 
complexity—from the accidental difficulties like a poor design—those that attend its 
production but are not inherently problematic (Brooks 1987).  
 
Basden uses Dooyeweerd’s philosophy to describe the development and application of 
information systems. He has recently published a monograph on the five main areas of 
research and practice in this SE-related field: the nature of computers and information, 
the creation of information technologies, the development of artefacts for human use, the 
usage of information systems and information technology as our environment (Basden 
2008). However, the theme of his book is only marginally relevant to our specific SE 
discussion in this essay.  
 
Kuhn’s concepts of paradigm shift and scientific revolution have been applied to diverse 
aspects of the software engineering discipline, most notably by several members of an 
international IT advisory firm, the Cutter Consortium. These applications are especially 
pertinent, since many leaders of the AM in SD are members of this consortium. Below 
we summarise the literature in this regard.23  
 
Beck, the founder of XP, explicitly cites Kuhn’s ‘Structure of Scientific Revolutions’ in 
the annotated bibliography of his own book on XP (Beck and Fowler 2005). Moreover, 
Beck acknowledged that Kuhn’s book was influential on his thinking and that he found it 
useful mostly in the adoption process; he stated that Kuhn’s book would have helped him 
to predict “how the market would react”24 to the introduction of XP.  
 
Bach applies the work of Popper, Kuhn and several other philosophers of science to 
software engineering in the context of the ‘process versus practice’ debate (Bach 2000). 
He argues that, in the 20th century, even science was a battleground for this debate when 
the very idea of science as a rational enterprise came under fire. The resulting fallible 
view of science, according to Bach, is pertinent to our situation in information technology 
today. Bach also argues, perhaps controversially, that developing software is not much 
different from developing scientific theory, and developing processes for developing 
software is exactly like doing science. Finally, he argues that the trend to move from 
formalised SD processes towards more intuitive practices manifests itself not only in AM 
but also in the object-oriented ‘design pattern’ approach, which was an adoption of 
Alexander’s ideas on housing architecture and civil engineering into the domain of SD; 
see Alexander (1999) for comparison.  
 
Schwaber, another Cutter member, does not explicitly cite Kuhn although he frequently 
uses Kuhnian terminology in his writings. He describes the seminal meeting of the AM 
advocates in 2001 as a meeting of revolutionaries. However, Schwaber is using the term 
‘revolution’ here in a general political sense rather than in the specific notion of Kuhn’s 
theory of science (Schwaber 2001).  
 



Marzolf and Guttman (2002) use Kuhn’s theory to explain an approach called ‘systems 
thinking’ and how it relates to SD. They point out that, although systems thinking insists 
that systems should be addressed holistically, the most universal characteristic of SD is, 
rather, a short-term and piecemeal approach (Marzolf and Guttman 2002). The authors 
conclude that we should learn systems thinking and take a more holistic approach 
towards building software. This, in their opinion, will ensure the shift from the ‘machine 
age paradigm’ of the 19th century to the ‘systems age paradigm’ of nowadays.  
 
Davies cited Kuhn’s book in a conference address and claimed that understanding AM 
would require a paradigm shift (Davies 2006). Yourdon, like Davies, references Kuhn’s 
book explicitly and applies his concept of paradigm shift to information technology 
organisations in the context of ad-hoc communication networks (Yourdon 2001a). In a 
related paper, Yourdon (2001b) applies Kuhnian terminology specifically to XP by 
describing classical SE as the old paradigm and AM as the new paradigm. In that paper, 
he also quotes Beck’s presentation at the 2001 ‘Cutter Summit’ Conference in which 
Beck had explicitly called XP a ‘paradigm shift’. We shall come back to Yourdon’s ideas 
in somewhat greater detail below.  
 
From the selected references above it should be evident that Kuhn’s philosophy has had a 
significant influence on the SE discipline, especially within the AM community. 
However, most of the authors have applied Kuhn’s concepts rather uncritically to this 
domain. Consequently, one of the central aims of our essay is to provide a seemingly 
much needed critical perspective on the applicability of Kuhn’s philosophy to the 
software discipline, and specifically to XP. This critique will follow in Sect. 5 of our 
essay. In the next few paragraphs, however, we will highlight some literature references 
that specifically apply Popper’s philosophy to the SE discipline.  
 
Snelting, another significant software engineer, has pointed out that in software 
technology sometimes things happen quite similarly to the way Feyerabend has described 
them (Snelting 1997, 1998). In particular, he notes that empirical studies are rare in SE, 
that there exists a chasm between theory and practice and that a particular form of 
‘constructivism’ is rife amongst practical scientists who ignore theory and at the same 
time avoid empirical validation. He argues for a stronger empirical foundation of SE. In 
order to achieve this, he insists that basic scientific principles should not be neglected. 
Regarding that particular form of (social) constructivism, he points out that SE constructs 
its own reality since software engineers invent abstract concepts or devices, such as 
abstract data types, software architectures and design patterns. For this reason, he states, 
it is popular to call computer science a ‘structural science’, however, recently computer 
science is seen more as an engineering science. Snelting goes on to ask what the 
computer science equivalent of predictions and falsifying experiments are. He states that 
predictions in computer science are generally obtained from abstractions and theories. 
More recently, however, there have also been methods of prediction, such as the 
application of model-checking.25 Experiments, on the other hand, are most importantly 
found in the form of software testing, although testing, like all experiments, can only be 
used to refute a specific prediction. Snelting concludes that the Popperian concept of 
falsifiability is as valid in SE as it is in the natural sciences, but is often ignored in SE. 



Furthermore, Snelting observes that the pioneering computer scientist Dijkstra’s well-
known dictum (that testing can only demonstrate the presence of defects, but not their 
absence) is a special case of Popper’s falsifiability principle.  
 
Another pioneer of computer science and SE, Hoare, made a similar observation (Hoare 
2003a). Hoare pointed out that, following Popper’s criterion of falsification for the 
meaning of a scientific theory, Roscoe and Brookes would have concentrated on failures 
of tests, with particular attention to the circumstances in which programs could deadlock 
or fail to terminate. This, according to Hoare, led to the now standard model of CSP 
(Hoare 1985, 2006; Roscoe 1997, 2005), with traces, refusals, and divergences (Hoare 
2003b). Following Hoare, Aichernig pointed out that falsification can be applied to 
software development in the following way (Aichernig 2001): A formal specification of 
requirements helps to solve systematically the problem of software development by 
offering the apparatus of logic. The validation of the formal specification as well as the 
implemented solution is only feasible through falsification—which is testing. For being 
falsifiable (or testable), the requirements description has to be unambiguous and sound—
ensured by formal specification and verification techniques.  
 
Coutts uses many Popperian ideas to trace the similarities between software testing and 
the scientific method (Coutts 2007). He concludes that falsification is just as essential to 
software development as it is to scientific development. However, whereas in science the 
falsification criterion is used to demarcate science from non-science, in SE it is used to 
demarcate the testing discipline from the analysis and development disciplines.  
Meyer (2007) stated that there is a view of science, first proposed by Popper, that any 
true science must contain open and testable claims. According to Meyer, Lakatos has 
shown that this same testability applies to mathematics in the form of methods 
(approaches) which are tested by evaluating their problem solving success. Meyer’s 
intention in pointing out these two claims is to encourage SE work that will eventually 
lead to such scientific tests in computer program validation (Meyer 2007).  
 
Hamlet contended in a conference address that “computer science is not science” (Hamlet 
2002)—in opposition to ‘mainstream’ opinions like those expressed by Bishop (1991). 
Hamlet claimed, using Popperian terminology, that there are no falsifying experiments in 
computer science. Instead, according to him, to experiment in computer science means to 
implement an idea and force it to work, which is in contrast to science, since scientists 
cannot change reality to fit a theory. He contended further that a fundamental 
understanding of philosophy would help us to deal with the difficulties of SE, like 
unrealistic schedules and changing requirements. He discusses both Kuhn and Popper in 
this context.  
 
Popper’s ideas, especially his ‘three worlds’ ontology, have also been used in the context 
of ‘knowledge management’, which is related to SE from an organisational point of view. 
This is due to the fact that software is developed not so much by individuals rather than 
by groups of developers, who have to share their knowledge (about SD processes and 
products) in implicit (informal) or explicit (formal) ways. Three well-known Popperians 
in this SE-related field of study are Hall, Moss, and McElroy (Hall 2003; Moss 2003; 



McElroy 2002; Firestone and McElroy 2003), but an in-depth discussion of their work 
would lead us too far away from the main SE theme of this article.  
 
Finally we should mention the work of Gregg et al. (2001) which tries to see “software 
engineering as a research paradigm” (Gregg et al. 2001, p. 171) in the light of the social 
sciences and their particular research methodologies, classified as “constructivist”, 
“interpretative”, “positivist” (Gregg et al. 2001, p. 172), and so on. “The impetus of our 
effort resulted from the inability to fit software engineering research comfortably into the 
established research paradigms from the social sciences” (Gregg et al. 2001, p. 181). 
Such a sociologist perspective of SE—see also Sect. 4 below—may be partially justified 
by the social role of software, being built by people for people, in a modern society. 
However it should not be forgotten that a sociologist notion of ‘research’ might differ 
quite strongly from a scientist’s or engineer’s concept of ‘research’, and that a sociologist 
account of SE is thus unlikely to provide reliable insights into what really happens in this 
technological discipline. Nevertheless it is interesting to have a look at Gregg et al. 
(2001), not least for their informative bibliography on the philosophical foundations of 
information systems. An accurate account and classification of empirical research 
methods of SE has been provided from within the discipline by Walter Tichy (2007).  
Concluding this related work overview we might conjecture that the professional 
philosophers amongst the readers of this essay will notice that the range of philosophers 
cited by those philosophically minded software engineers is rather limited, which seems 
to be a consequence of academic specialisation and the notorious ‘knowledge gap’ 
between the professions of engineering and the professions of the humanities.26 Therefore 
we presume that many other relevant philosophers still have to be ‘discovered’ for SE. It 
is for this reason that we are writing our essay as a ‘call for cooperation’ between 
software engineers and professional philosophers in this new discourse towards a 
philosophy of SE and SD.  
 

4   The School of Frankfurt  
 
Whereas Snelting has expressed concern about tendencies of ‘Feyerabendianism’ in 
academic SE research (Snelting 1997, 1998), SE-related publications like Lyytinen and 
Klein (1985) or Gregg et al. (2001) reveal that ‘critical theory’ (Simon-Schaefer 1994), 
too, has been recognised—and partly even adopted as theoretical and practical 
guideline—in some socially oriented circles of the wider information technology (IT) and 
information systems (IS) community, to which the SE sub-community belongs. As 
indicated by papers such as Lyytinen and Klein (1985) or Kroeze (2007), there exist 
members of the IS community who regard IS as a ‘social science’ and their own work as 
emancipative in the sense of ‘critical theory’. Several decades after the pointless 
‘Positivismusstreit’ (Adorno et al. 1993) has ebbed down the outdated term ‘positivist’ 
(Schnädelbach 1994) is still in use with the aim of drawing a line between IS and the so-
called “harder sciences” (Kroeze 2007, p. 38). For this reason—before coming back to 
Kuhn’s philosophy in the SE context in Sect. 5—we shall briefly consider the School of 
Frankfurt in this section of our essay. Unlike Kuhn and Popper, leading members of this 
school had criticised science in total as a system of ‘ideology’ (Becker 1994), and have 



confronted Popper (as well as other critical rationalists) directly in a notorious debate on 
these issues (Adorno et al. 1993).  
 
From the 1940s to the 1980s, the School of Frankfurt was a dominant participant in 
debates on the nature of social systems. Philosophers of that school had a dialectical 
notion of how social or technical systems change: This view included social subsystems, 
such as those relating to science and technology. As far as the theme of this essay is 
concerned, we read the Frankfurtians against their own intentions and regard a software 
system itself as a ‘global’ system. In this sense, a Frankfurtian analysis becomes (at least 
partly) applicable.  
 
In the view of the School, a social or technical system, including a software system, is 
likely to appear (or become) globally irrational.27 The roots of this global irrationality lie 
in what might seem to be locally rational. Such points of local pseudo-rationality should 
be uncovered by critical analysis, and the entire global system has to change if it is to 
improve. A revolution would then be needed to achieve the desirable global state. As a 
corollary, it could be said that partial or small-scale rationalism within the parts of the 
system does not prevent its global irrationality. Thus, attempts at small-scale criticism or 
small-scale modifications from within the system would be seen as ineffective and 
reactionary, since they are absorbed by the system due to its self-stabilising conservative 
tendencies. The discrepancy between such a perspective and the already mentioned AM 
perspective in recent SD should be clear.  
 
Such sources of irrationalism, in any such system, are due to driving forces in processes 
that are characterised by conflicting particular ‘interests’ (Lobkowicz 1994) which are 
supported by a corresponding ‘ideology’ (Becker 1994). Even the acquisition of ‘pure’ 
scientific knowledge and the development of ‘neutral’ technology is driven by such 
interests. Together with a corresponding ideology, technics and techniques form the 
system of ‘technology’, thus: technology is technics plus ideology.28 In this context, 
change is analysed by the School of Frankfurt in dialectic terms, thus in the 
Hegelian/Marxist figure of thesis, anti-thesis and synthesis. In the SE context of our essay 
those terms could also be applied: For example, a client’s specifications would be a 
‘thesis’, the software engineer’s system proposal would be an ‘anti-thesis’, and the 
emerging software product would be a ‘synthesis’. Thereby, the so-called ‘contradictions’ 
(‘Widersprüche’) between thesis and anti-thesis are not merely mental concepts of the 
observer (as a matter of epistemology), but are regarded as objective realities caused by 
objective antagonistic forces and tendencies (as a matter of ontology). Also note in this 
context that the synthesis, though emerging out of thesis and anti-thesis, cannot be 
deterministically predicted out of them, therefore, the path towards progress of 
technology cannot be foreseen until it actually takes place.  
 
Followers of the School of Frankfurt would therefore understand some of the changes in 
software methodologies in the following terms: The classical, top-down ‘Waterfall’ 
model of SD would be seen as globally irrational, despite the locally rational nature of 
completing one phase before embarking on another, of maintaining a paper trail of what 
has been done (documentation), of forbidding constant changes to the requirements and 



so on. That was indeed suited to middle managers, who needed to maintain their positions 
of authority and control, and to offer their seniors evidence (in the form of signed-off 
documents) of progress. Notwithstanding the high failure rate of projects managed in this 
fashion, conservative forces have ideologically clung to the model until its internal 
contradictions became intolerable. Only then were people willing to change to the 
iterative incremental approach, which became the new orthodoxy. The School would thus 
also hold that a system as a whole should be criticised from a hypothetical outside 
perspective. Attempts at small-scale criticism (or small-scale modifications) from within 
the system would be absorbed by the system. An example of how this perspective maps 
to SD is that, despite all small-scale software maintenance efforts, a legacy software 
system will typically grow increasingly obsolescent. The case for consequently 
discarding it completely and replacing it happens against conservative forces who try to 
protect their financial investments in the old system, their prestigious status as experts in 
the old framework, and the like.  
 
The purpose of this brief excursion into the world of the School of Frankfurt was to 
provide an alternative and critical view on change and progress in science and society 
from that of Popper and Kuhn. As far as Kuhn is concerned, it seems fair to say that the 
School of Frankfurt had emphasized earlier (and more strongly) than Kuhn that the 
historic occurrence of paradigm shifts is not only driven by flaws and deficiencies in 
those paradigms themselves, but also by strong social forces with specific agendas. In the 
world of SE, such conflicting interests might be identified with the various stakeholders 
of a software development project, such as customers, project managers, programmers, 
and so on. Finally, we might say that, to the followers of the School of Frankfurt, any 
philosophy that condoned a piecemeal, evolutionary approach to change seemed 
superficial and reactionary. It is therefore not surprising that they repudiated the ideas of 
Popper who offered a contrary perspective of change, as discussed further in Sect. 6 
below.  
 

5   Appreciation of Kuhn  
 
“Can Thomas Kuhn’s paradigms help us to understand software engineering?” (Wernick 
and Hall 2004). As usual in philosophy, the answer is neither an unconditional ‘yes’, nor 
an unconditional ‘no’. Our discussion especially of Yourdon in the literature review 
above (Sect. 3) led us to reflect upon our own understanding of Kuhn’s philosophy with 
respect to software engineering. This section will assess the extent to which Kuhn’s 
popularity in parts of the software engineering community is justified. For this purpose, a 
distinction will be made between large-scale and small-scale change that both occur in 
the SE domain. We will argue throughout that Kuhn’s concepts of ‘scientific revolutions’ 
and ‘paradigm shift’ seem more suited to explaining large-scale change in the field of SE 
as a whole, whereas Popper’s concepts of ‘evolutionary epistemology’ and 
‘falsificationism’ seem more suited to explaining small-scale change in the course of 
particular SD projects.  
 
Applying Kuhnian terminology to SE naively, we could thus consider AM and XP to be a 
new paradigm of SE, whereas ‘Waterfall’ or other traditional SE methodologies would be 



considered part of the old paradigm. Therefore, we must now assess if Kuhn’s theory 
adequately accounts for the change from classical SD to AM, and if this change can be 
best described as a revolution or paradigm shift in the Kuhnian sense.  
 
One could ask, for example, whether software developers could be rightfully described as 
‘scientific researchers’ at all. To us it seems obvious that software programmers are 
engineers of sorts, since they produce something that has direct application to the 
ordinary world, whereas physical scientists are usually concerned with specialised 
research that often has no obvious bearing on everyday life. In other words, the engineer 
synthesises (constructs) to produce new artefacts, whereas the scientist analyses and takes 
apart to acquire knowledge about an existing (natural) entity. Furthermore, scientists are 
not normally held accountable to the public to the same extent as engineers who do not 
merely solve theoretical problems but produce software with clear applications. 
Nonetheless, both are making use of the rigorous standards of modern mathematical 
logic, and computer technology has become essential to any modern scientific research as 
well.  
 
Moreover, may SD methodologies rightfully be regarded as ‘paradigms’? We concede 
that software practice can indeed be made to fit both of Kuhn’s definitions of a paradigm, 
at least in the broadest senses. However, what is not evident from Kuhn’s definition is 
that he was writing specifically about scientific communities in their particular historic 
form. Taken in this specific and historic sense, it is questionable whether the term can be 
re-applied to software-engineering communities without any modification of its meaning 
(though Kuhn himself has indicated in his 1969 ‘Postscript’ that his theses were compiled 
by taking several fields of research into account).  
 
The proliferation of various SD methodologies since the early 1990s has been interpreted 
by some AM followers in terms of Kuhn’s ‘scientific crisis’ or ‘extra-ordinary science’. 
AM are seen as the emerging paradigm that might completely replace the traditional 
methodologies of the old paradigm. The questioning of the fundamental principles, 
values and practices of SD methodology that accompanies the emergence of new 
methodologies, compares with the similar activity of physical scientists in a state of 
crisis. This presupposes that SE could already be regarded a ‘mature science’ dominated 
by a single paradigm, as opposed to a ‘pre-scientific’ state of affairs which is 
characterised by many competing schools of thought. This does, indeed, seem to be the 
case in software engineering since, before the present crisis, the ‘Waterfall’ SD method 
was dominant. However, one should question the assumption that there needs to be a 
single dominant paradigm in SE as Kuhn argues there is in science. Cockburn’s 
suggestion of one SD method per SD project (Cockburn 1999) seems reasonable, though 
it is a thoroughly non-Kuhnian approach since it implies that rational choices can be 
made between different SD methodologies.  
 
Furthermore, are SD methodologies really incommensurable and an all-or-nothing affair, 
as Kuhn alleges scientific paradigms to be? According to many articles in the software 
literature that compare methodologies, such a claim is rather unfounded. Boehm, for 
example, makes a detailed comparison between AM and plan-driven SD methods and 



argues for their synthesis into a hybrid one (Boehm 2002). Similarly, other authors claim 
to have successfully adapted the ‘Waterfall’ model by integrating key elements of SD 
approaches such as ‘Rapid Application Development’ and XP (Lux 2007).  
 
Another important question in this context is: ‘Was the emergence of AM in the mid 
1990s a result of cumulative anomalies? If not, what triggered the crisis?’ For Kuhn, 
anomalies could take the form of “discoveries, or novelties of fact” on the one hand or 
“inventions, or novelties of theories” (Kuhn 1962, p. 52) on the other hand. Both forms of 
novelty however are usually not actively sought out (initially even resisted) by scientific 
communities. Since SD methodologies do not aim to explain physical phenomena, it is 
difficult to see how Kuhn’s theories can be applicable in this case. Nonetheless, a case 
can be made for crucial events causing a crisis in SE, for example, the advent of the 
Internet-era: document-oriented SD methodologies were the dominant paradigm at the 
time and most document-oriented software engineers came to recognise that developing 
at ‘Internet time’ required a reconsideration of the document-oriented SD process. As a 
result, AM emerged and many advocates of the old paradigm became the advocates of 
AM. Also, the emergence of SE itself as a new sub-discipline of computer science about 
forty years ago was the result of a crisis, namely, the inability to construct and maintain 
robust operating systems for a new generation of hardware with the rather limited SD 
techniques of the 1960s (see the history section of above). In this context, it is also 
interesting to remember that the so-called ‘software crisis’, which started from the 
moment the financial costs of computer software exceeded the financial costs of 
computer hardware, has never since been overcome: We have been living with this state 
of affairs for four decades now, and it seems that the perpetuation of Kuhnian 
‘anomalies’ have become a new kind of normality in the SE domain.  
 
Another relevant question in this discourse is: ‘Can AM be called ‘revolutionary’ if they 
have not already become the dominant paradigm in ten years since their initiation?’ Kuhn 
himself faced a similar criticism: for example, the period between Copernicus and 
Newton is often termed the ‘Scientific Revolution’ but the time-span involved, over 
150 years, makes the process seem more like evolution than revolution. On the other 
hand, the definition of ‘revolution’, as used by us, does not refer to time-span at all. 
Whereas political revolutions seem to occur rather swiftly, scientific and technological 
revolutions can take considerable time to occur, as for example in the ‘Industrial 
Revolution’. Nonetheless, given the quick rate of change in the information age, perhaps 
the ‘AM revolution’ should have occurred already, if it is to take place at all. The most 
important question in this context, however, remains open to date: whether or not SE is 
actually a science already, or whether it is still in the state of a pre-scientific (although 
technical) human practice.29  
 
In the following, we come back to the papers of Yourdon (2001a, b), since he seems to 
have made the most influential remarks on Kuhn within the context of the AM 
community. In spite of his various references to Kuhn, Yourdon’s account of Kuhn’s 
ideas is sometimes inaccurate and seems to be influenced by the same revolutionary (or, 
rather, rebellious) spirit already identified in Schwaber (2001)—a spirit which runs 
contrary to that of Kuhn’s Structure, its title notwithstanding. Yourdon’s definition of a 



paradigm omits an important Kuhnian sense of the term, namely, “the concrete puzzle-
solutions which, employed as models or examples, can replace explicit rules as a basis for 
the solution of the remaining puzzles of normal science” (Kuhn 1962, p. 175). This 
omission by Yourdon is strange, given that implicit in this definition is the concept of 
‘tacit knowledge’ which is an important concept to the AM community. Yourdon 
provides a definition of ‘paradigm’ that departs significantly from Kuhn’s other central 
explication of the term,30 namely where Yourdon speaks of paradigms as of performing a 
reasonably good job of describing and explaining the events and phenomena that we 
encounter in our day-to-day life. This misses Kuhn’s crucial point concerning the 
“unparalleled insulation of mature scientific communities from the demands of the laity 
and of everyday life” (Kuhn 1962, p. 164). Most software engineers are not as isolated 
from everyday experience as most scientists since they are producing artefacts for use in 
everyday life. Moreover, Yourdon’s reference to “scientists, engineers, soothsayers, or 
priests” is also problematic because Kuhn’s ‘paradigm shift’ specifically relates to 
physical scientists, whereas software engineering is quite remote from the physical 
sciences. At no point in Kuhn (1962) does he explicitly refer to engineers, (and certainly 
not to soothsayers and priests). Nonetheless, the reference to soothsayers and priests, if 
not true to the word of Kuhn’s theory, might come quite close to its spirit, since it 
suggests that paradigm changes are not completely rational, but require a leap of faith. 
Similarly one could object to Yourdon’s descriptions that “meanwhile, there’s likely to 
be a band of renegade scientists, engineers, or priests looking for a new paradigm” and 
that “In the past, the rebels promoting a new paradigm were likely to be burnt at the 
stake”. Note how this echoes Schwaber’s questionable use of the term ‘revolution’, as 
mentioned above.  
 
Fuller, on the contrary, pointed out that Kuhn’s enthusiastic followers generally “ignored 
that Kuhn, far from being a scientific revolutionary, argued that revolutions were only a 
last resort in science—indeed, an indication of just how fixated scientists tend to be on 
their paradigm [is] that they have no regular procedure for considering fundamental 
changes in research direction” (Fuller 2003, p. 22). Yourdon seems to have shifted from 
Kuhn’s scientific sense of ‘revolution’ to a political sense that is, in fact, alien to Kuhn’s 
theory (despite the fact that Kuhn actually compared the two). Fuller’s critique shows 
how close Kuhn’s paradigms are to the blueprints advocated by ‘big upfront design’ 
methodologies, similar to those advocated by the software engineering traditionalist. This 
is in complete contrast to XP with its many practices for accommodating change. 
Furthermore, Yourdon’s claim that the new paradigm “explains all of the known 
phenomena much more cleanly and simply [than the old one]” also misrepresents Kuhn, 
who argues that the new paradigm does not solve all of the old puzzles, but rather 
abandons many of them, and, indeed, reviews, in the terms of the new paradigm, puzzles 
previously thought solved. Thus, the phenomena themselves have changed in the new 
paradigm, so radical is the break with the old paradigm. On the other hand, the new 
paradigm can solve many of the new puzzles that the older paradigm failed to solve. A 
final problem with Yourdon’s depiction, from a Kuhnian point of view, is that it presents 
an objective criterion that allows one to make a rational choice between paradigms, a 
possibility which Kuhn rejected, and which more accurately fits the philosophy of 
Popper, as discussed in the following section.  



 
 

6   Appreciation of Popper  
 
Die Theorien aber sind wie dürre Blätter, welche abfallen, wenn sie den Organismus der 
Wissenschaft eine Zeit lang in Athem gehalten haben 31—Ernst Mach.  
 
In this section, Popper’s ‘critical rationalism’ (Albert 1994), which relates—like Mach’s 
motto quoted above—to a long tradition of skepticism and fallibilism of various kinds, is 
used in an attempt to illuminate the values and principles underlying contemporary SD. 
Whilst some authors have sporadically applied Popperian concepts to aspects of the SE 
discipline (see Sect. 3), we aim to do so more systematically in this section. In particular, 
Popper’s ideas will be used in an attempt to provide a comprehensive and unified 
philosophical basis for understanding AM. Here we argue that important aspects of the 
AM approach are strongly endorsed by Popper’s philosophy of critical rationalism. To 
begin with, Popper’s principle of falsificationism is transferred from the domain of 
physical science to the domain of SE. Whether or not it is legitimate to do so is another 
philosophical question that has already been raised in the previous section. In what 
follows, Popper’s philosophy is applied both to AM in general and to software testing in 
particular.  
 
Regarding the issue of software testing, we argue that the susceptibility of software to 
testing demonstrates its falsifiability, and thus the scientific nature of software 
development. Indeed, software programmers seem to resemble ‘theoreticists’ since they 
are responsible for establishing, by careful a-priori reasoning, an overall ‘theory’ that 
guides the development of working software programs. Moreover, software testers seem 
to resemble ‘experimental scientists’ since each test case they write is like a ‘scientific 
experiment’ which attempts to falsify a part of the developer’s overall theory. Thus, SD 
seems to take physical science as the exemplar since it is testable, logical, mathematical, 
rigorous, repeatable, refutable and deductive.  
 
With regard to software verification, which is complementary to software testing, 
Popper’s falsificationism is useful in providing an understanding of the view that no 
amount of software testing can prove a program correct. Snelting and Dijkstra were 
mentioned previously in this context. However, in spite of the similarity between their 
concepts of testability, Popper and Dijkstra argue from different perspectives: Dijkstra, 
arguing from a mathematical perspective about programs as mathematical entities, 
believes that a computer scientist should try to formally verify the correctness of an 
algorithm he has constructed, whereas Popper, arguing from the perspective of the natural 
sciences, rejects ‘verification’ in the natural sciences,32 since this would require a 
positive result in every possible instance, (which is clearly unattainable). Whilst Popper 
can be seen as putting more emphasis on empirical methods, Dijkstra emphasises 
mathematical methods, with the aim of making the practical job of software testing, 
which is usually tedious and error-prone itself, somewhat easier.33  
 



In order to adopt a purely Popperian approach to SD, software engineers must regard 
software systems as quasi-physical entities. Under this assumption they can then attempt 
to eliminate as many defects—via test cases—as possible, instead of striving to prove that 
programs are correct (from a mathematical perspective)—the goal of testing is to detect 
defects, not to demonstrate their absence. A principle difficulty of ‘pure’ Popperianism, 
also in SE, is highlighted by the questions: Who tests the testers? How far can we meta-
test that a test was properly conducted? Therefore, to support the tedious procedure of 
rigorous software testing, programmers should aspire to write ‘cleaner’ software which 
would better enable such falsification attempts—whereby the word ‘should’ points 
towards a whole array of normative issues in SE, such as the enforcement of coding 
standards, and the like. Anyway, the invention of relevant and significant ‘experiments’ 
for software testing remains a difficult task which requires ingenuity and creativity (as 
Popper mentioned in his writings), expertise, as well as the aid of formal logical 
(mathematical) theories.34  
 
One of the fundamental characteristics which distinguish AM, especially XP, from 
traditional SD methodologies is their concept of ‘test-first’ programming, the main focus 
of which is on defining test cases before developing the deliverable software. Initially, 
each of the test cases fails when executed, since the software is yet to be written. The 
failure of each test case points out lacking functionality. Then, the developers iteratively 
and incrementally implement the required functionality according to the most important 
or urgent requirements. This cycle is repeated until all the required functionality is 
implemented and all test cases pass. From a Popperian perspective, this practice of test-
first programming can be understood as continuous attempts at falsification since the 
failing test cases (analogous with scientific experiments) point out that the program 
(analogous with the scientific theory or hypothesis) does not function according to 
requirements. The fact that test-first programming is an important basis of the 
development approach of AM means that these methodologies may be considered 
scientific in a Popperian sense.  
 
Another XP practice called ‘pair programming’ also supports and encourages 
falsificationism through its emphasis on interaction and collaboration. Pairs of 
programmers who sit together and co-program software, continuously subject their 
source code to a critical peer review process, which facilitates falsification. This practice 
encourages objectivity (or at least inter-subjectivity) and error detection due to the 
presence of an observer. The consensus resulting from pair programming seems to be 
achieved through an objective Popperian process emphasising criticism and error 
elimination, rather than through mere subjectivist (conventional) consensus as it would 
appear from a Kuhnian viewpoint. Yet another AM practice encouraging falsification is 
collective ownership of program-code within the society of a software factory. Individual 
code contributions made by group members are stored in collectively owned databases 
and, through a democratic peer review process, the functioning of the source code is 
thoroughly assessed. In principle, the collective ownership of code is similar to pair 
programming, however, the number of observers is larger than two. In short, AM in SE 
are ‘human-centred’. They advocate continuous and frequent collaboration between all 
stakeholders of a project, especially between customers and developers. In AM, 



customers form an integral part of a development group and accompany the programmers 
throughout a project. They provide continuous feedback to the programmers which helps 
to detect and eliminate errors in the software as early as possible. This approach also 
resembles the role of falsificationism in Popper’s method and it fits into the framework of 
Popper’s political and social philosophy. This human-centred orientation of AM also 
manifests itself in the practice of using stories (instead of formalisms) for the description 
(instead of definition) of software requirements. In this context, the creative imagination 
required for story telling might be related to Popper’s remarks on the invention of 
hypotheses (anti-inductionism) before the process of falsification can start.  
 
In line with Popper’s fallibilism, AM advocates acknowledge that people invariably make 
mistakes. Embracing this fact, they propose an iterative and incremental approach to SD. 
This approach, which derives historically from RUP, is now central to AM. It allows 
mistakes to be detected and repaired as early as possible, by reworking pieces of the 
software, before the errors accumulate to an un-manageable number. This iterative 
incremental approach is more similar to Popper’s method of error detection and 
elimination than in the classical ‘Waterfall’ model of SD, because in AM the software is 
built in small steps allowing designs to be reworked and errors to be rectified after each 
increment.  
 
According to Popper, all knowledge begins with problem-solving (Popper 1999). He 
proposed his cyclic 4-step model to represent the way in which scientific knowledge 
advances into an open future:  

 
From what has been said about SE above,35 it should be clear that the small-step SD 
cycles of AM can be described in terms of this model, whereby a preliminary solution P2 
from a previous SD cycle poses further problems to the programmers (due to detected 
errors or due to modified expectations on the customer’s part) and becomes thus the 
initial problem P1 of the subsequent SD cycle. Moreover, TS would correspond to a new 
solution proposed by a developer, and EE would represent the attempt of the software 
tester to detect any flaws. Popper’s remarks on evolution and selection (Popper 1999) are 
relevant in this context, too, because the iterative incremental AM approach makes it 
feasible to experiment with alterative software designs, whereby unsuccessful designs 
can easily be discarded. Note that software projects often keep several competing 
versions of a software product under development, whereby the least successful ones will 
eventually ‘die’ by not being pursued any further.  
 
As mentioned earlier, software is ultimately developed by organizations, rather than by 
individuals. This is also true for SD in the AM paradigm. For this reason it might be an 
interesting research topic for the future to compare Popper’s ‘three worlds’ of knowledge 
which must be shared (implicitly or explicitly, informally or formally) by the members of 
an organisation, a community or a society, with the concepts of organisational knowledge 
discussed, for example, by Nonaka and Takeuchi (1995), based on ideas of Polanyi 
(1967). This topic also relates to the question of if-and-how to do documentation (of the 
intermediate or final results) in a SD project: a question about which the AM community 
is also at odds with followers of the classical ‘Waterfall’ model of SD. In this essay, 



however, we refrain from such a discussion, in order not to deviate too far from our 
central theme, which is the SD process as such. Only summarily we conjecture that 
Popper’s ‘three worlds’ metaphysics (combining ontology and epistemology) could be 
central to such a study, whereby we should also take notice of an interesting similarity 
between Popper’s three ‘worlds’ and the four ontological realms (‘Reiche’) in the techno-
philosophy of Friedrich Dessauer (1933); see also Mitcham (1994, p. 29).36  
 
There is also some similarity between the AM community’s ‘baby-step’ approach to SD 
and Popper’s ‘piecemeal’ approach to social engineering (in an ‘open’ society), namely 
in their common rejection of an overall ‘blueprint’ for design. AM supporters would 
argue that SD projects are usually too complex and requirements too volatile to guarantee 
the correctness of comprehensive up-front design. Moreover, the ‘human factor’ 
introduces further unpredictability. All this potential for change means that there will 
inevitably be deviations from the blueprint. Therefore, AM are adaptive rather than 
anticipatory, which means they place less emphasis on comprehensive up-front design 
and more emphasis on principles which enable them to adapt to changing circumstances. 
Another similarity between AM and Popper’s ‘piecemeal’ social engineering is their 
common focus on the present, rather than the future. AM emphasize the present in their 
core value of simplicity. To achieve simplicity, AM advocates assume a position of 
deliberate short-sightedness and they minimalistically implement software functionality 
only for those requirements which are immediately testable. This focus on the immediate 
problem is similar to the piecemeal engineer’s focus on identifying the most urgent 
problems in society and bringing about a rapid solution, even at the price of sub-
optimality.  
 

7   Summary, Reflection and Conclusion  
 
Forty years after its ‘birth declaration’ at the NATO Science conference in Garmisch, the 
young discipline of SE is still in a state of ambiguity which makes its philosophical 
assessment rather hard. Whilst authors like Mary Shaw (1996) tend to believe that SE is 
still in a state of ‘craft’ technology in the terminology of Arageorgis and Baltas (1989, p. 
213) and has not even reached ‘engineering’ status at all, academic SE organisations, 
such as EASST,37 already speak of software ‘science’ (as well as of software 
‘technology’).38 Where SE has common features with ‘real’ (i.e., material) engineering, 
the analysis provided by Arageorgis and Baltas (1989) is relevant; however the specific 
differences between SE and real engineering are still in need of philosophical attention 
and reflection.  
 
Considering how questionable Kuhn’s concept of ‘paradigm shift’ is when applied to 
questions of change in SD methodology, his popularity amongst prominent members of 
the AM community is quite surprising, especially when we take into account that Kuhn’s 
theory had already been regarded as rather insignificant and criticised as “pure 
historicism” (Seiffert 1994) well before the ‘agile movement’ took off. Moreover, Kuhn 
was not the revolutionary that the rebellious young American students of the late 1960s 
and 1970s thought he was. On the contrary, according to Fuller, his critics saw Kuhn as 
“the official philosopher of the emerging military-industrial complex” (Fuller 2003, p. 



35) and rather than having killed positivism, “as the Popperians saw it, Kuhn simply 
replaced the positivist search for timelessly true propositions with historically entrenched 
practices. Both were inherently uncritical and conformist” (Fuller 2003, p. 35). As Fuller 
also pointed out, part of the popularity of Kuhn is “the innocence [of his admirers] of any 
alternative accounts of the history of science (…) with which to compare Kuhn’s” (Fuller 
2003, p. 22), such as the fallibilism of Popper or Peirce (Buchler 1955) or, even earlier 
(19th century), Johann Eduard Erdmann (1896) in his reflections on the validity of 
hypotheses in the field of history. Popper’s philosophy has been used in our essay as a 
corrective, although other philosophers, such as Peirce may have suited the purpose 
equally well. Indeed, the fallibilism of the latter two philosophers seems to be better 
suited to the principles and practices of AM than the uncritical authoritarianism and 
elitism of Kuhn’s philosophy. In this aspect of technology assessment, Habermas and 
Popper seem closer to each other than they would like to admit, notwithstanding their 
differences as far as Hegelianism and other issues (including questions of politics) are 
concerned.  
 
Moreover, it can be argued that Beck shifts his emphasis in the 1st and 2nd editions of his 
book (Beck and Andres 2005) from a Kuhnian revolutionary approach to a Popperian 
evolutionary one, since in the 1st edition, Beck advocates that, in order to be truly 
practising Extreme Programming, all agile values, principles and practices should be 
adopted and strictly adhered to, whereas in the 2nd edition he suggests, instead, a 
piecemeal approach to adopting the new methodology. A Kuhnian approach would entail 
a total replacement of the previous methodology with that of XP and would require a leap 
of faith, whereas Popper would allow a piecemeal approach whereby AM practices and 
principles can be adopted individually and be withdrawn if unsuccessful. Furthermore, 
Kuhn’s insistence that paradigms are incommensurable suggests that the AM paradigm 
cannot be compared to any other software paradigm. However, it was shown earlier that 
several authors have indeed made such comparisons.  
 
On the other hand, the incommensurability of paradigms implies that choosing between 
them is not completely rational, an implication that Beck would presumably resist. 
Instead, he would most probably argue that the XP principles and practices are all 
rational. However, why then does he use Kuhn’s irrationalist theory of scientific 
revolutions? As mentioned above, Beck’s statement regarding market prediction might 
provide a clue: Since XP will require significant change and since most people fiercely 
resist change, its adoption will not be largely due to rationality and good arguments, but 
will instead require an emotional conversion or leap of faith.  
 
It would seem that Beck gained this insight about the irrationality of paradigm shifts from 
Kuhn despite the fact that Kuhn never mentioned markets. Nonetheless, as Fuller writes, 
“Kuhn saw science as a knowledge enterprise” (Fuller 2003, p. 15). This may thus be a 
solution: Although the values, principles and practices of XP are highly rational 
according to Popper’s critical rationalist criterion, the adoption of XP as a whole will be 
more a matter of emotion rather than logic, as full of ‘hype’ and persuasive techniques as 
the selling of a new product on the market. This is, however, a significant departure from 
the strict use of Kuhn’s theory of scientific revolutions.  



 
In this essay we have conducted an exercise in ‘applied philosophy’—in contrast to 
‘pure’ philosophy—in the sense that we did not discuss a general problem (e.g. the 
problem of knowledge or the problem of science as such). Instead, our discussion was 
motivated occasionally, by the specific problems of SE, as outlined in the introductory 
section.  
 
Our essay would be unsatisfactory without a brief reflection on the possible limitations of 
such an approach. Especially in our context, two questions need to be asked: Is Kuhn’s 
view of the (history of the) scientific world largely correct, or is his opinion itself merely 
a ‘paradigm’—a temporary fashion which is soon likely to be superseded by another, 
with its own set of believers and dedicated followers? Secondly: Regardless of whether 
or not Kuhn’s model is intrinsically plausible, did we apply it consistently and 
appropriately to our specific problem in the context of SE? As far as the first of these two 
questions is concerned, we refer the reader to the ongoing philosophical discourse with 
inputs from a great diversity of sources such as ‘critical theory’ (School of Frankfurt), 
‘critical rationalism’ (Popper, Albert, etc.), ‘pragmatism’ or ‘pragmaticism’ (Peirce, 
James, etc.), various versions of (meta)-scientific ‘relativism’ (Nietzsche, Feyerabend, 
etc.) and many others. Future work might delve somewhat deeper into the details of these 
issues. As far as the second question is concerned, we concede that it is methodologically 
daring to apply something like Kuhn’s model, which was initially conceived as a historic 
meta-theory about scientific theories, to the field of SE which is, more than anything else, 
a technical practice and not a mathematically formulated, predictive scientific ‘theory’ in 
the classical sense of the term.  
 
As far as the School of Frankfurt is concerned, it is also not yet fully understood how 
Habermas’ well-known three categories of research processes (namely: empirical-
analytic, historical-hermeneutic, critical-reflective) can be adequately (and not just 
‘roughly’) mapped to those various complicated activities which all together constitute a 
SD process. Modally speaking we could ask: What degree of ‘necessity’ would 
Habermas’ category-mapping possess with respect to SE, and what degree of 
‘sufficiency’? Moreover: Is a Frankfurtian (or maybe even Althusserian) notion of 
‘theory’ compatible with the with the notions of ‘theory’ as they are understood by 
software engineers and software scientists themselves? Or are ‘construction’ and 
‘interpretation’ (i.e. ‘theory’) glued together in a “Leibniz-world” (Mittelstraß 2001, p. 
21) to such an extent that they cannot be separated into different categories of research 
processes at all—and, if so, what would this imply as far as our philosophical 
understanding of SE is concerned?  
 
Some minimal kind of ‘theory’, however ‘hidden’ or un-reflected, must exist to motivate 
the followers of any SD methodology—even if such a ‘theory’ would not express 
anything more than the simple assertion that, if you would produce software in this and 
this particular way, then you would be effective and efficient in delivering products of the 
required quality. Yet it is this lack of explicit (meta) theory—where it occurs—which 
renders the practice of SE akin to other practice-oriented disciplines, for example pre-
scientific forms of medicine (‘Heilkunde’) or pre-scientific forms of biology (e.g. cattle 



breeding), which have to rely for their predictive purposes on the heuristics of a 
‘Lebenswelt’ rather on than the precision of mathematics. Practically (and inter-
subjectively) such ‘hidden background theories’ (to any SE approach) manifest 
themselves in a multitude of frequently proposed and published (yet rarely applied) 
software metrics, quality criteria, capability maturity models (like CMM or TMM), ‘best 
practice’ recommendations based on anecdotic ‘success stories’ transmitted at meetings 
and workshops, corporate or governmental norms, and the like. It would seem, therefore, 
that it is the more or less implicit adherence to various versions of such un-clarified 
background ‘theory’ that makes the discipline of SE so prone to the formation of those 
kinds of opinion-based ‘schools’ which Kuhn (as well as Feyerabend and others) have 
mentioned in their writings.  
 
From a small-scale (i.e. more technical) perspective of SD, however, there is no room for 
‘opinion’ and hence no room for a Kuhnian approach. More specifically, a Kuhnian 
perspective has nothing to say about a computer program that would, for example, 
calculate the square-root of 16 as ‘5’. At this small-scale level of SD (respectively 
computer programming), where non-negotiatable issues of ‘true’ or ‘false’ are at stake, 
Kuhnian thought seems inapplicable. It is at this small-scale (technical) level of SD 
where Popperian ideas of conjecture and refutation are best applied.  
 
At this point we interrupt our discussion towards a philosophy of SE, and we invite the 
reader to participate in this emerging discourse. Considering the practical context of our 
theme we might expect reactions especially from philosophers belonging to various 
pragmaticist, constructivist, culturalist traditions (in the footsteps of William James, 
Hugo Dingler, etc.), with their special emphasis on human purposes and actions, at which 
we have only hinted in this essay. Analytic philosophers might be interested in software 
from the perspective of language, whereas structuralists might want to search for hidden 
patterns or schemes. Perhaps even Kantian thinkers, with their characteristic focus on 
questions of transcendental preconditions, could make some interesting contributions too.  
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Footnotes 
 
1 We call our article ‘essay’, in appreciation of Brooks’ famous ‘Essays on Software 

Engineering’ (Brooks 1995). As far as ethics of software engineering is concerned, we 
have not yet studied how it would differ specifically from the general ethics of 
engineering (or technics, or technology) which were already discussed by many 
contemporary philosophers.  

2 Recently it was reported in the news that Iranian programmers have (allegedly) 
programmed an Islamist computer game, which mimics the corresponding Western 
games but with reversed roles: the player of that game will find himself in a scenario in 
which he has to fight an anti-Western campaign in the role of an ardent religious 
Jihadist. The game seems to have become quite popular amongst the disgruntled 
Oriental youths.  

3 For a general introduction to the philosophy of technics (technology, engineering), we 
refer to well-known modern and contemporary philosophers such as H. Beck, N. 
Berdjajew, F. Dessauer, J. Ellul, A. Gehlen, A. Huning, E. Kapp, H. Lenk, R. Mackey, 
C. Mitcham (Mitcham and Mackey 1973), F. Rapp, G. Ropohl, H. Sachsse, K. 
Schilling, H. Stork, K. Tuchel, A. Wenzl, S. Wollgast, W. Zimmerli, B. Zschimmer, 
and many others. For the difference between ‘technics’ and ‘technology’ see Sachsse 
(1994a, b). A bibliography newer than (Mitcham and Mackey 1973), comprising more 
than 100 titles on this topic, can be found on the internet at http://www.stefan-
gruner.de/Bibl-Phil-Eth-Techn.zip.  

4 We have used a general dictionary here, instead of a specific historic-philosophical 
one, because specialist dictionaries, in all their ‘scholastic’ subtlety often obfuscate 
(rather than clarify) the term in question.  

5 Thus, operating systems, too, are a manifestation of a general principle of abstraction, 
which is one of the most important methodological guidelines in computer science and 
SE.  

6 The fact that the conference was organised under the umbrella of the NATO in the 
middle of the ‘Cold War’ also indicates the importance of software systems from a 
military perspective—like every novel technology in its own historical time.  



7 See, for example, ICSE Conference 2008, on the internet at 
http://icse08.upb.de/program/40years.html.  

8 That seminar was attended, inter alia, by Naur and Randall of the 1968 NATO 
Garmisch event, as well as by ‘celebrities’ such as Parnas, Boehm (2002), Shapiro, etc.  

9 It provoked, for example, Knuth’s response about structured programming with GOTO 
commands (Knuth 1974).  

10 The website http://www.sereferences.com/software-failure-list.php lists a number of 
spectacular software failures which are all due to the intrinsic complexity of modern 
software systems and the limited ability of the human mind to cope with such high 
levels of structural and behavioural complexity; see also Brooks (1995) for 
comparison.  

11 The ‘Waterfall’ development process, adopted by SE from classical engineering 
disciplines, is nicely summarised and discussed also by Arageorgis and Baltas (1989, 
pp. 225–226); however they make the mistake of confusing the terms ‘efficient’ and 
‘effective’: where they say ‘effective’ they should have said ‘efficient’. (‘Effective’ 
merely means that a desired result is achieved within a finite—however long—period 
of time.)  

12 German-speaking readers should keep in mind that the English word ‘methodology’ is 
conceptually closer to the German words ‘Methode’ or ‘Methodik’ rather than to the 
German ‘Methodologie’; it means a framework of related methods rather than a fully 
elaborated science or theory of methods: see Geldsetzer (1980) for comparison.  

13 There are, of course, ad-hoc ‘micro-plans’ for “responding to change”. The process is 
not supposed to be chaotic. 

14 For this reason a philosophical analysis of SE might even be interesting for 
philosophers in the tradition of Structuralism.  

15 Margolis acknowledges his indebtedness to Peirce for the type-token-distinction, 
although he also notes that he departs from Peirce’s usage who perceived types and 
tokens exclusively as signs.  

16 This is related to questions of organisational knowledge, upon which we shall touch 
only briefly in Sect. 6.  

17 For a brief overview of Feyerabendianism in SE see Gruner (2007). For a more 
profound critique of Feyerabendianism in SE see Snelting (1997, 1998). Another 
example of Feyerabendianism in computer science can be found on the internet at 
http://www.dreamsongs.com/Feyerabend/ETAPS03/.  

18 Our colleague, Morkel Theunissen, hinted in a private communication at the powerful 
role of the American DARPA doctrine in the widespread adoption of the strictly 
hierarchy-procedural development process both in classical-mechanical and in SE.  

19 This ‘rapid’ engineering method was ignored the methodological discussion of 
Arageorgis and Baltas (1989), presumably because this detail was not central to their 
general ‘science versus engineering’ theme.  

20 This entire synopsis is intentionally limited to literature that explicitly applies the 
theories of professional philosophers and excludes any literature that uses the word 
‘philosophy’ loosely in the senses of ‘guiding principle’ or ‘general outlook on life’.  



21 ‘Ontology’ in SE does not have the same meaning as in philosophy. An ‘ontology’ in 
SE is, basically, a ‘name space’. 

22 In our opinion, OOP should be better characterized as ‘Aristotelian’ rather than 
‘Platonic’, but this discussion would lead us too far away from the central topic of our 
paper; see Rayside and Campbell (2000) for comparison.  

23 We cite several authors whose writings have been published in the Cutter Consortium’s 
own book series. All of them can be found in the Cutter Consortium’s own bookstore 
(Cutter 2007).  

24 K. Beck: Personal e-mail communication with M. Northover, December 2006. 
25 Model checking is a method of testing the possible behaviour of a finite-state machine 

against a formal specification in a temporal logic, to generate counterexamples or 
refutations if the specification is violated.  

26 This includes ourselves, the authors of this essay; none of us is a professional 
philosopher. 

27 Here we refer particularly to some notoriously anti-technological paragraphs in 
Marcuse (1964).  

28 Note that similar thoughts are evident in the later works by M. Heidegger—technics as 
‘Gestell’ (Heidegger 1949)—in spite of the School of Frankfurt regarding itself as 
notoriously anti-Heideggerian.  

29 D. Knuth’s seminal book ‘The Art of Computer Programming’ (Knuth 1968) was 
followed by D. Gries’ book ‘The Science of Programming’ (Gries 1981): this shows 
how slowly the computer science community is trying to come to terms with an 
appropriate philosophical understanding of their own practices and activities; see 
Bishop (1991) and Arageorgis and Baltas (1989) for comparison.  

30 Whilst some authors have claimed that Kuhn would use his term ‘paradigm’ in a large 
variety of different notions throughout his writings (see for example Masterman 1970), 
Kuhn himself, in his ‘Postscript’ (Kuhn 1970), has rejected such allegations and 
insisted—including a reference to Masterman—that he would use the term ‘paradigm’ 
in two notions only (Kuhn 1970, pp. 181–182). These are the ones which we have 
mentioned above.  

31 The theories, however, are like dry autumn leaves which are falling off, after having 
enabled the tree of science to breathe for another while. Our translation, from Mach 
(1871, p. 46).  

32 Note that Popper did not dispute the possibility of a positive mathematical or logical 
proof within the realm of mathematics; in fact Popper needs the validity of logics itself 
in order to be able to claim that one counter-example is sufficient to disprove an all-
quantified expression of a disputed hypothesis.  

33 Mathematically verified software tends to reveal less defects in the testing phase than 
software which had been created without formal verification. With respect to the 
density of flaws in program code, the SE practitioner’s classical ‘rule of thumb’ states: 
‘one flaw per thousand lines of software code’, which would sum up to approximately 
thousand flaws in a larger software system consisting of about one million lines of 
code.  



34 Entire conferences are dedicated to this specific sub-field of SE; see for example the 
IEEE-ICST Conference on Software Testing, Verification and Validation, on the 
internet at http://www.cs.colostate.edu/icst2008/.  

35 One might feel slightly reminded of Hegel’s well-known 3-step dialectics: as far as the 
analogy holds, a Popperian double step (TS � EE) would resemble some ‘operational 
refinement’ of an Hegelian ‘anti-thesis’—the well-known fundamental differences 
between Hegel’s and Popper’s general philosophies of history not being taken into 
account at this specific point.  

36 Dessauer’s fourth ‘Reich’ (realm), as the “Inbegriff aller eindeutig prästabilierten 
Lösungsgestalten” (Dessauer 1933, p. 50), comprises the ‘ideas’ of all technically 
feasible solutions which are ‘awaiting’ their ‘discovery’—similar to the realm of 
algorithms and mathematical solutions in the quasi-platonic ontology of Penrose 
(1989). Even more (namely five) ‘worlds’ (of ‘discovery’, ‘invention’, ‘development’, 
‘being’, and ‘becoming’), have been distinguished by Jürgen Mittelstraß in several of 
his works; see for example Mittelstraß (2001).  

37 European Association of Software Science and Technology; on the internet at 
http://www.easst.org/.  

38 This philosophical limbo is reflected by the organisations of different universities, in 
which we can find computer science and SE sometimes attached to the faculties of 
engineering, sometimes to the faculties of mathematics and natural sciences. Moreover, 
within the discipline itself, there is also growing dissent about whether SE still is (or 
should be) a sub-discipline of computer science, or whether it is (or should be) already 
a discipline in its own right, emancipated from computer science (in analogy to the 
similar debate about the relationship between computer science and artificial 
intelligence some time ago).  

 


