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In the control of infectious diseases worldwide, awareness of the population occupies a prominent place.
In Africa, there has been a long standing rivalry between traditional medicine and modern medicine. Any
disease control strategy must take into account disease-oriented education, as this has a direct influence
on the choice of treatment type to follow. In this work, we present a mathematical model that takes
into consideration not only public health awareness but also the significant contribution of traditional
medicine to the Ebola treatment effort. This study uses data from the 2014–2016 Ebola outbreaks in
Sierra Leone and Liberia. Theoretically, we show that our model exhibits a trans-critical bifurcation at
Rc = 1 and a backward bifurcation phenomenon whenever Rc

c < Rc < 1. While the disease persists
when Rc > 1. In addition, a threshold number T0 is obtained, which ensures the global asymptotic
stability of the disease-free equilibrium when its value is less than 1. Numerically, it is shown that the
number of hospitalized infected cases increases more rapidly than the number of infected cases treated
by traditional healers in both countries, suggesting that people have a high tendency to visit hospitals
than visiting traditional healers. Our analysis reveals that during an Ebola outbreak, awareness messages
should target the susceptible population for behaviour change in order to mitigate the spread of the disease.
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Calibrating the model, it fits well the weekly cumulative cases in Sierra Leone and Liberia, and their
corresponding estimated control reproduction numbers are 0.5725 and 0.8340, respectively.

Keywords: Ebola; Awareness; Traditional medicine; Modern medicine; Stability; sensitivity analysis.

1. Introduction

The Ebola virus is a filovirus that causes severe haemorrhagic fever in humans. It can be transmitted
through close contacts with susceptible and bodily fluids of infected individuals (dead or alive)
Mouanguissa et al. (2021). Once infected, individuals usually exhibit symptoms such as fever, severe
headaches, muscle aches, weakness, vomiting, bloody diarrhea, stomach pains, loss of appetite and
sometimes bleeding, which are often fatal to humans Wilkinson & Leach (2015); Agusto (2017). The
Ebola virus disease (EVD) fatality rates range from 25% to 90% Pan et al. (2021), depending on the strain
of the virus and the response measures put in place. No protocol treatment against EVD is approved by
the World Health Organization (despite some protocol treatments approved by the US Food and Drug
Administration El Ayoubi et al. (2024)), but early supportive care with rehydration and symptomatic
treatments improve survival rate Conrad et al. (2016). A vaccine against this pathology is still in an
experimental phase.

About 30 outbreaks of EVD have occurred in Africa since the virus was first discovered in the
Democratic Republic of Congo (DRC) in 1976. However, several studies indicate that up to now, many
people deny the existence of Ebola virus Buli et al. (2015); Njankou (2015) and some associate the
disease to witchcraft, anger of the ancestors, and God’s punishment for sins committed. Thus, many
infected individuals seek care from traditional healers who use a combination of herbs and sometimes
some rituals to heal their aches and pains Onyeneho et al. (2023). So, the place of traditional medicine,
misconceptions and ignorance about EVD should not be neglected as far as EVD prevention and control
is concerned. During EVD outbreaks, the choice between traditional medicine and modern medicine
depends on the community and media resources available within the community. By media resources,
we mean broadcast media (radio and tv), print media (newspapers and magazines), out of home media
(public sensitization meeting) and social media (internet).

Awareness of the disease is contingent on the adherence of community members to information
disseminated through the above media resources. This leads to behavioural change and consequently an
informed choice on where to seek appropriate treatment in case of infection and how to handle Ebola-
deceased individuals as they remain infectious even after death. Positive media outlets have the duty to
inform people on EVD symptoms and the different modes of contracting the disease.

Since the devastating 2014–2016 EVD outbreak, an outfit of mathematical models have been
developed to investigate the impact of the control strategies implemented against EVD Njankou (2015);
Djiomba Njankou & Nyabadza (2017); Levy et al. (2017); Berge et al. (2018); Dautel & Agyingi (2021);
Juga et al. (2021). In Djiomba Njankou & Nyabadza (2017), for instance, the authors developed a model
on the role of media campaigns in the Ebola transmission dynamics. This role is represented by a linear
decreasing function which acts on the force of infection. In this model, individuals of the different
compartments circulate messages to the population. The authors numerically show the reducing effect
of media campaigns on the number of infected individuals. The authors in Juga et al. (2021) propose a
model with a fear dependent transmission rate as well as direct and indirect transmission of EVD through
a polluted environment, in which the carrying capacity of the environment is taken into account. They
show the existence of a forward and a backward bifurcations of their model and numerically determine
the direction of these bifurcations. In addition, they fit their model to reported data for the 2018–2020
EVD outbreak in DR Congo and prove the decrease of the number of infected individuals as the level of
fear from this pathology increases.
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In Levy et al. (2017), the authors propose a model with the role of public health education during
EVD outbreaks. In this model, the transmission rates of infected individuals depend on whether they are
aware or not. These authors compare the number of cases reported during two consecutive outbreaks in
Sudan and posit that the second outbreak produced far fewer cases than the first because the population
of this country learned from the first outbreak and changed her behaviour. Their results highlight the
importance of public health education in mitigating EVD outbreaks.

In light of their paper, we want to make a contribution by taking into consideration the role of
traditional medicine in the treatment of EVD. Our motivation lies in the fact that many infected
individuals who are not well educated (unaware) about the disease would prefer traditional medicine.
We present a mathematical model which takes into account the following:

(a) the use of traditional and modern medicines in the treatment of EVD patients;

(b) the fact that some unaware susceptible and infected individuals become aware and choose
between traditional medicine (seeing a traditional healer) and modern medicine (going to
hospital);

(c) the increase in transmission rate due to unawareness.

Our model focuses on addressing the following key research questions.

i How to assess the effect of the awareness of the population on the dynamics of EVD.

ii Which kind of medicine (traditional or modern medicine) is able to eliminate the disease.

iii Does traditional medicine contribute to the mitigation of EVD outbreaks ?

We consider data reported in Sierra Leone and Liberia on the outbreaks of the EVD epidemic between
2014 and 2016 WHO (2015). The data provided by the Centers for Disease Control and Prevention, is
a daily cumulative number of infected cases. Due to error in reporting on the data in Sierra Leone, we
took 27 May 2014 as the starting date in the model fitting process, because as of that date, there was at
least one infected case reported in the two countries.

The rest of this paper is organized as follows: in Section 2, the model is formulated with details. The
theoretical and in-depth analyses of the model are presented in Section 3. Section 4 focuses on model
calibration and parameters estimation. The sensitivity analysis of the model is performed in Section 6.
The discussion on the results of the paper is given in Section 7.

2. Model formulation

2.1 Main assumptions and model variables

Throughout this paper, we assume the following: The hospitals (Ebola treatment units (ETUs)) are
isolation centres and all the hospitalized people stay in hospital until they recover or die. Ebola-infected
corpses in ETUs are properly handled by well-trained personnel and the risk of transmission is negligible.
Ebola-deceased individuals out of hospitals and ETUs remain highly infectious. The population is
divided into two groups: aware/educated and unaware/uneducated about EVD, subscripts 1 and 2
represent the population groups, respectively. We consider the following mutually exclusive classes:

• S1(t): susceptible aware/educated category. The individuals in this category are well informed on the
natural existence of Ebola virus and are able to identify EVD symptoms. This knowledge helps them
to avoid close contacts with suspected EVD cases.

• S2(t): susceptible who are unaware/uneducated. These individuals have mitigated opinions about
EVD. This class includes those who are ignorant of how the Ebola virus is transmitted. In addition,
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748 A. J. O. TASSÉ ET AL.

some of the members here think that EVD is due to witchcraft or is spiritual and hence only traditional
healers can cure the disease Cénat et al. (2021).

• I1(t): infected aware/educated individuals. It is assumed that this category of infected people will
prefer modern treatment.

• I2(t): infected unaware/uneducated individuals. Since they have mitigated opinions on EVD, some
of them will prefer traditional medicine while others will choose modern medicine.

• H(t): infected individuals who are in hospital, receiving modern medicine for their treatment.

• U(t): infected individuals who are followed up by traditional healers.

• D(t): Ebola-deceased individuals buried without safety measures. The corpses can transmit EVD
during traditional funeral and mourning ceremonies.

• R(t): recovered individuals. The people who recover from EVD and are assumed immune to the
disease.

• N(t) = S1(t) + I1(t) + S2(t) + I2(t) + U(t) + H(t) + R(t) is the total population alive at time t.

2.2 Equations of the model

The susceptible population is recruited at a rate π . Among these recruited individuals, a proportion p are
aware about EVD. The susceptible individuals can be infected by people of classes I1, I2, H, U and D
at constant rates β, ν2β, ν1β, ν3β and ν4β, respectively. However, people having more comprehensive
knowledge on EVD, limit contacts with suspected Ebola individuals since they can easily identify
symptoms of the disease. This mitigates their effective transmission rate by a factor (1 − ε), where ε

measures the efficiency of awareness campaigns. Due to these campaigns, a proportion σs of susceptible
individuals of compartment S2 becomes aware about the disease and leaves that compartment to
compartment S1. Once infected, they enter in compartment I1 and I2, depending on whether they are
aware or not. Individuals in compartment I1, can either go to hospital at rate η1, recover at rate γ1 (those
who present benign symptoms) or decease at rate (μ + δ1), where μ is the natural mortality rate and δ1,
the mortality rate due to EVD. As individuals in compartment I2 have some doubts about the existence or
non-existence of EVD, a proportion qη2 will choose hospital, while the remaining proportion (1 − q)η2
will choose traditional medicine. In compartment I2, one can recover at rate γ2, decease at rate (μ + δ2)

(where δ2 is the death rate due to EVD) or become aware of the existence of EVD at rate σi due to
sensitization campaigns. In fact, we assume that the spread of information will lead to awareness of some
uneducated infected persons who will change their behaviours first (that is move from compartment I2
to compartment I1) before going to hospital. Infected individuals receiving traditional medicine recovers
at rate γu, decease at rate (μ + δu) (where δu is the death rate due to EVD in compartment U) or
become aware and therefore go to hospital at rate σu. In hospital, an infected patient recovers at rate
γh or succumbs to the disease at rate (μ + δh) (where δh is the death rate due to EVD in compartment
H). The Ebola deceased persons are buried at rate b.

Based on the main assumptions presented in Section 2.1, infected individuals in compartments I1, H,
I2, U and D contribute to the force of infection. The infected individuals in compartment I1 mix freely
with the population, while those in compartments H, I2, U and D have some degree of restrictions in
mixing with the population measured by the parameters (contact rates) ν1, ν2, ν3 and ν4, respectively.
For I1 in particular, the corresponding parameter is assumed to be ν0 = 1. The probability that a contact
between a susceptible and an infectious individual results in an infection is β. Therefore, the force of

infection is given by λ(t) = β(I1(t) + ν1H(t) + ν2I2(t) + ν3U(t) + ν4D(t))

N(t)
.
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FIG. 1. Flow diagram for Model (2.1).

This information is summarized in the flow diagram for the model given in Fig. 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1(t) = pπ + σsS2 − λ(1 − ε)S1 − μS1,
Ṡ2(t) = (1 − p)π − λS2 − (μ + σs)S2,
İ1(t) = λ(1 − ε)S1 + σiI2 − (μ + δ1 + γ1 + η1)I1,
İ2(t) = λS2 − (μ + σi + δ2 + γ2 + η2)I2,
Ḣ(t) = η1I1 + qη2I2 + σuU − (μ + δh + γh)H,
U̇(t) = (1 − q)η2I2 − (μ + σu + δu + γu)U,
Ḋ(t) = (μ + δ1)I1 + (μ + δ2)I2 + (μ + δu)U − bD,
Ṙ(t) = γ1I1 + γ2I2 + γuU + γhH − μR.

(2.1)

3. Analytical results

In this section, we study the well-posedness, the existence and stability of equilibria, the uniform
persistence and the bifurcations of Model (2.1). To simplify our notations, we define the following
parameters: ⎧⎪⎪⎨

⎪⎪⎩
θ1 = pπ , θ2 = (1 − p)π , θ3 = 1 − ε

τs = (μ + σs), τu = μ + δu, τ1 = μ + δ1, τ2 = μ + δ2
φ1 = (μ + δ1 + γ1 + η1), φu = μ + σu + δu + γu
φ2 = (μ + σi + δ2 + γ2 + η2), φh = μ + δh + γh

(3.1)

3.1 Well-posedness and existence of equilibria for the model

The following propositions ensure the well-posedness of Model (2.1), in the sense that, for any positive
initial condition, there exists a unique global positive solution. The proofs of propositions 1 and 2 are
given in the Appendix.
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TABLE 1 Parameters and their epidemiological interpretations

Parameter Epidemiological interpretation

β Probability that a contact between a susceptible and an infective leads to an infection
ν1, ν2, ν3, ν4 Contact rates for infected individuals in compartments H, I2, U and D, respectively.
ε Measure of precaution taken by a susceptible in compartment S1 due to awareness.
π Recruitment rate in the susceptible population.
p Proportion of informed susceptible individuals recruited in the population.
η1 Hospitalization rate of informed infected individuals.
η2 Exit rate from compartment I2 to compartment H or U.
qη2 Rate of infected unaware persons who go to hospital.
σu Exit rate from compartment U to compartment H.
σi Impact of awareness on the infected persons in compartment I2.
σs Impact of awareness on the susceptible in class S2.
1/b Average time from death to burial.
π Recruitment rate in the susceptible population.
δ1, δ2 Death rates due to EVD in compartments I1 and I2, respectively.
δu, δh Death rates due to EVD in compartments U and H, respectively.
γ1, γ2 Recovery rates in compartments I1 and I2, respectively.
γu, γh Recovery rates, receiving traditional and modern treatments, respectively.
μ Natural mortality rate.

PROPOSITION 1. The orthant R8+ is positively invariant under the flow of Model (2.1). That is, if

S1(0) > 0, S2(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥ 0, U(0) ≥ 0, D(0) ≥ 0, R(0) ≥ 0,

then for all t > 0,

S1(t) > 0, S2(t), I1(t) ≥ 0, I2(t) ≥ 0, H(t) ≥ 0, U(t) ≥ 0, D(t) ≥ 0, R(t) ≥ 0.

PROPOSITION 2. Suppose the initial conditions for System (2.1) are non-negative.
If

N(0) ≤ π

μ
and D(0) ≤ π(3μ + δ1 + δ2 + δu)

μb
,

then

∀ t > 0, N(t) ≤ π

μ
and D(t) ≤ π(3μ + δ1 + δ2 + δu)

μb
.

Furthermore, Model (2.1) is a dynamical system on

Ω : =
{
(S1, S2, I1(t), I2, H, U, D, R) ∈ R

8+/N ≤ π

μ
; D ≤ π(3μ + δ1 + δ2 + δu)

μb

}
.
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In the study of the existence of equilibria for Model (2.1), again we define the following parameters:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = θ1θ3φ2τs + σsθ2θ3φ2 + σiθ2μ, A2 = θ1θ3φ2 + σiθ2θ3,
B1 = η1θ3φ2θ1τsφu + η1θ3θ2φ2φuσs + η1σiθ2φuμ + qη2θ2φ1φuμ + σu(1 − q)θ2φ1μη2,
B2 = η1θ3θ1φ2φu + η1σiθ2θ3φu + qη2θ2θ3φ1φu + σu(1 − q)θ2θ3φ1η2,
C1 = τ1τsθ1θ3φ2φu + τ1θ2θ3φ2φuσs + τ1σiθ2φuμ + τ2θ2φ1φuμ + φ1τu(1 − q)η2θ2μ,
C2 = τ1θ1θ3φ2φu + τ1σiθ2θ3φu + τ2θ2θ3φ1φu + φ1τu(1 − q)η2θ2θ3,
E1 = γ1A1φhφu + γ2θ2φ1φuφhμ + γu(1 − q)η2θ2φ1φhμ + γhB1,
E2 = γ1A2φhφu + γhB2 + γ2θ2θ3φ1φuφh + γu(1 − q)η2θ2θ3φ1φh,
F0 = (σsθ2 + θ1τs)μφ1φ2φhφu + θ2μ

2φ1φ2φuφh,
F1 = θ1μφ1φ2φhφu + A1μφhφu + B1μ + E1 + θ2θ3μφ1φ2φuφh + θ2μ

2φ1φhφu
+(1 − q)η2θ2μ

2φ1φh,
F2 = A2μφuφh + B2μ + E2 + θ2θ3μφ1φhφu + (1 − q)η2θ2θ3φ1φhμ,
G0 = bF0 − β(A1φuφhμb + ν1bB1μ + ν4φhC1μ + bν2θ2φ1φhφuμ

2 + η2ν3(1 − q)θ2φ1φhμ
2b),

G1 = bF1 − β(A2φuφhμb + ν1bB2μ + ν4φhC2μ + bν2θ2θ3φ1φhφuμ + η2ν3(1 − q)θ2θ3φ1φhμb),
G2 = bF2.

(3.2)

An equilibrium E∗ = (S∗
1, S∗

2, I∗
1 , I∗

2 , H∗, U∗, D∗, R∗) of System (2.1) satisfies the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 + σsS
∗
2 − λ∗θ3S∗

1 − μS∗
1 = 0,

θ2 − λ∗S∗
2 − τsS

∗
2 = 0,

λ∗θ3S∗
1 + σiI

∗
2 − φ1I∗

1 = 0,
λ∗S∗

2 − φ2I∗
2 = 0,

η1I∗
1 + qη2I∗

2 + σuU∗ − φhH∗ = 0,
(1 − q)η2I∗

2 − φuU∗ = 0,
τ1I∗

1 + τ2I∗
2 + τuU∗ − bD∗ = 0,

γ1I∗
1 + γ2I∗

2 + γuU∗ + γhH∗ − μR∗ = 0,

(3.3)

with

λ∗ = β(I∗
1 + ν1H∗ + ν2I∗

2 + ν3U∗ + ν4D∗)
N∗ . (3.4)

From System (3.3), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
2 = θ2

τs + λ∗ , S∗
1 = θ1(τs + λ∗) + σsθ2

(θ3λ
∗ + μ)(τs + λ∗)

, I∗
2 = λ∗θ2

φ2(τs + λ∗)

U∗ = (1 − q)η2θ2λ
∗

φuφ2(τs + λ∗)
, I∗

1 = A1λ
∗ + A2λ

∗2

φ1φ2(θ3λ
∗ + μ)(τs + λ∗)

H∗ = B1λ
∗ + B2λ

∗2

φ1φ2φhφu(θ3λ
∗ + μ)(τs + λ∗)

, D∗ = C1λ
∗ + C2λ

∗2

bφ1φ2φu(θ3λ
∗ + μ)(τs + λ∗)

R∗ = E1λ
∗ + E2λ

∗2

μφ1φ2φhφu(θ3λ
∗ + μ)(τs + λ∗)

.

(3.5)
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Moreover,

N∗ = F0 + F1λ
∗ + F2λ

∗2

μφ1φ2φhφu(θ3λ
∗ + μ)(τs + λ∗)

.

Thus, from Equation (3.4), we have

N∗λ∗ = β

[
A1λ

∗ + A2λ
∗2

φ1φ2(θ3λ
∗ + μ)(τs + λ∗)

+ ν1(B1λ
∗ + B2λ

∗2)

φ1φ2φhφu(θ3λ
∗ + μ)(τs + λ∗)

+ ν2λ
∗θ2

φ2(τs + λ∗)

+ν3(1 − q)η2θ2λ
∗

φuφ2(τs + λ∗)
+ ν4(C1λ

∗ + C2λ
∗2)

bφ1φ2φu(θ3λ
∗ + μ)(τs + λ∗)

]
.

which is equivalent to

λ∗[G2λ
∗2 + G1λ

∗ − G0] = 0. (3.6)

Therefore, λ∗ = 0 is a trivial solution of Equation (3.6), which corresponds to the disease–free
equilibrium. Any endemic equilibrium (EE) corresponds to the positive solution λ∗ of the quadratic
equation G2λ

∗2 + G1λ
∗ − G0 = 0. In order to investigate its existence, we set

Rc = β(A1φuφhμb + ν1bB1μ + ν4φhC1μ + bν2θ2φ1φhφuμ
2 + η2ν3(1 − q)θ2φ1φhμ

2b)

bF0
, (3.7)

so that G0 can be written as

G0 = bF0

[
Rc − 1

]
.

When Rc > 1, there exists exactly one positive root, which corresponds to the unique EE of System
(2.1). When Rc < 1, we can either have no EE or two endemic equilibria.

REMARK 1. The quantity Rc defined in (3.7) is actually the control reproduction number of System (2.1).
This can be readily verified by applying the method in Van den Driessche & Watmough (2002), in which
Rc is the spectral radius of the matrix FV−1, where F and V are given later in (3.13).

In order to verify the existence of endemic equilibria, we define the following parameters:

F3 = A2φuφhμb + ν1bB2μ + ν4φhC2μ + bν2θ2θ3φ1φhφuμ + η2ν3(1 − q)θ2θ3φ1φhμb
F4 = A1φuφhμb + ν1bB1μ + ν4φhC1μ + bν2θ2φ1φhφuμ

2 + η2ν3(1 − q)θ2φ1φhμ
2b.

so that Rc = βF4

bF0
, G0 = βF4 − bF0 andG1 = bF1 − βF3.

The discriminant Δ(Rc) of the polynomial G2λ
∗2 + G1λ

∗ − G0 is given by

Δ(Rc) = G2
1 + 4G2G0 = G2

1 + 4G2bF0(Rc − 1).
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It follows that the unique solution of Δ(Rc) = 0 is

Rc = 1 − G2
1

4G2bF0
:= Rc

c.

Therefore, Δ(Rc) is negative for Rc < Rc
c and positive for Rc

c < Rc < 1. This can be summarized in
Theorem 1 that follows.

THEOREM 1. The following statements hold:

(a) If Rc < Rc
c < 1, the Model (2.1) has only one equilibrium denoted by E0 =

(S10, S20, 0, 0, 0, 0, 0, 0). This corresponds to the disease-free equilibrium, where

S10 = π(p(μ + σs) + σs(1 − p))

μ(μ + σs)
, S20 = (1 − p)π

μ + σs
.

(b) If Rc
c < Rc < 1, we have the DFE and two endemic equilibria, which can be denoted by E∗

1
and E∗

2.

(c) If either Rc = 1 and bF1 < βF3 or Rc = Rc
c and bF1 < βF3, Model (2.1) has the DFE and a

unique EE denoted by E∗
3.

(d) If either Rc = 1 and bF1 < βF3 or Rc = Rc
c and bF1 > βF3, Model (2.1) has only the DFE

E0.

(e) If Rc > 1, there are two equilibria: the DFE and a unique EE denoted by E∗
4.

3.2 Bifurcation analysis

Bifurcation is a change of the topological structure of a system when its parameters pass through a critical
value Juga et al. (2021). Since the behaviour of our system changes as the control reproduction number
crosses the value 1, Rc = 1 is a critical point. Expressing equation G2λ

∗2 +G1λ
∗ −G0 = 0 as a function

of β and λ∗ gives the equation

F(β; λ∗) := G2λ
∗2 + (bF1 − βF3)λ

∗ − βF4 + bF0 = 0. (3.8)

When λ∗ = 0, we obtain the solution β∗ from Eq. (3.8) given by

β∗ := β = bF0

F4
= 1

Rc
.

The direction (forward or backward) of the bifurcation is given by the sign of

∂λ∗

∂β
(β∗, 0) = −Fβ∗(β∗, 0)

Fλ∗(β∗, 0)
.
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FIG. 2. (a): backward bifurcation for β = 0.011, ν3 = 0.065, ν2 = 0.05, ν4 = 10 000.05, ν1 = 0.0385, b = 4.5,μ = 60.0004, η1 =
100.3, η2 = 50.05, ε = 0.5, γ1 = 0.01, γ2 = 0.02, γu = 0.02, γh = 0.025, δ2 = 100.1, σi = 0.025, σs = 0.3 and , σu = 0.3.
(b): forward bifurcation for p = 0.0003, β = 0.15, ν3 = 0.65, μ = 50.0004, γ1 = 0.01, γ2 = 0.02,γu = 0.02, γh = 0.025, b =
0.5, σi = 0.0025, σs = 0.003, σu = 0.003.

We have Fβ∗(β∗, 0) = −F4 < 0, Fλ∗(β∗, 0) = bF1 − β∗F3 = bF1 − F3

Rc
. The sign of

∂λ∗

∂β
(β∗, 0)

depends on the sign of Fλ∗(β∗, 0).

If Rc <
F3
bF1

, then
∂λ∗

∂β
(β∗, 0) < 0 and the bifurcation is backward. On the other hand, if Rc >

F3
bF1

,

then
∂λ∗

∂β
(β∗, 0) > 0 and the bifurcation is forward in this case. Similarly, it is straightforward that the

bifurcation is forward whenever Rc >
F3

bF1
. The epidemiological consequence of a backward bifurcation

is that the requirement Rc < 1, although necessary is no longer sufficient for global elimination of EVD
Safi & Gumel (2015). Fig. 2(a) gives an example of the construction of the backward bifurcation. We
observe that a locally asymptotically stable (LAS) DFE co-exists with an LAS EE when the value of Rc
is greater than Rc

c but less than 1. This makes the effective control of EVD difficult since the value of Rc
needs to be less than Rc

c. Note that the existence of a backward bifurcation in our model could likely be
due to the standard incidence transmission considered in this article Agusto (2017); Ouemba Tasse et al.
(2022) and the recruitment in the two groups of our population (aware and unaware individuals) Malik
et al. (2013); Ouemba Tassé et al. (2024). In particular, when θ3 = 0 or θ1 = θ2 = 0, G1 = bF1 > 0,
the model does not exhibit the backward bifurcation phenomenon because no EE exists for Rc < 1.
The case where θ3 = 0 refers to the situation where aware susceptible do not contract the disease,
while the case θ1 = θ2 = 0 leads to an epidemic model rather than the endemic one proposed in
this paper.

Figure 2(b) gives an example of a construction of the forward bifurcation, which means that the
disease will persist in the community for a value of Rc > 1.

3.3 Global stability of the DFE

In this section, we check the conditions for the global asymptotic stability of the disease-free equilibrium.
This will be done using the method of Kamgang and Sallet described in Kamgang & Sallet (2008).
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Using the method of Kamgang and Sallet, let us define the following parameters:

L1 = β

φ1

(
1 + ν1η1

φh
+ τ1ν4

b

)
,

L2 = β

φ2

(
σi

φ1
+ ν2 + ν1

(
η1σi

φ1φh
+ qη2

φh
+ σu(1 − q)η2

φu

)
+ ν3(1 − q)η2

φu

+ν4

(
τ1σi

bφ1
+ τ2

b
+ τu(1 − q)η2

bφu

))
.

THEOREM 2. The disease-free equilibrium E0 for Model (2.1) is globally asymptotically stable in Ω

whenever T0 ≤ 1, where

T0 := (1 − ε)L1 + L2 + √
((1 − ε)L1 + L2)

2 + 4(1 − ε)L1L2

2
.

Proof. Following the method in Kamgang & Sallet (2008), let’s define x1 = (S1, S2, R); x2 =
(I1, I2, H, U, D) the non-infected components and the infected components, respectively, and x∗

1 =
(S10, S20, 0) the disease-free equilibrium. We can express the sub-system ẋ = A1(x1, 0)(x1 − x∗

1) by

⎧⎨
⎩

Ṡ1 = pπ + σsS2 − μS1
Ṡ2 = (1 − p)π − (μ + σs)S2
Ṙ = −μR.

(3.9)

It is straightforward that the linear System (3.9) is GAS at the equilibrium x∗
1, corresponding to the

disease-free equilibrium.
Moreover the matrix A2(x) can be written as

A2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(1 − ε)S1

N
− φ1

βν2(1 − ε)S1

N
+ σi

βν1(1 − ε)S1

N

βν3(1 − ε)S1

N

βν4(1 − ε)S1

N

βS2

N

βν2S2

N
− φ2

βν1S2

N

βν3S2

N

βν4S2

N

η1 qη2 −φh σu 0

0 (1 − q)η2 0 −φu 0

τ1 τ2 0 τu −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Clearly, A2(x) is irreducible and has a maximum uniquely realized in Ω for S1 = S2 = N. This maximum
leads to the matrix J2 defined by

J2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(1 − ε) − φ1 βν2(1 − ε) + σi βν1(1 − ε) βν3(1 − ε) βν4(1 − ε)

β βν2 − φ2 βν1 βν3 βν4

η1 qη2 −φh σu 0

0 (1 − q)η2 0 −φu 0

τ1 τ2 0 τu −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to Kamgang & Sallet (2008), the DFE for Model (2.1) is GAS if α(J2) ≤ 0, where α(J2)

denotes the stability modulus of the matrix J2. Simple computations show that α(J2) ≤ 0 is equivalent
to T0 ≤ 1. This completes the proof. �

3.4 Local stability of the EE and uniform persistence of the disease

THEOREM 3. If Rc > 1 but close to 1, then the unique EE E∗
4 of System (2.1) is locally asymptotically

stable. In addition, System (2.1) undergoes a trans-critical bifurcation at Rc = 1.

Proof. We prove the two statements of Theorem 3 simultaneously using the centre manifold theory
approach Castillo-Chavez & Song (2004).

Let β be the bifurcation parameter and β∗ its critical value obtained by solving the equation Rc = 1.
Then β∗ is given by

β∗ = bF0

A1φuφhμb + ν1bB1μ + ν4φhC1μ + bν2θ2φ1φhφuμ
2 + η2ν3(1 − q)θ2φ1φhμ

2b
.

To establish the local asymptotic stability of E∗
4, we make the following change of variable;

x1 = S1, x2 = S2, x3 = I1, x4 = I2, x5 = H, x6 = U, x7 = D, x8 = R.

Then with change of variables, System (2.1) takes the form

dx

dt
= f (x),
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where f = (f1, f2, f3, f4, f5, f6, f7, f8), are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = θ1 + σsx2 − β∗θ3x1

(
x3 + ν1x5 + ν2x4 + ν3x6 + ν4x7

x1 + x2 + x3 + x4 + x5 + x6 + x8

)
− μx1,

f2 = θ2 − β∗x2

(
x3 + ν1x5 + ν2x4 + ν3x6 + ν4x7

x1 + x2 + x3 + x4 + x5 + x6 + x8

)
− τsx2,

f3 = β∗θ3x1

(
x3 + ν1x5 + ν2x4 + ν3x6 + ν4x7

x1 + x2 + x3 + x4 + x5 + x6 + x8

)
+ σix4 − φ1x3,

f4 = β∗x2

(
x3 + ν1x5 + ν2x4 + ν3x6 + ν4x7

x1 + x2 + x3 + x4 + x5 + x6 + x8

)
− φ2x4,

f5 = η1x3 + qη2x4 + σux6 − φhx5,

f6 = (1 − q)η2x4 − φux6,

f7 = τ1x3 + τ2x4 + τuU − bx7,

f8 = γ1x3 + γ2x4 + γux6 + γhx5.

(3.10)

The Jacobian matrix J∗ of (3.10) at the DFE E0 when β = β∗ is given by;

J∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ σs −β∗θ3S10

N0
−β∗θ3ν2S10

N0
−β∗θ3ν1S10

N0
−β∗θ3ν3S10

N0
−β∗θ3ν4S10

N0
0

0 −τs −β∗S20

N0
−β∗ν2S20

N0
−β∗ν1S20

N0
−β∗ν3S20

N0
−β∗ν4S20

N0
0

0 0
β∗θ3S10

N0
− φ1

β∗θ3ν2S10

N0
+ σi

β∗θ3ν1S10

N0

β∗θ3ν3S10

N0

β∗θ3ν4S10

N0
0

0 0
β∗S20

N0

β∗ν2S20

N0
− φ2

β∗ν1S20

N0

β∗ν3S20

N0

β∗ν4S20

N0
0

0 0 η1 qη2 −φh σi 0 0

0 0 0 (1 − q)η2 0 −φu 0 0

0 0 τ1 τ2 0 τu −b 0

0 0 γ1 γ2 γh γu 0 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is straightforward to prove that the matrix J∗ has zero as a simple eigenvalue while the remaining
eigenvalues have negative real parts. Therefore, using Castillo-Chavez & Song (2004), we prove the
local stability of the EE E∗

4 when Rc > 1 but close to 1 and the trans-critical bifurcation of System (2.1)
at Rc = 1.

In order to apply the centre manifold result in Castillo-Chavez & Song (2004), we com-
pute the right-eigenvector w = (w1, w2, w3, w4, w5, w6, w7, w8)

T and the left-eigenvector u =
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(u1, u2, u3, u4, u5, u6, u7, u8)
T of J∗ as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w1 = − 1

μN0
(k10w3 + k11w4), w2 = −k8w3 + k9w4

N0τsbφuφh

w5 = k4w3 + k5w4

φuφh
, w6 = k1w4

φu
, w3, w4 > 0

w7 = k2w3 + k3w4

bφu
w8 = k6w3 + k7w4

μφuφh

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 = u2 = u8 = 0, u3, u4 > 0, u5 = β∗ν1

N0φh
(θ3S10u3 + S20u4)

u6 = k12(S10θ3u3 + S20u4)

N0φuφhb
, u7 = β∗ν4

N0b
(θ3S10u3 + S20u4)

where the positive constants k1, k2, · · · , k12 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = (1 − q)η2, k2 = τ1φu, k3 = τ2φu + τu(1 − q)η2

k4 = η1φu, k5 = qη2φu + σuk1, k6 = γ1φuφh + γhk4,

k7 = γ2φuφh + γuk1φh + γhk5

k8 = β∗S20(bφuφh + ν1k4b + ν4k2φh),

k9 = β∗S20(ν2bφuφh + ν1k5b + ν3k1bφh + ν4k3φh)

k10 =
[

σsk8

τsbφuφh
+ β∗θ3S10

(
1 + ν1k4

φuφh
+ ν4k2

φub

)]
,

k11 =
[

σsk9

τsbφuφh
+ β∗θ3S10

(
ν2 + ν1k5

φuφh
+ ν3k1

φu
+ ν4k3

φub

)]
,

k12 = β∗(ν3φhb + σuν1b + τuν4φh).

(3.11)

Next, we calculate the following coefficients:

a =
8∑

k,i,j=1

ukwiwj
∂2fk

∂xi∂xj
(0, 0) and b =

8∑
k,i=1

ukwi
∂2fk

∂xi∂β
∗ (0, 0).
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After some simple but lengthy algebraic calculations, we have

a = 2N−2
0 β∗θ3u3[w1S20(w3 + ν2w4 + ν1w5 + ν3w6 + ν4w7) − S10(w

2
3 + ν2w2

4 + ν1w2
5+ν3w2

6 + ν4w2
7 + (1 + ν1)w3w5 + (1 + ν2)w3w4 + (1 + ν3)w3w6 + (1 + ν4)w3w7 + w3w8+(ν1 + ν2)w4w5 + (ν2 + ν3)w4w6 + (ν2 + ν4)w4w7 + ν2w4w8 + (ν1 + ν3)w5w6+(ν1 + ν4)w5w7 + ν1w5w8 + (ν3 + ν4)w6w7 + ν3w6w8 + ν4w7w8)]

+2N−2
0 β∗u4[w2S10(w3 + ν2w4 + ν1w5 + ν3w6 + ν4w7) − S20(w

2
3 + ν2w2

4 + ν1w2
5+ν3w2

6 + ν4w2
7 + (1 + ν1)w3w5 + (1 + ν2)w3w4 + (1 + ν3)w3w6 + (1 + ν4)w3w7 + w3w8+(ν1 + ν2)w4w5 + (ν2 + ν3)w4w6 + (ν2 + ν4)w4w7 + ν2w4w8 + (ν1 + ν3)w5w6+(ν1 + ν4)w5w7 + ν1w5w8 + (ν3 + ν4)w6w7 + ν3w6w8 + ν4w7w8)]

b = u3S10N−1
0 θ3(w3 + ν2w4 + ν1w5 + ν3w6 + ν4w7)

+u4S20N−1
0 (w3 + ν2w4 + ν1w5 + ν3w6 + ν4w7).

Through inspection of the signs of the components of the vectors ω and u, we see that a < 0 and b > 0.
Hence, the unique EE of E∗

4 is locally asymptotically stable when Rc > 1, but close to 1 and Model
(2.1) undergoes a trans-critical bifurcation at Rc = 1. �

The epidemiological interpretation of Theorem 3 is that EVD persists and is endemic in the
population when the control reproduction number Rc > 1. Hence, it is important to identify influential
parameters of our model (2.1) that have direct impact on the dynamics of EVD in order to apply
appropriate control strategies.

3.5 Uniform persistence of the disease

THEOREM 4. Assume Rc > 1, then EVD is uniformly persistent. That is, there exists an α > 0 such that
for every positive solution of System (2.1), the following expressions are true:

lim inf
t−→+∞ I1(t) > α, lim inf

t−→+∞ I2(t) > α, lim inf
t−→+∞ H(t) > α, lim inf

t−→+∞ U(t) > α, lim inf
t−→+∞ D(t) > α.

Proof. To prove the uniform persistence of EVD when Rc > 1, let

X = {(S1, S2, I1, I2, H, U, D, R) ∈ R
8+}

X0 = {(S1, S2, I1, I2, H, U, D, R) ∈ X : I1, I2, H, U, D > 0}
Y = X \ X0 = {(S1, S2, I1, I2, H, U, D, R) ∈ X : I1 = 0 or I2 = 0 or H = 0 or U = 0 or D = 0}.
M = (S1, S2, I1, I2, H, U, D, R) ∈ R

8 and M = (I1, I2, H, U, D).

Since Y contains only the equilibrium E0, to establish the uniform persistence of Model (2.1), all we
have to do is to show that Ws(E0) ∩ X0 = ∅, where Ws(E0) denotes the stable manifold of E0.

Suppose this is not true, that is, Ws(E0) ∩ X0 �= ∅. Then there exists a solution (S1, S2, I1, I2, H, U,
D, R) of System (2.1) in X0 such that

lim
t−→+∞(S1, S2, I1, I2, H, U, D, R) −→ E0 = (

S10, S20, 0, 0, 0, 0, 0, 0
)

.
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Thus, for any c > 0, and for sufficiency large values of t, we have

{
S10 − c ≤ S1(t) ≤ S10 + c, S20 − c ≤ S2(t) ≤ S20 + c, 0 ≤ I1(t) ≤ c,
0 ≤ I2(t) ≤ c, 0 ≤ H(t) ≤ c, 0 ≤ U(t) ≤ c, 0 ≤ D(t) ≤ c, 0 ≤ R(t) ≤ c.

(3.12)

Using Equation Carter (2014), we obtain the following lower bound of System (2.1):

⎛
⎜⎜⎜⎜⎝

İ1(t)
İ2(t)
Ḣ(t)
U̇(t)
Ḋ(t)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βθ3S1(I1 + ν1H + ν2I2 + ν3U + ν4D)

N
βS2(I1 + ν1H + ν2I2 + ν3U + ν4D)

N
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

−φ1 σi 0 0 0
0 −φ2 0 0 0
η1 qη2 −φh σu 0
0 (1 − q)η2 0 −φu 0
τ1 τ2 0 τ3 −b

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

I1(t)
I2(t)
H(t)
U(t)
D(t)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

İ1(t)
İ2(t)
Ḣ(t)
U̇(t)
Ḋ(t)

⎞
⎟⎟⎟⎟⎠ ≥ J̃(c)

⎛
⎜⎜⎜⎜⎝

I1(t)
I2(t)
H(t)
U(t)
D(t)

⎞
⎟⎟⎟⎟⎠

where N0 = π/μ,

J̃(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βθ3̃S10(c) − φ1 βν2θ3̃S10(c) + σi βθ3ν1̃S10(c) βθ3ν3̃S10(c) βθ3ν4̃S10(c)

βS̃20(c) βν2̃S20(c) − φ2 βν1̃S20(c) βν3̃S20(c) βν4̃S20(c)

η1 qη2 −φh σu 0

0 (1 − q)η2 0 −φu 0

τ1 τ2 0 τ3 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

S̃10(c) = S10 − c

N0 + 5c
, S̃20(c) = S20 − c

N0 + 5c
.

Clearly,

J̃(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βθ3
S10

N0
− φ1 βν2θ3

S10

N0
+ σi βθ3ν1

S10

N0
βθ3ν3

S10

N0
βθ3ν4

S10

N0

β
S20

N0
βν2

S20

N0
− φ2 βν1

S20

N0
βν3

S20

N0
βν4

S20

N0

η1 qη2 −φh σu 0

0 (1 − q)η2 0 −φu 0

τ1 τ2 0 τ3 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= F − V ,
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with F and V given by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

βθ3
S10

N0
βν2θ3

S10

N0
βθ3ν1

S10

N0
βθ3ν3

S10

N0
βθ3ν4

S10

N0

β
S20

N0
βν2

S20

N0
βν1

S20

N0
βν3

S20

N0
βν4

S20

N0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎜⎜⎝

φ1 −σi 0 0 0
0 φ2 0 0 0

−η1 −qη2 φh −σu 0
0 −(1 − q)η2 0 φu 0

−τ1 −τ2 0 −τ3 b

⎞
⎟⎟⎟⎟⎠ (3.13)

J̃(0) has at least one eigenvalue with positive real part when Rc = ρ(FV−1) > 1 (see Berman &
Plemmons (1994)). That is, s(F−V) = s(J̃(0)) > 0, where s(A) is the largest real part of the eigenvalues
of the matrix A. Moreover, since c > 0 is arbitrary, one can choose c small enough so that s(J̃(c)) is

positive. Therefore, there exist solutions of the linear system Ṁ = J̃(c)M that grows exponentially near
M = 0. By comparison, the solution M(t) of the inequality above become unbounded as t −→ +∞. This
contradicts the fact that solutions of System (2.1) are ultimately bounded. Therefore, Ws(E0) ∩ X0 = ∅.
Applying Theorem 4.6 in Thieme (1993), one concludes that System (2.1) is uniformly persistent with
respect to (X0, Y). �

4. Model calibration

We now consider calibrating our model. The data for this study is from weekly cumulative reported
cases of EVD in Sierra Leone and Liberia WHO (2015). Model (2.1) is calibrated for 42 weeks, using the
weekly cumulative cases reported. We made use of the Nonlinear Least Squares fitting routine lsqnonlin
function in the optimization tool box of MATLAB.

For the sake of simplicity, we assume that in both countries, half of the population is aware and
the other half unaware about the EVD. The population of Sierra Leone is estimated to be 8 million
while that of Liberia is 5 million. We assume that S1(0) = S2(0) = 4 000 000 for Sierra Leone
and S1(0) = S2(0) = 2 500 000 for Liberia. On 27 May 2014, there was one case in Sierra Leone.
We assume this person was unaware about EVD. The initial condition for the infected classes is
I1(0) = 0; I2(0) = 1; H(0) = 0; U(0) = 0; D(0) = 0; R(0) = 0. On the other hand, there were
12 cases reported in Liberia on this same day. We divide the 12 cases equally (2 each) into the 6 infected
compartments of the model. That is, I1(0) = 2; I2(0) = 2; H(0) = 2; U(0) = 2; D(0) = 2; R(0) = 2 in
Liberia.

The fitted curves are plotted in Fig. 3(a), for Sierra Leone and Fig. 3(b), for Liberia, and the estimated
parameters values are displayed in Table 2. In order to evaluate the goodness of the calibrations Ouemba
Tasse et al. (2022), we compute the Mean Absolute Error (MAE) and the Root Mean Square Error
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TABLE 2 Parameter values for the calibration of the model

Parameter Sierra Leone Liberia Source

μ 0.00004 0.00004 Agusto et al. (2015)
π 15.0384 10.0471 Fitted
ε 0.0416 0.4202 Fitted
η1 0.8267 0.5046 Fitted
η2 0.0706 0.0528 Fitted
β 0.5003 0.5015 Fitted
p 0.3324 0.3297 Fitted
q 0.9252 0.5151 Fitted
δ1 0.3518 0.3883 Fitted
δ2 0.1293 0.2322 Fitted
δu 0.0902 0.2 Fitted
δh 0.1198081 0.1198081 Grigorieva & Khailov (2018)
ν1 0.3875 0.3875 Ouemba Tasse et al. (2022)
ν2 3.0013 3.0226 Fitted
ν3 2.0809 2.1616 Fitted
ν4 1.5681 1.2 Fitted
σs 0.0717 0.0838 Fitted
σi 0.0797 0.0366 Fitted
σu 0.0041 0.0093 Fitted
γ1 0.6221 0.1651 Fitted
γ2 0.0654 0.0622 Fitted
γh 0.5099 0.5023 Fitted
γu 0.0053 0.0534 Fitted
b 0.8687 0.6769 Fitted

TABLE 3 Initial conditions and metrics of the model calibrations.

Country Initial condition value Rc value MAE RMSE

Sierra
Leone

S1(0) = S2(0) = 4, 000, 000; I1(0) = 0; I2(0) =
1; H(0) = 0; U(0) = 0; D(0) = 0; R(0) = 0

0.5725 1.4199 9.2021

Liberia S1(0) = 2, 500, 000; S2(0) = 2, 500, 000; I1(0) =
I2(0) = R(0) = U(0) = H(0) = D(0) = 2

0.8340 0.9826 6.3681

(RMSE) for each fitted curve, defined by

MAE = 1

Np

Np∑
i=1

|Y(i) − Ŷ(i)| and RMSE =
√√√√ Np∑

i=1

(Y(i) − Ŷ(i))2/Np,

where Y(i) represents original cases, Ŷ(i), the predicted values and Np is the size of the data.
The values of these metrics, as well as the estimated values of the control reproduction number in

these two countries are presented in Table 3. The small values of MAE and RMSE for each country show
that our model gives a good fit to observed data.
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FIG. 3. Model calibration: fitted curves for the cumulative reported cases for 42 weeks in (a) Sierra Leone and (b) Liberia.

5. Assessment of the role of awareness and traditional medicine

In this section, we carry out some simulations in order to assess the effect of awareness on the behaviour
of the population and its influence on the choice of a suitable treatment (traditional medicine or modern
medicine) in controlling the Ebola outbreaks in Sierra Leone and Liberia.

5.1 Traditional medicine versus modern medicine

Traditional medicine occupies a prominent place in Africa, due principally to poverty, lack of means,
lack of healthcare facilities or the misconceptions about diseases (which can be generally attributed to
witchcraft) Cénat et al. (2021). Many infected individuals seek care from traditional healers who most of
the time do not respect preventive measures against the EVD. Therefore, the contribution of traditional
medicine in the treatment of EVD needs to be investigated. In this paper, this is done in two steps. The
first step is to know how the proportion, ω = 1 − q, of infected people who seek traditional treatment
influences the dynamics of the model. In the second step, we compare the two treatment approaches.

We begin with the first step. Figure 4(a), which represents the control reproduction number Rc versus
ω, shows that the control reproduction number in Sierra Leone is an increasing function. This suggests
that the more the infected will choose traditional medicine, the more EVD will be spread. A similar result
is found in Liberia because the algebraic expression for Rc is the same in both countries.

This observation is supported by Fig. 4(b), (c), (d), (e) and (f), which show the number of infected
individuals in compartments I1, I2, H, U and the total number of infected individuals (I1 + I2 + H + U),
respectively. We use three different values of ω (ω = 1; ω = 0.5; ω = 0.2). We observe that, as ω

increases, the number of infected individuals increases as well. The plots in Fig. 4 are obtained using the
estimated parameters for Sierra Leone. Corresponding plots using data for Liberia are similar.

In the second step, a comparison between the two treatment approaches is made by plotting the
number of cases treated per week for each treatment approach (modern medicine and traditional
medicine). In other words, we investigate the propensity of the infected people in Sierra Leone and
Liberia to go to hospital or to traditional healers during the course of EVD. Thus, we plot the two
functions H and U against time as shown in Fig. 5. In order to have a reasonable comparison for these
functions, we assume that the values for H(0) and U(0), though different for each country, are the same.
Fig. 5 shows that as time evolves the number of hospitalized individuals increases more rapidly than the
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764 A. J. O. TASSÉ ET AL.

FIG. 4. Place of traditional medicine Figure 4 (a) shows a plot of Rc versus ω. The rest are plots of the number of infected in
compartments I1, I2, H, U and the infection curve, for (i) ω = 1; (ii) ω = 0.5; (iii) ω = 0.2. The other parameters for the
simulations are those estimated for Sierra Leone.
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FIG. 5. Infected individuals in compartments H and U, in Sierra Leone and Liberia. Parameter values used are presented in Table 2.

number of infected cases treated by traditional healers in the two countries. In this figure, we plot H
and U on the same graph for Liberia, while for Sierra Leone, we have separate graphs. The reason for
these separate graphs for Sierra Leone being that the gap between the number of infected people who
visited hospitals (H) and those who visited traditional healers (U) is too large. Fig. 5 suggests that the
population will have more propensity to go to hospitals than to traditional healers. Moreover, it suggests
that misconceptions about EVD were more pronounced in Liberia than in Sierra Leone. This is probably
as a result of sensitization campaigns in favour of visiting modern health facilities than traditional healers
homes.

5.2 Awareness campaigns

The aspect of awareness campaigns was incorporated into Model (2.1). We formulated our model in
such a way that (i) unaware people are encouraged to go to hospitals. The parameters of interest here
are σu, σi and σs. (ii) there is a reduction in the number of contacts between susceptible and infected
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individuals. This was introduced with the parameter ε. We focus on the impact of the above awareness
parameters on the control reproduction numbers, as well as their influence on the dynamics of the infected
individuals. Figure 6(a), 7(a), 8(a), 9(a) shows plots of Rc against σu, σi, σs and ε, respectively. They show
the decreasing trend of Rc. Moreover, the plots suggest that Rc is less sensitive to changes of σu, σi, σs
than to the parameter ε.

During an EVD outbreak, awareness campaigns are meant to fight against misconceptions and its
attendant effect on human behaviour. Through these campaigns, the target population is not only assisted
in making informed but right choices. The effect of awareness campaigns in our model on the dynamics
of individuals in I1, I2, H, U classes and the total infected population (I1 + I2 + H + U) in Sierra Leone
are presented in Figs 6, 7, 8 and 9. We increase the estimated awareness parameters σ ∗

u , σ ∗
i , σ ∗

s and ε∗
of σu, σi, σs and ε, respectively, by 10% and 20%, to observe the effect of the change.

We see that among the three awareness parameters σi, σs, σu, σs does better in reducing the disease
intensity. This suggests that in the event of an EVD outbreak, awareness messages should target the
susceptible population for behaviour change in an attempt to treat and mitigate the spread of the disease.

REMARK 2. According to our flow chart, keeping all other parameters fixed, as σi increases the number
of infected persons in I2 should decrease while the number in I1 should increase. But, Fig. 7 shows that
during about 15 weeks, the change of the values of σi has almost no effect on the dynamics of I1 and I2,
but after this time, the number of infected in these two compartments decrease as the value of σi increase.
The decrease of the infected population of compartment I1 may be explained by the fact that the number
σiI2 individuals who become aware, reach the compartment I1, where they are three times less infectious
than when they were unaware (ν2=3.0013). Figures 7, 8 and 9 highlight that the number of infected
in all infectious compartments decreases as the awareness parameters increase, that is: the number of
infected individuals decreases as people become more aware of the disease. However, Fig. 6 shows that
the change of the value of σu is less sensitive to the dynamics of infected individuals, compared to the
other awareness parameters. All the curves plotted in this case are merged. This weak sensitivity of σu
may perhaps be explained by its weak values estimated in Sierra Leone and Liberia. Note that these weak
values are in accordance with African realities, since it is very difficult to convince people who generally
link diseases to witchcraft.

6. Sensitivity analysis

In order to evaluate appropriate control measures during EVD outbreaks, it is important to identify the
parameters that are more influential or relevant and of practical significance in our model. To do so, we
focus on the impact of parameter variation on the infected components assuming that each parameter is
a random variable. In this process, a Latin Hypercube Sampling (LHS) scheme samples 1000 values for
each input parameter using a uniform distribution. For each sample, System (2.1) is evaluated. Finally,
Partial Rank Correlation Coefficients (PRCC) and corresponding p-values are computed, for the infected
classes I1, I2, H, U and the total infected population (I1+I2+H+U). The PRCCs estimate are displayed
in Table 4. We consider an estimated PRCC value significant if its value is either less than −0.05 or
greater than +0.05, and the corresponding p-value is less than 5%. As seen from Table 4, the parameters
(β, π , ν2, ν3), the disease-induced death rates (δ1, δ2, δu, δh) and the recovery rates (γ1, γ2, γh, γu) are
the most sensitive parameters corresponding to the infected persons who are alive (I1 + I2 +H +U). The
most significant parameter in terms of the impact of treatment choice here is treatment rate at hospital
γh, with a PRCC estimate −0.1359, followed by the treatment rate at traditional healers homes γu with

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/89/4/745/7817826 by Academ

ic Info Service user on 17 February 2025



THE CONTROL OF EBOLA 767

FIG. 6. Variation of σu Figure 6 (a) is a plot of Rc versus σu. The rest are curves of the infected in compartments I1, I2, H, U as
well as the total number of infected (I1 + I2 + H + U) when the parameter σu varies: (i) σu = σ∗

u ; (ii) σ∗
u is increased by 10%;

(iii) σ∗
u is increased by 20%. The other parameters are those estimated in Sierra Leone.
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FIG. 7. Variation of σi The influence of σi on Rc; I1, I2, H, U and (I1 + I2 + H + U). (i) σi = σ∗
i ; (ii) σ∗

i is increased by 10%;
(iii) σ∗

i is increased by 20%. The other parameters are those estimated in Sierra Leone.
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FIG. 8. Variation of σs The influence of σs on Rc; I1, I2, H, U and (I1 + I2 + H + U). (i) σs = σ∗
s ; (ii) σ∗

s is increased by 10%;
(iii) σ∗

s is increased by 20%. The other parameters are those estimated in Sierra Leone.
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FIG. 9. Variation of ε The influence of ε on Rc; I1, I2, H, U and (I1 + I2 + H + U). (i) ε = ε∗; (ii) ε∗ is increased by 10%; (iii)
ε∗ is increased by 20%. The other parameters are those estimated in Sierra Leone.
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TABLE 4 Partial rank correlation coefficient values for the model

Parameters Range I1 I2 H U I1 + I2 + H + U

μ 0–1 −0.2036∗ −0.1836∗ −0.1700∗ −0.1756∗ −0.1470∗
π 0–1 0.0370 −0.0300 0.0208 0.0092 0.0942∗
ε 0–1 0.0466 −0.0696∗ 0.0183 0.0290 −0.0402
η1 0–1 −0.1240∗ −0.0042 −0.2070∗ −0.0384 −0.0192
η2 0–1 −0.0427 −0.1908∗ −0.0011 −0.1727∗ −0.0471
β 0–1 0.1174∗ 0.1897∗ 0.0038 0.0405 0.1259∗
p 0–1 −0.0155 0.0560∗ −0.0479 0.0438 0.0306
q 0–1 0.0310 −0.0025 0.0158 −0.0122 −0.0134
δ1 0–1 −0.1787∗ −0.0304 0.0389 0.0326 −0.1236∗
δ2 0–1 −0.0589∗ −0.1955∗ 0.0507∗ 0.0108 −0.1257∗
δu 0–1 0.0060 −0.0046 0.0193 −0.1701∗ −0.0866∗
δh 0–1 0.0092 −0.0203 −0.1728∗ −0.0183 −0.0826∗
ν1 0–1 0.0038 0.0311 0.0263 0.0272 0.0020
ν2 1–2 0.0147 0.0435 0.0394 0.0287 0.0524∗
ν3 1–2 0.0687∗ 0.0085 0.0188 0.0118 0.0657∗
ν4 1–2 0.0668∗ 0.0050 0.0353 0.0069 0.0278
σs 0–1 −0.0303 −0.0681∗ 0.0333 −0.0429 −0.0236
σi 0–1 −0.1628∗ −0.2246∗ 0.0112 −0.0966∗ −0.0495
σu 0–1 −0.0140 0.0036 0.1867∗ −0.1771∗ −0.0146
γ1 0–1 −0.1849∗ −0.0280 −0.0181 −0.0210 −0.0990∗
γ2 0–1 −0.0367 −0.1316∗ −0.0461 −0.0029 −0.1573∗
γh 0–1 −0.0435 0.0104 −0.1987∗ −0.0014 −0.1359∗
γu 0–1 −0.0258 −0.0294 −0.0302 −0.1917∗ −0.1229∗
b 0–1 −0.0103 −0.0366 −0.0375 −0.0275 −0.0036
∗Indicates a most sensitive parameter.

the estimate −0.1229. This highlights the importance of awareness campaigns aiming at encouraging
people to seek modern treatment at hospitals as formulated in our model.

In our model, the parameters q and σu represent the proportion of unaware infected individuals
moving to hospital and the rate at which unaware infected persons treated by traditional healers move to
the hospital, respectively. Awareness/educational campaigns will potentially increase the value of these
parameters. It is important to have an idea of how large the region where Rc < 1 is in the (σu, q) space.
This is obtained by plotting the level curves of Rc in the (σu, q) space as shown in Fig. 10.

We see that for σu ≥ 0.13, Rc < 1 irrespective of the value of q. This suggests that the EVD will die
out of the population. Comparing this value (0.13) to the fitted value (0.0041) in Sierra Leone indicates
that, as a control measure, the awareness/educational campaigns aiming at advising people to abandon
traditional healers homes and visit hospitals have to be intensified.

7. Discussion

Some studies have underscored the role of education in the control of the EVD outbreaks Djiomba
Njankou & Nyabadza (2017); Levy et al. (2017); Dautel & Agyingi (2021). In this paper, we have
formulated a mathematical model that does not only take into account the importance of awareness
about the disease but more importantly the role of traditional medicine in the treatment of the EVD.
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FIG. 10. Level curve of Rc in the (σu, q) space, with β = 0.8 for Sierra Leone. The other parameters are as in Table 2.

Through our model, we are able to assess the effect of awareness of the population on the dynamics of
EVD. We found out that as time evolves the number of hospitalized individuals increases more rapidly
than the number of infected cases treated by traditional healers in Sierra Leone and Liberia (the two
countries chosen for the study). In addition, the population had high tendency to go to hospitals than to
traditional healers. This is most likely because sensitization campaigns are in favour of visiting modern
health facilities than traditional healers homes. Moreover, we prove that the more infected persons will
choose traditional medicine, the more EVD will be spread, since people who seek care from traditional
healers are neither isolated, nor educated on preventive measures.

Finding the target population for sensitization during an EVD outbreak is fundamental. Sending out
awareness messages to the target audience may lead to a significant reduction in the spread of the disease.
Results from our analysis of the model suggest that in the event of an EVD outbreak, awareness messages
should target the susceptible population for behaviour change in an attempt to treat and mitigate the
spread of the disease. As a control measure, awareness campaigns aiming at advising people to abandon
traditional healers homes and visit hospitals have to be intensified for Sierra Leone.

On the theoretical perspective of our model, we showed that when the control reproduction number
Rc is less than a threshold value Rc

c, the unique equilibrium of the model is the disease-free equilibrium.
Moreover, we derived a threshold value T0 which ensures the global asymptotic stability of the disease-
free equilibrium in some cases when it is less than 1. When Rc is between Rc

c and 1, the model exhibits
a backward bifurcation phenomenon, which may be as a result of having two groups of individuals and
different modes of treatment Ouemba Tassé et al. (2024). In the case of a backward bifurcation, it is not
enough to reduce Rc to a value less than 1 to ensure the global elimination of the disease. Furthermore,
when the control reproduction number is greater than 1, the disease-free equilibrium is unstable, the
disease is persistent and there exists a unique locally asymptotically stable EE.

Through sensitivity analysis, we showed that the EVD transmission rates are the most influential
parameters and that awareness campaigns can substantially mitigate the intensity of EVD. Numerical
simulations are carried out in order to validate our model using the reported data for the 2014–2016
outbreak in Sierra Leone and Liberia. The model gives a good fit, and a control reproduction number
equal to 0.5725 in Sierra Leone and 0.8340 in Liberia.
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However, the role of traditional medicine together with traditional practices is important and should
not be underestimated in the fight against several diseases in Africa Manguvo & Mafuvadze (2015). In
order to mitigate the negative impact of this kind of medicine for the treatment of EVD, there is a need
for collaboration between traditional healers and modern medical officials in order to reduce suspicion
and lack of trust.

Despite the relevance of this study, which helps to understand the impact of the awareness of
the population, as well as the potential impact of the traditional medicine on the dynamics of EVD,
the model has some limitations. Some major limitations are that it has not taken into account the
difference in levels of education, sex, religion and age. In fact, the study in Cénat et al. (2021) revealed
that men have better knowledge of EVD than women, people aged between 25 and 34 years have better
knowledge than those aged from 18 to 24 years. This may help to better target the groups of people for
whom awareness programs should be intensified and how to address them.
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A. Appendices

A.1 Appendix A: proof of Proposition 1

Let’s suppose that S2(0) > 0. The integration from 0 to t of the first equation of (2.1) gives

S2(t) =
[

S2(0) +
∫ t

0
(1 − p)πexp

(∫ s

0
(λ(u) + τs)du

)
ds

]
× exp

(∫ t

0
−(λ(u) + τs)du

)
.

Thus,

S2(t) > 0, ∀ t > 0.

One can show similarly that S1(t) > 0, ∀ t > 0 if, in addition, S1(0) > 0.
Assume that I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥ 0, U(0) ≥ 0, D(0) ≥ 0 and R(0) ≥ 0. If, for instance,

I2 becomes zero at a time t2 before I1, H, U, D and R become zero, from the fourth equation of (2.1),
we get İ2(t) = λ(t)S1(t) ≥ 0 at t2. Thus, I2(t) is a non-decreasing function of t at t2. Hence, I2(t) stays
non-negative. Similarly, it can be shown that I1, H, U, D and R remain non-negative for non-negative
initial conditions.

A.2 Appendix B: proof of Proposition 2

Suppose N(0) ≤ π

μ
and D(0) ≤ π(3μ + δ1 + δ2 + δu)

μb
.

Simple computations show that

Ṅ(t) = π − μN(t) − δ1I1(t) − δ2I2(t) − δuU(t) − δhH(t)
˙N(t) ≤ π − μN(t).

Following Gronwall lemma, one has

N(t) ≤ π

μ
+

(
N(0) − π

μ

)
e−μt.

Hence

N(t) ≤ π

μ
.

Moreover, by the seventh equation of (2.1), since I1(t) ≤ π

μ
, I2(t) ≤ π

μ
and U(t) ≤ π

μ
, one has

Ḋ(t) ≤ π(3μ + δ1 + δ2 + δu)

μ
− bD(t).

Using the Gronwall lemma once more,

D(t) ≤ π(3μ + δ1 + δ2 + δu)

μb
+

(
D(0) − π(3μ + δ1 + δ2 + δu)

μb

)
e−bt

Therefore,

D(t)) ≤ π(3μ + δ1 + δ2 + δu)

μb
, ∀ t > 0.
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