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ABSTRACT Artificial intelligence (AI)-assisted cyber-attacks have evolved to become increasingly
successful in every aspect of the cyber-defence life cycle. For example, in the reconnaissance phase,
AI-enhanced tools such as MalGAN can be deployed. The attacks launched by these types of tools
automatically exploit vulnerabilities in cyber-defence systems. However, existing countermeasures cannot
detect the attacks launched by most AI-enhanced tools. The solution presented in this paper is the first step
towards using data fingerprinting and visualization to protect against AI-enhanced attacks. The AIECDS
methodology for the development of AI-Enhanced Cyber-defense Systems was presented and discussed.
This methodology includes tasks for data fingerprinting and visualization. The use of fingerprinted data
and data visualization in cyber-defense systems has the potential to significantly reduce the complexity of
the decision boundary and simplify the machine-learning models required to improve detection efficiency,
even for malicious threats with minuscule sample datasets. This was validated by showing how the resulting
fingerprints enable the visual discrimination of benign and malicious events as part of a use case for the
discovery of cyber threats using fingerprint network sessions.

INDEX TERMS Cyber-defense, cyber security, data fingerprint, data visualization, intelligent system.

I. INTRODUCTION
One of the biggest challenges of the 21st century is defending
cyber assets from cyber-attacks [1], [2], [3], and [4].
Worldwide events such as COVID-19 and the Russian
invasion of Ukraine gave threat actors the opportunity to
significantly increase cyber-attacks [1], [3], and [4]. The
main defensive challenges are advanced and complex attacks,
unprotected data, poor cybersecurity practices, and defenses
based on vulnerability management, thereby exposing the
cyber-defense perimeter [2], [3]. Simultaneously, threat
actors are continually finding innovative means to deploy
Artificial Intelligence (AI)-enhanced cyber-attacks [3] and
increase their capabilities to target critical vulnerabilities
more quickly [1]. This has led to more frequent cyber-attacks
with greater complexity and smaller time windows to per-
form critical vulnerability patching. Consequently, by 2021,
zero-day attacks have nearly doubled [2].
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A study performed by the University of New South
Wales (UNSW) andAustralian Cybersecurity Center (ACSC)
unintentionally demonstrated the ineffectiveness of state-
of-the-art cyber-defense systems in 2015 [5]. The majority
of these countermeasures are based on machine learning
models, particularly anomaly detection techniques. Threat
actors target instabilities in machine learning (ML) and AI
by poisoning input data, using adversarial attacks to confuse
models during inference [1], [6], and using generative
adversarial networks (GAN) to enhance cyber-attacks [7].
Cybercriminals have advanced their ability to execute highly
sophisticated AI-enhanced attacks, which are becoming
increasingly difficult to discover, detect, and protect [7], [8].

Among the many reasons for the poor performance of
UNSW projects, the data problem is particularly noteworthy.
This could be attributed to the fact that the data used
were created in a laboratory, not real-world data or real-
time data. These data properties are of prime importance
when building cyber-defence systems. AI-enhanced ML
cyber-defense solutions should be trained using real-world
attack data [9]. However, there are multiple shortcomings
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in obtaining real-world data for ML-based cybersecurity
solutions: (i) the lack of availability of large real-world
attack datasets; (ii) the sensitive nature of the data; and
(iii) security, confidentiality, and privacy concerns [10], [11].
Research conducted by [12, 6, 18] has determined that most
ML cybersecurity studies have not been tested or trained
in real-time environments. This is critical for determining
the detection efficiency in practical scenarios in which
cyber-defence systems are intended to be deployed. In [13],
the authors (s) concluded that high-quality real-world and
real-time data are required to counter cyber threats.

Training machine learning models on visualized data has
proven to be more successful than training on raw data [14].
This is because researchers have identified that visualizations
can represent complex, large, and multimodal datasets as
simple datasets [14], which simplifies the learning task for
AI models. This opens up an opportunity for developers
of cyber-defense systems to develop AI-enhanced tools that
can be trained using visualized data. Furthermore, visualized
representations of data create an opportunity to extract more
meaningful real-world data from threat-related environments
such as computer networks.

This study represents the first step in addressing certain
aspects of the data problem by proposing a methodology
for the development of AI-enhanced cyber-defence tools that
include tasks for data fingerprinting and data visualization.
The remainder of this paper is organized as follows. First,
related work on threats to the cyber-defense lifecycle and the
efficiency of state-of-the-art cyber-defense machine-learning
models are discussed. This was followed by the proposal
of a methodology for the development of AI-enhanced
cyber-defence solutions. This methodology includes data
fingerprinting tasks that are discussed in more detail. The
application of this methodology is demonstrated using a use
case study that focuses on the discovery of cyber threats
through fingerprint network sessions.

II. RELATED WORK
Current cyber-defense research outputs that are important for
the research at hand include the following.

A The cyber-defense lifecycle.
B State-of-the-art ML-based cyber-defense tools.

A. CYBER-DEFENSE LIFE CYCLE
The cyber-defense lifecycle stipulates that the phases of a
cyber-attacker must be completed to infiltrate the organiza-
tion. The cyber-defense lifecycle phases [7] are as follows:
Reconnaissance, which collects information and intelligence
for the planned cyber-attack; Weaponization, which focuses
on the effectiveness of the cyberattack; Delivery, which
bypasses existing safeguards; Exploitation, which infiltrates;
Installation, which opens the network for malicious attacks;
Command & control- remote control of the network;
Actions that execute the intended malicious activity. All
phases of the cyber-defense life cycle should be considered
when developing methodologies for the development of

AI-enhanced cyber-defense systems. For the research con-
ducted for this paper the reconnaissance phase is of
particular interest for the encoding and visualization of
data for the development of AI-enhanced cyber-defense
countermeasures.

Researchers have identified cyber threats that demonstrate
the use of AI-enhanced attack tools within different phases
of the cyber-defense lifecycle [15, 7]. Consider, for example,
the reconnaissance phase in which an AI-enhanced tool such
as MalGAN can be deployed. MalGAN generates concealed
adversarial malware that can successfully bypass ‘‘black-
box’’ malware detectors [16]. Another tool, DeepLocker [17],
conceals its malware payload to activate it only when
triggered. This is achieved by training adversarial samples
that mutate the payload to obfuscate the normal appearance.
DeepLocker represents advances in AI-enhanced tools that
can be deployed in the Command & Control phases of the
cyber-defence lifecycle.

B. STATE-OF-THE-ART CYBER-DEFENSE TOOLS
The ML-based cybersecurity countermeasures detailed in the
literature show that there is still a significant gap in achieving
a cyber-defense system to overcome the current cybersecurity
threats. Researchers have concluded that most datasets used
in ML-based detection systems research are outdated and
do not typically reflect real-world traffic or the latest
cyber-attacks accurately [18, 19, 6, and 12]. The findings
indicate that legacy datasets used in Intrusion Detection
Software (IDS) ML research represent 88% of the dataset
distribution [6]. In addition, this study indicated that in ML
research onMalware Detection Software (MDS), customized
datasets represented 33% of the dataset distribution, and
20% of the datasets were created before 2012. Findings
in [18] determined that legacy datasets had the highest
majority, representing 56% of the dataset distribution in ML
research. According to [18], although experimental results
on legacy datasets are excellent, they decrease significantly
when tested on more recent datasets, including real-world
datasets.

The lack of real-world datasets is compounded by the
inability to extract meaningful information from real-world
systems such as computer network environments. Other stud-
ies [13, 20, 6, and 12] have indicated that most experiments
for prototyping network-based cyber-defense systems use
simplified calculated features based on data telemetry and
averaging statistics. According to [6], simplified calculated
features result in increased inference sensitivity and time
delay for classifying cyber-attacks.

ML-based IDS countermeasures have evolved from tech-
niques that are heavily dependent on feature engineering to
Deep Learning, which is less dependent on feature engineer-
ing. This results in more complex models with incremental
performance improvement. However, the detection of threats
withminuscule malicious samples has not yet been improved.
Although several attempts have used dataset rebalancing,
no advancements have been made in the techniques that
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perform better in detecting threats with minute malicious
samples. This, combined with real-time timing differences,
is most likely why IDS systems perform worse in real-time
environments than in laboratories. In addition, most IDS
research has been conducted on outdated datasets without
current threats. Similar to ML-based IDS countermeasures,
[21] conducted a comprehensive review of ML-based MDS
approaches, considering signature, behavior, heuristic, model
checking, DL, cloud, mobile, and Internet-of-Things-based
detection. According to this study, although advancements
have been made in every approach, no ML-based MDS
detection approach has successfully detected all malware
types.

Malialis [22] was one of the only researchers to develop a
Reinforced Learning model for real-time network intrusion
detection and response. The input source was real-time
network packets [22]. The authors (s) proposed the use of
a distributed RL defence system to throttle DDoS attacks.
This was modelled using a mesh network with a distributed
group of routers configured by the author(s) as RL agents.
The agents were then trained to limit the amount of DDoS
traffic that could be passed through the network based on the
flow of packets through each router.

In a survey by [23] on adversarial ML in cyber warfare,
the author(s) concluded that there are serious concerns
regarding vulnerabilities in ML-based cyber-defense sys-
tems. According to the author(s), faulty assumptions during
ML model training are the main cause of vulnerabilities. The
author(s) further noted that AI, which confusesmodels during
inference, is a direct result of assuming that data in datasets
are linearly separable and solvable using linear functions.
This was indirectly verified in practice by [3], who reported
in 2022 that there will be an increase in sophisticated cyber
threats, enabling threat actors to repeat cyberattacks on a
greater scale and speed.

Based on the above discussion, the following requirements
for methodologies that provide guidelines for the develop-
ment of AI-enhanced cyber-defence systems are considered
important.

• Improve detection rates and reduce detection time.
• Employ dynamic self-learning and RL approaches.
• Detect adversarial and unknown cyber-attacks.
• Detect threats and attacks with minute sample data sets.
• Training AI-enhanced countermeasures in real-world
environments using real-time data.

• The focus is on extracting and encoding meaningful
data from real-world systems, also referred to as
fingerprinting.

• Visualize the data to overcome complexity in multi-
modal threat related data.

III. THE AIECDS- METHODOLOGY FOR THE
DEVELOPMENT OF AI-ENHANCED CYBER-DEFENSE
SYSTEMS
Figure 1 depicts a so-called AIECDS (AI-Enhanced Cyber-
defense System)-methodology developed by the same

authors of the research at hand and adopted from previous
research [24]. The AIECDS methodology provides guide-
lines for the development of AI-enhanced cyber-defence
systems. However, this study presents a high-level overview
of AIECDS methodology and discusses the fingerprints and
visualization of the data in more detail. Furthermore, the
application of AIECDS methodology is illustrated through
a use case study for the discovery of cyber threats in
fingerprinted network sessions.

A. PHASES OF THE AIECDS-METHODOLOGY
As shown in Figure 1 the AIECDS methodology consists of
the following phases:

1) DATASET (REAL-TIME ENVIRONMENT)
2) EXTRACT FEATURES AND BUFFER DATA
3) DATA PREPARATION
4) FINGERPRINT SESSIONS
5) THREAT DETECTION

A high-level overview of each phase is provided below, with
detailed attention to the fingerprinting phase.

1) DATASET (REAL-TIME ENVIRONMENT)
According to the criteria for AIECDS, the guideline is
to train the AI-enhanced countermeasures in real-world
environments using real-time data.
Use case: Network packets are captured via Packet Capture

(PCAP) technology, and data are extracted in near real
time, limited to information that is available to a firewall.
A continuous stream of packets is processed by a separate
systemwith minute processing delays, and is trained to detect
threats prior to completing data transfer. This enables the
proposed solution to detect threats within a live network
while maintaining a low computational complexity, thereby
reducing delays in threat detection. The last mentioned is one
of the criteria for the AIECDS methodology. This is achieved
using a PCAP dataset, which contains data extracted from
a real-time network environment and starts to detect threats
as packets are received. An example of a PCAP dataset is
DARPA’sUNSW-15 dataset [5], which has been used inmany
cyber security machine learning research projects. These
datasets contain attacks, including DoS, worms, backdoors,
fuzzers, and zero-day attacks, among others. For example, the
UNSW-15 [5] dataset contains 100 GB of network packets (in
PCAP format) with 82million network packets in the training
dataset alone. In addition, this dataset contains threat labels
for threat categories rather than actual attacks, which is more
meaningful for training high-performance threat detection
algorithms.

2) EXTRACT FEATURES AND BUFFER DATA
According to AIECDS criteria, packets must be processed
as they are received. This is achieved by extracting the key
features for each packet received, and storing the results for
each packet in a buffer. The buffer is periodically or fully
input into the data preparation phase, after which it is cleared.

154056 VOLUME 12, 2024



C. Klopper, J. H. P. Eloff: Data Fingerprinting and Visualization for AI-Enhanced Cyber-Defence Systems

FIGURE 1. AIECDS-methodology adapted for the use case that fingerprints network sessions.

Use case: Network session datasets, such as the UNSW-
15 PCAP dataset, contain a wide assortment of packets,
including IP and address resolution protocols (ARP), network
protocols, and awide array of transport protocols. In use cases
in which the focus is on network sessions, the following are
examples of meaningful features: IP source, IP destination,
IP length, TCP flags, source port, destination port, protocol,
ARP p-source, ARP p-destination, and transmitted data. The
extraction process is completed by extracting data in batches
from the PCAP files during training, or by buffering real-time
packets as they are received.

3) DATA PREPARATION
Data preparation involves the preparation of the extracted
features for fingerprinting. It uses data frames from the
extracted features and the buffer data phase. The fingerprint
data frame represents extracted real-world data or events.
Threat labelling was performed to link the available metadata
from the features to the extracted dataset (during training).
Additional informationmay enrich the understanding of these
features.
Use case: The data preparation phase uses the data

frame output extracted from the PCAP dataset, which was
subsequently prepared for fingerprinting. The fingerprint
data frame represents the extracted network sessions. Threat
labelling was performed to link the available metadata
from the features to the extracted PCAP dataset. Additional
information includes applications and services that enrich
the selected features. These features are then added to the
corresponding fingerprints.

4) FINGERPRINT SESSIONS
The following criteria (see Section II) were specifically
addressed in the ‘‘fingerprint session phase’’:

• Extract and encode (fingerprinting) meaningful data
from real world systems.

• Visualize the data to overcome complexity in multi-
modal threat related data.

Examples of space-filling [25] encoding and visualiza-
tion techniques [26] include natural ordering, line-by-line,
column-by-column, Hilbert, and Morton. For the AIECDS
methodology, Hilbert curves [27] and tornado graphs [28]
were chosen to encode and visualize the real-world data.
Briefly, a Hilbert curve is a continuous fractal space-filling
curve [27], whereas a tornado graph is a special type of
barchart [28]. The decision to use Hilbert curves is based
on the fact that they maintain the relative positions of data
elements within the overall data structure. For example, the
positions of network packets within network sessions are
significant. A detailed explanation of the use of the Hilbert
curves can be found in [24].
The detailed design of the fingerprint representations

depends on the specifics of the use case. As mentioned
previously, the use case employed to demonstrate the
construction of a fingerprint for the purpose of this research
was the discovery of cyber threats using fingerprinted
network sessions. The fingerprint design for the use case has
three distinct sectionswith different encoding approaches: the
header, protocol discourse, and transmitted data.
Header: The header of a fingerprint must be unique to each

event or session. The reason that the header section is encoded
in a specific manner is to enlarge its prominence within the
final fingerprint, because the significance of behaviors for
certain unique events or sessions may otherwise be missed.
Use case: The source and destination IP addresses, ports,

and protocols are sufficient for representing a unique network
session. This is illustrated in Figure 2.
Both the TCP and UDP port numbers range from zero to

65535, which can be encoded using four colors (from light
gray to black) and two eight × eight Hilbert curves. This was
achieved by counting 255 in the first Hilbert curve for each
one in the second Hilbert curve. Protocols range from zero to
255 and are encoded using a similar approach to IP sections.
The last eight × eight Hilbert curve is reserved for future use
and is required to complete the 128 columns required for the
128× 128 Hilbert curve used for the transmitted data section.
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FIGURE 2. Fingerprint header design.

One possible future application for the reserved eight × eight
space could be to record the frame sizes for IP, TCP, and UDP
or metrics for other transport or application protocols.
Protocol discourse:
The protocol discourse section of a fingerprint must

represent the communication sequence between multiple
hosts. This is achieved using certain attributes and features
originating from a sequence of communications. The use case
is illustrated in Figure 3.
Use case: In Figure 3, the protocol exchange is visualized

for a TCP session between 59.166.0.7 on port 53421 and
149.171.126.4 on port 80. The exchange is initiated with
a request to synchronize (1), which is acknowledged (2),
after which the initial setup is acknowledged, pushed, and
acknowledged (3, 4, and 5). Large packets (6, 7, 9, 11, and
13) are then sent and acknowledged (8, 10, and 12). The
session is finalized at the end with a finish and acknowledges
(14, 15) before closing the exchange (16). The fingerprint
has a sufficient capacity to capture 128 interactions between
two hosts, which can contain multiple flows within the same
unique session.
Transmitted data:
The fingerprint data section must encode relevant data

within a unique session or event until the Hilbert curve is
completed.
Use case: The data section of the fingerprint must encode

the packet data for all packets within a unique session or
until the 128× 128 Hilbert curve is completed. The complete
Hilbert curve is shown in Figure 4.

Data are transmitted in bytes, which are composed of eight
bits. As a result, each byte can be converted into a decimal
range from zero to 255, which can be encoded into grayscale
colors. Therefore, each element of the 128 × 128 Hilbert
curve can depict a byte using 256 grayscale colors. A 128 ×

128 Hilbert curve was selected to develop dense transmitted
data visualization to limit future changes in the fingerprint
shape.

5) THREAT DETECTION
The criteria for AIECDS methodology include the use of
dynamic self-learning and RL. Therefore, the threat detection
phase of the AIECDS methodology was designed as shown

in Figure 1. The threat detection phase consists of two main
tasks, one for managing the fingerprint system and another
for training the threat detection DRL (Detection Reinforced
Learning) model. The purpose of the fingerprint management
system is to buffer and maintain all fingerprints. This is
achieved by recording a state for each fingerprint, which
should include the available fingerprint space, when it was
last presented to the threat detection DRL model, and when
the fingerprint was last updated. The fingerprint-management
system shown in Figure 1 is illustrated in Figure 5. The
fingerprint management system involves inserting newly
created fingerprints into the buffer and scheduling them to
be presented to the threat detection DRL model as well as
routinely scheduling existing fingerprints to be presented to
the threat detection DRL model once updated.

Finally, once a fingerprint has been classified by threat
detection DRL, the result is stored in the fingerprint,
appropriate actions are taken to mitigate any risks, and the
fingerprint is removed from the buffer.

The purpose of the threat-detection DRL model is to
correctly detect cyber threats and threat types with as little
information as possible. This refers to one of the criteria
in the AIECDS methodology that states that it should be
possible to detect threats and attacks within minute sample
datasets. This can be achieved by presenting fingerprints to
the threat detection DRL model in incremental steps as the
fingerprints are updated over time. Higher rewards should
be allocated to the threat-detection DRL model with early
detection and the largest negative rewards should be allocated
to incorrect threats or threat models with early detection.
This is illustrated in Figure 5. The AIECDS criteria ‘‘Detect
against adversarial and unknown cyber-attacks’’ is achieved
by learning the patterns of adversarial attacks, however
indistinct it may be.
Use case: Over time, a sufficient number of network

session fingerprints visually profile the boundaries between
benign and malicious network sessions. These fingerprints
can then be used by DRL to learn the features that make each
malicious attack type unique, and to detect unknown or new
cyber-attacks. The RL algorithm operates and detects threats
in real time when network packets are received. The proposed
solution will have a visualized view of the transmitted data,
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FIGURE 3. Protocol discourse design.

FIGURE 4. Transmitted data design.

irrespective of the nature of the packets sent, thereby being
more resilient against temporal fluctuations. In addition, the
fingerprint does not compare text, video, or music to existing
formats but rather looks at what is different at the byte
level. At the byte level, malicious intent is likely to be more
visible because bytes are included in the network session for
malicious code. Malicious code is revealed by fingerprinting
the entire network session at the lowest possible information
level, which is at the byte level.

IV. EXPERIMENTAL RESULTS
A prototype environment for the use case: ‘‘discovery
of cyber threats in fingerprinted network sessions’’ was
set-up and applied to the UNSW-15 dataset. A total of
10240 network sessions were fingerprinted, containing both
benign and malicious fingerprints.

A. MALICIOUS FINGERPRINT ANALYSIS RESULTS
Malicious fingerprints were clustered to obtain the key
fingerprints representing each malware threat category in the
UNSW-15 dataset. Additionally, each of the closest benign
fingerprints was selected by minimizing the element-wise
distance between the body of the fingerprint (protocol dis-
course and transmitted data) and the malicious fingerprints.
As shown in Figure 6, eight of the ninemalicious cyber-attack
categories simulated within the UNSW-15 dataset were
identified. The differences between malicious fingerprints
and their closest benign fingerprints are discussed separately
for transmitted data and protocol discourse.

1) MALICIOUS FINGERPRINT CLUSTERS
To structure the selection of malicious fingerprint samples
for analysis, malware threat categories with more than four
fingerprinted network sessions are clustered using k-means
clustering. The optimal elbow was identified for each finger-
print with the smallest Euclidean distance from each cluster
center. All fingerprints were selected for malware threat
categories with four or fewer network session fingerprints.
The total number of malicious network sessions that were
fingerprinted and the key cluster fingerprint totals are shown
in Fig. 6.

2) FROBENIUS DISTANCE
The Frobenius distance measure [29] was determined for
each pair of fingerprints analyzed because it measures
the movement between elements, thereby capturing the
difference between fingerprints with similar pattern motifs.
The importance of this aspect of the Frobenius distance is
illustrated in Figure 7, where both images resemble the same
pattern.
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FIGURE 5. Illustration of the fingerprint management system.

FIGURE 6. Fingerprint clustering per threat category.

FIGURE 7. Frobenius distance illustration.

From the example illustrated in Figure 7, the square
difference was calculated from the two 64-element matrices.

The square root of the sum of differences was calculated as
the Frobenius distance. This is 6.2 times the average element

154060 VOLUME 12, 2024



C. Klopper, J. H. P. Eloff: Data Fingerprinting and Visualization for AI-Enhanced Cyber-Defence Systems

FIGURE 8. Frobenius distance significance.

FIGURE 9. 13 unique patterns within transmitted data.

value in the example or, more simply, six additional elements
in matrix 1 compared to matrix 2. This aspect is required for
the comparison between fingerprints, because the DRL threat
detection model considers fingerprints based on their element
differences.

To determine the significance of the Frobenius distance for
each fingerprint comparison, the gauge shown in Figure 8,
which is based on the Frobenius distance relative to the
average element value for the fingerprints, was used. The
significance gauge is relevant to both the transmitted data and
protocol discourse sections.

3) RESULTS OF TRANSMITTED DATA ANALYSIS
The transmitted data section of the fingerprint consists of
a grid of 128 × 128 elements that can range from zero
to 255, resulting in 4194304 factorial permutations that
have infinite possibilities. Although infinite possibilities
exist, it is clear from the analysis that there is a finite
number of patterns. The focus here is to present the unique
patterns discovered within the transmitted data, the results
of the similarity analysis between the malicious and closest
benign fingerprints, and the broader findings uncovered
during the analysis. An evaluation guide (see Figure 9) was
used to identify unique transmitted data patterns from the
analysis results. Visual inspection of the fingerprints revealed
13 unique repeated patterns. The 13 different pattern types are
shown in Figure 9.

The results of the transmitted data pattern analysis are
listed in Table 1. The malicious and closest benign finger-
prints are located in the same row to easily compare their
pattern similarities. The columns include the row number (#),
threat category, protocol, port, and pattern guide results for
malicious fingerprints and the row number (#), protocol, port,
and pattern guide results for the closest benign fingerprints.
In addition, the Frobenius distance measure, mean, standard
deviation, and significance were included.

The investigation of each threat type in Table 1 revealed
interesting observations. For example, consider the shellcode
and reconnaissance threat types. With reference to the shell-
code threat type, both fingerprints 5.1 and 5.2 have the

same transmitted data pattern. However, even though the
transmitted data patterns were similar, the distance between
the two was 1128 points. By contrast, fingerprints 6.1 and
6.2 do not have overlapping patterns with a smaller distance
of 907 points owing to the small size of the transmitted
data shape. The significance of these differences ranges
from moderate to significant. The malicious reconnaissance
and the closest benign fingerprints match completely in the
transmitted data patterns. In addition, their fingerprints (30 –
34) had the smallest distances, with an average of 139 points
and standard deviation of 28 points. The significance of these
differences ranged from low to low.

Overall, the dominant pattern for both malicious and
benign fingerprints was Pattern 9 (used 20 times formalicious
fingerprints and 13 times for benign fingerprints). The
second most dominant patterns for malicious fingerprints
were Patterns 7 and 10 for benign fingerprints. Patterns
2 and 3 are frequently used by benign fingerprints but
only once by a malicious fingerprint, whereas Pattern 4 is
frequently used by malicious fingerprints but only once by
a benign fingerprint. Finally, Pattern 11 is used by only one
malicious fingerprint. The overall pattern analysis is shown in
Figure 10.
It is clear from the transmitted data similarity analysis that

the proposed solution provides a framework for identifying
meaningful differences betweenmalware and benign network
sessions, and between malware threat categories. Not a single
malware-transmitted data section was exactly the same as
its closest benign-transmitted data section at a distance of
zero.

All malware threat types, including malware categories
that were undetectable in the UNSW-15 simulation (back-
door, shellcode, and worm), exhibited differences in patterns
that could make these malware threats detectable using less
complex algorithms. Even the reconnaissance malware with
the smallest differences, which in the UNSW-15 simulation
had the smallest detection ratio of 0.2%, had a consistent
difference that could aid in the discovery of these threats.
In addition, seven malicious fingerprints (7, 8, 9, 10,
11, 21, and 23) shared their closest benign fingerprints
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TABLE 1. Transmitted data analysis results.

FIGURE 10. Overall pattern analysis.

(two unique fingerprints) with other fingerprints, further
indicating the advancement of the proposed solution and its
promising effectiveness in increasing the decision boundary
between malware and benign classifications. Therefore,
visual fingerprints can be developed for the transmitted data
to differentiate between malicious and benign fingerprints.

4) RESULTS OF PROTOCOL DISCOURSE ANALYSIS
The protocol discourse section of the fingerprint consists
of 128 values that range from −1500 to 1500, which has
384000 factorial permutations, resulting in infinite possibil-
ities. From this analysis, it is clear that there are set packet
ranges and phases that form patterns together. The focus of
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FIGURE 11. Protocol discourse packet guide.

FIGURE 12. Protocol discourse annotation guide.

this subsection is to present the unique patterns, analysis of
the protocol discourse for a few selectedmalicious and closest
benign fingerprints, and broader findings uncovered during
the analysis.

Two different pattern guides were used in the Protocol Dis-
course Results section. The first is a packet pattern guide that
focuses on packet sizes and phases of engagement, and the
second is a setup-phase packet length and sequence analysis
for specific ports with repeating setup-phase patterns.

The following evaluation guide was used to identify unique
patterns within the protocol discourse comprising the packet
sizes of the phases. The guide for the different types of
patterns is shown in Figure 11.
Three different phases were identified that corresponded

to the typical flow of information and the sequence of events
in a network session: setup, transfer, and teardown. In the
example shown in Figure 11, there are ten small packets in the
setup phase. Six large and four small packets were transmitted
in the transfer phase, and the teardown phase contained ten
small packets and two medium packets.

To illustrate and reveal patterns within the repeating set-up
phase sequences, the following guide (Figure 12) was used to
interpret the annotations, indicating how different sequences
were combined.

In this example, three different protocol discourse setup
phase sequences are overlaid onto one illustration on the
left side of Figure 12. Using the annotation guide for

the whole sequence, partial lengths, and partial sequences,
three different sequences were identified, as depicted on the
right-hand side of Figure 12.

5) PROTOCOL DISCOURSE PATTERN ANALYSIS
Table 2 presents the results of protocol discourse pattern
analysis. The malicious and closest benign fingerprints were
located in the same row to easily compare their pattern
similarities. The columns include row numbers (#), threat
categories, protocols, ports, and pattern guide results for
malicious fingerprints, and row number (#), protocol, port,
and pattern guide results for the closest benign fingerprints.
In addition, the sum of differences, Frobenius distance
measure, mean, standard deviation, and significance are
included. The sum of the differences was included to
highlight the overall differences, based on the protocol
discourse guide.

The following are the conclusions from the results of the
analysis in Table 2.

• In the reconnaissance section, it is clear that there is no
difference between reconnaissancemalware fingerprints
and their closest benign fingerprints because all packets
have the same sequence and packet size, except for fin-
gerprint 33. In Fingerprint 33, the malicious fingerprint
has the same number of transmitted packets, but the
sequence is different, leading to a distance of 226 points.

VOLUME 12, 2024 154063



C. Klopper, J. H. P. Eloff: Data Fingerprinting and Visualization for AI-Enhanced Cyber-Defence Systems

TABLE 2. Protocol discourse analysis results.

This roughly aligns with the detection efficiency of 0.2%
for the UNSW-15. In addition, all the reconnaissance
network sessions used port 111, which was used for
remote procedure calls.

• In the backdoor and shellcode sections, only small
packets are exchanged and remain in the setup phase.
Differences were observed in the number of packets
exchanged in fingerprints 1, 3, 4, and 6, and all distances
were nonzero. The average distances were 232 and
125 points with standard deviations of 56 and 167 points,
respectively. The significance of the differences ranged
from minor to moderate, except for fingerprint 5, which
had minuscule significance.

From the results in Table 2, the protocol discourse
analysis identified 14 fingerprints with no packet differences.
These had an average distance of 288 points compared to
fingerprints with one or more differences (20 of 34), with
an average distance of 2473 points. Only four fingerprints
had zero distances and zero packet differences, which were
reconnaissance fingerprints (30, 31, 32, and 34) because the
packet sequence and flags matched exactly.

In summary, except for four reconnaissance fingerprints
(30, 31, 32, and 34), protocol discourse data and visual
fingerprints can aid in differentiating malicious and benign
fingerprints.

V. CONCLUSION AND FUTURE WORK
The AIECDS methodology discussed in this paper includes
guidelines for the development of AI-enhanced cyber-
defence systems. The focus was on extracting meaningful

data and producing visualized fingerprints. This was achieved
by designing a fingerprint that enabled the discovery
of hidden patterns. Visually comparing malicious finger-
prints with the closest benign fingerprints demonstrated
a significant improvement in detecting malicious threats.
Furthermore, the use of fingerprinted data and data visu-
alization in cyber-defense systems can significantly reduce
the complexity of the decision boundary and simplify the
machine-learning models required to improve the detection
efficiency, even for malicious threats with minuscule sample
datasets.

Therefore, the contribution of this study is the improve-
ment in the development of AI-enhanced cyber-defence
systems. Furthermore, the application of AIECDS methodol-
ogy is illustrated through a use case study for the discovery of
cyber threats using fingerprinted data and visualized network
sessions.
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