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A B S T R A C T

This paper investigates an observable dynamic model of froth flotation circuits aimed at online state and
parameter estimation and model-based control. The aim is to estimate the model states and parameters online
from industrial data. However, in light of limitations in the plant data, additional model analysis is conducted.
It is shown that without online compositional measurements, only the states and parameters of a reduced
model can be estimated online. The reduced model lumps all recovery mechanisms into a single empirical
equation. The reduced model is used to develop a moving horizon estimator (MHE) which is implemented
on the industrial data. The state and parameter estimates from the MHE are used to evaluate the model
prediction accuracy over a receding control horizon as would be done in model predictive control (MPC).
Given the uncertainty of the available data, unmeasured disturbances and missing online measurements, the
estimation and prediction results are reasonably accurate, at least in a qualitative sense. If accurate and reliable
online measurements are available for estimation, the reduced model shows potential to be used for long-term
model-based supervisory control of a flotation circuit.
1. Introduction

Froth flotation is currently one of the largest mineral separation
techniques in use. Its scale means that even slight efficiency improve-
ments could have a large impact on the global minerals processing
industry (Quintanilla et al., 2021a). As such, the control and op-
timisation of flotation circuits have received considerable attention
since its development (Bascur Riquelme, 1982; Shean and Cilliers,
2011; Oosthuizen et al., 2017; Quintanilla et al., 2021a). It is well-
established that traditional proportional and integral (PI) control and
other single-input single-output (SISO) control methods are not suffi-
cient to properly control flotation beyond base level stabilisation or
regulatory control (Shean and Cilliers, 2011; Quintanilla et al., 2021a)
and there is a need for more advanced control techniques, such as
model predictive control (MPC), to increase the efficiency of flotation.

At the time of their review, Bergh and Yianatos (2011) identified
the lack of suitable dynamic models, quality online measurements of
key variables and acceptable regulatory control as the main obstacles
to the successful use of MPC in flotation. The long-term implemen-
tation of MPC requires models that capture the important system
dynamics and have a low computational processing burden for online
controller implementation. These models should also be easily main-
tainable from limited online measurements, as detailed sampling cam-
paigns are costly and time-consuming (Shean et al., 2018; Oosthuizen,
2023; Quintanilla et al., 2021a; Steyn and Sandrock, 2021).

∗ Corresponding author.
E-mail address: derik.leroux@up.ac.za (J.D. le Roux).

Recently, significant research effort has been aimed at addressing
these issues (Brooks and Koorts, 2017; Oosthuizen et al., 2017; Shean
et al., 2018; Brooks et al., 2019; Quintanilla et al., 2021a,c,b; Steyn and
Sandrock, 2021; Oosthuizen, 2023; Quintanilla et al., 2023). Two of the
most recent dynamic models of flotation circuits aimed at MPC were
proposed by Oosthuizen et al. (2021) and Quintanilla et al. (2021c).

Quintanilla et al. (2021c) developed a primarily phenomenological
model that includes the froth physics and interaction between pulp
and froth. The model was validated by Quintanilla et al. (2021b) using
extensive experiments on a single, well-instrumented laboratory scale
flotation cell. The feed properties and reagent dosages were kept con-
stant and parameter values were assumed to remain constant. Without
tests where these conditions were varied, it is not known how well the
model extends to other operation conditions and how much the param-
eters would have to change. Quintanilla et al. (2023) used the model to
develop an economic MPC (E-MPC) strategy, demonstrating very good
control performance in simulation. They mention that there is still the
need to develop a state estimator to facilitate the implementation of
the E-MPC on a laboratory flotation bank.

The model first published in Oosthuizen et al. (2021) and refined
in Oosthuizen (2023) combines established phenomenological models
and mass balances with empirical models of phenomena not under-
stood very well such as froth dynamics. Importantly, the model states
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and parameters are observable and identifiable from the measure-
ments generally available on industrial flotation plants (Oosthuizen
et al., 2021). Observability (or identifiability in the case of param-
eters) is a mathematical property of a model which means that the
model states (or parameters) can be estimated from the measured
plant variables (Villaverde et al., 2019). This is a crucial part of an

PC strategy where state-feedback is necessary to ensure closed-loop
eedback control. By ensuring observability and identifiability, the

states and parameters of the model of Oosthuizen (2023) which cannot
be measured directly can be estimated in real time from online plant

easurements. The rationale of this modelling approach is that while
he empirical models do not capture the effect of all impacting factors
n the flotation process, the online estimation of their parameters can,

to some extent, capture the effect of these factors, as long as they do not
change too rapidly (Oosthuizen, 2023). The neglected factors include,
among others, the effect of chemical reagent dosages and particle size
distribution on the flotation rate and froth stability, which are not
commonly modelled in literature (Oosthuizen et al., 2021; Venter et al.,
2022).

Oosthuizen (2023) modified the empirical air recovery model struc-
ture of Oosthuizen et al. (2021) to better correlate with the observed
ehaviour of the peak in air recovery, as recorded in Hadler et al.

(2010, 2012). The parameters that determine the optimal 𝐽𝑔 value
nd maximum achievable air recovery in each cell were also allowed
o vary between cells, as this is more akin to what is seen in indus-

trial flotation circuits. Oosthuizen (2023) fitted the model states and
arameters to steady-state plant data from Hadler et al. (2010). He

shows in simulation that good parameter estimation and control results
re possible, assuming online compositional analysers are available for
stimation purposes. While such analysers are used on some flotation
ircuits (Brooks and Koorts, 2017), they are still not common (Shean

and Cilliers, 2011; Oosthuizen et al., 2017; Oosthuizen, 2023).
Conventional air recovery models are available that were tested in

teady-state on an industrial scale (Neethling and Cilliers, 2003) and
ynamically on laboratory scale (Quintanilla et al., 2021c). However,

the available data and lack of online measurements were not sufficient
for using more complex conventional models with many parameters for
state estimation, hence the less complex dynamic model of Oosthuizen
(2023) was used with its already established observability and identi-
fiability properties.

The specific contribution of the article is a reduced flotation model
validated on plant data using a moving horizon estimator (MHE). The
educed model can potentially be used on an industrial circuit for a
odel-based supervisory control strategy such as MPC. To ensure the

viability of long-term predictive control (Bergh and Yianatos, 2011),
the states and parameters of the reduced model can be estimated from
nline measurements using an observer such as an MHE. The purpose
f the reduced model is for model-based process control. As long as the

model is capable of predicting the direction of change of a variable over
he short term, a feedback controller can be built to control the process.
lthough the model does not capture all the flotation phenomena, at

east in the short term, a controller in closed-loop with an estimator
an reject these disturbances if variable trends are predicted correctly.

The article is structured as follows. Section 2 gives a brief overview
of the analysis methods used in the study. Section 3 discusses the in-
dustrial plant and the available data. Section 4 summarises the flotation
ircuit model in Oosthuizen (2023) and discusses implementation short-

comings. Section 5 presents a reduced version of the model to address
the shortcomings of the model in Section 4. The reduced model is used
n Section 6 to develop an MHE. Section 7 shows the estimation results

of the MHE and the model prediction accuracy. Section 8 concludes the
article.
2 
2. Background theory

2.1. Observability analysis theory

2.1.1. Nonlinear observability condition
For a general nonlinear state-space model

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡),𝐮(𝑡),𝐩), (1a)

(𝑡) = 𝑔(𝐱(𝑡),𝐮(𝑡)), (1b)

the states (𝐱(𝑡) ∈ R𝑛𝐱 ) are said to be observable if they can be inferred
uniquely from the known input (𝐮(𝑡) ∈ R𝑛𝐮 ) and output (𝐲(𝑡) ∈ R𝑛𝐲 )
history. Similarly, the unknown parameters (𝐩 ∈ R𝑛𝐩 ) are identifiable
if they can be uniquely inferred from 𝐲(𝑡) and 𝐮(𝑡) (Villaverde et al.,
2019). Importantly, these properties only indicate that the states and
parameters can be estimated in theory, but do not give information
regarding the practical observability of these values. This means that
even if a model is observable, there is no guarantee that the states
and parameters can be estimated with enough certainty to be used
or MPC, given the limitations and uncertainty in the available mea-
urement data and model. However, this analysis serves as the first
tep to evaluate the viability of an observer such as MHE. Note that
he model assumes that 𝐩 does not vary with time. Henceforth the
‘function of time’’ notation (𝑡) will be dropped unless it is required for
isambiguation.

The simplest check for observability of the system (1) is to check the
observability (and/or identifiability) of a linear version of the model,
linearised around an operating point (Seborg et al., 2011). The well-
known observability matrix (𝐿) is constructed with the obtained linear
state-space matrices (𝐀, 𝐁, 𝐂, 𝐃) and the rank is evaluated (Skogestad
and Postlethwaite, 2005; Antsaklis and Michel, 2007). The states are
linearly observable if
r ank (𝐿) = 𝑛𝐱 , (2)

The linear observability-identifiability condition (LOIC) is a sufficient
and necessary condition for observability (Villaverde et al., 2019). If the
OIC is not satisfied, the states (and parameters) may still be observ-
ble in a nonlinear sense. Analogous to the linear case, the nonlinear
bservability-identifiability condition (NOIC) requires the evaluation
f a rank condition (Hermann and Krener, 1977; Doyle and Henson,

1997; Villaverde et al., 2019). The nonlinear system in (1) is observable
f:

r ank (d(𝐱0,𝐮0)) = 𝑛𝐱 , (3)

where the matrix d is constructed using Lie derivatives

d(𝐱,𝐮) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝐱

𝑔(𝐱,𝐮)
𝜕
𝜕𝐱

(

𝐿𝑓 𝑔(𝐱,𝐮)
)

⋮
𝜕
𝜕𝐱

(

𝐿𝑛𝐱−1
𝑓 𝑔(𝐱,𝐮)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

The 𝑖th Lie derivative of 𝑔 with respect to 𝑓 is

𝐿𝑖
𝑓 𝑔(𝐱,𝐮) =

𝜕 𝐿𝑖−1
𝑓 𝑔(𝐱,𝐮)
𝜕𝐱

𝑓 (𝐱,𝐮) +
𝑗=𝑖−1
∑

𝑗=0

𝜕 𝐿𝑖−1
𝑓 𝑔(𝐱,𝐮)

𝜕𝐮(𝑗)
𝐮(𝑗+1), (5)

where the notation 𝐮(𝑗) denotes the 𝑗th derivative of 𝐮 with 𝐮(0) = 𝐮
and 𝐿0

𝑓 𝑔(𝐱,𝐮) = 𝑔(𝐱,𝐮). (If the nonlinear system in (1) is replaced with
a linear system with matrices (𝐀, 𝐁, 𝐂, 𝐃), evaluation of the NOIC using
3) and (5) will be equivalent to the LOIC in (2).)

The parameter identifiability is evaluated by expanding 𝐱 with 𝐩
odelled as constants. The standard state observability tests above ((2)

and (3)) can then be used for the expanded system (Villaverde et al.,
2019)

̇̃𝐱 =
[

𝐱̇
𝐩̇

]

=
[

𝑓 (𝐱̃,𝐮)
𝟎

]

, (6a)

𝐲 = 𝑔(𝐱̃,𝐮). (6b)
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2.1.2. Input excitation
The second term in (5) captures the impact of the input and its

erivatives on the states and outputs. By assuming zero values for all
input derivatives above a certain order, it is possible to determine the
degree of input excitation required for observability (Villaverde et al.,
2019).

The analysis in Oosthuizen (2023) assumed that 𝐮(𝑗) = 0 ∀ 𝑗 ≥
, implying that the analysis was done for constant inputs (all input
erivatives are zero). This assumption is also made here unless explic-
tly stated otherwise. In the context of flotation circuits, this is a safe
ssumption as there are long periods of steady-state operation where
nputs remain constant. This is also a more conservative approach as
igher order input derivatives (𝐮(𝑗) ≠ 0) tend to improve the system
bservability.

2.1.3. Identifying unobservable variables
If (3) is not satisfied and there is a rank deficiency of 𝑟𝑑 , there are

𝑟𝑑 unobservable states or unidentifiable parameters. If the unidentifi-
able parameters are excluded from 𝐱̃ and are assumed to be known
constants, it can make the remainder of the system observable.

The unobservable variables can be determined as follows. For a
ystem with 𝑛𝐱̃ states and parameters, the rank of d(𝐱̂0,𝐮0) is taken

as the maximum possible rank, 𝑟max. That is
𝑛𝐱̃ = 𝑟max + 𝑟𝑑 . (7)

Let d𝑖 denote the 𝑖th column of d and 𝑥̂𝑖 indicate the 𝑖th state or
arameter state. Next, let

d′
𝑗 =

[

d1∶𝑗−1 d𝑗+1∶𝑛𝐱̃
]

. (8)

The variable 𝑥̂𝑗 is possibly unobservable/unidentifiable if
r ank (d′

𝑗 ) = 𝑟max, (9)

as this indicates that the 𝑗th column did not contribute to the overall
atrix rank (Villaverde et al., 2019). This is done for every 𝑥̂𝑗 . Often (9)

an hold for more than 𝑟𝑑 variables, which implies that it is the linear
ombination of the variables that has a deficient rank. If 𝑟𝑑 of these
ariables are assumed to be known constants, it results in an observable
ystem.

2.2. Moving horizon estimator

Typical estimators used for nonlinear system models include the
extended Kalman filter (EKF), unscented Kalman filter, particle fil-
ers (Simon, 2006) and MHE (Lucia et al., 2017). Of these, the EKF

has received significant attention, especially in industrial applica-
ion (Rawlings and Bakshi, 2006). However, the EKF requires linear
bservability and identifiability as it applies a normal Kalman filter to a
inearised model at each time-step. If a model does not satisfy the LOIC,
uch as the model of Oosthuizen (2023), the standard EKF cannot be
mplemented. The MHE can deal with such systems and has the added

benefit that system constraints can easily be incorporated.
The MHE uses the same state-space system as in (1), except that

dditive Gaussian measurement noise (𝐯 or 𝐯𝑘) and process noise (𝐰
r 𝐰𝑘) are added to 𝐲 and 𝐱, respectively (Lucia et al., 2017), and

𝐩 represents the parameters to be estimated. The typical MHE-MPC
configuration is shown in Fig. 1. For each horizon (𝑖) of 𝑁 time-steps,
the optimisation problem for a discretised version of the nonlinear
state-space system is given by

min
𝐱0 ,𝐩,{𝐰𝑘}𝑁−1

𝑘=0

‖

‖

𝐱0 − 𝐱̂0‖‖
2
𝐏𝑥

+ ‖𝐩 − 𝐩̂‖2𝐏𝑝 +
𝑁−1
∑

𝑘=0

(

‖

‖

𝐯𝑘‖‖
2
𝐏𝑣

+ ‖

‖

𝐰𝑘
‖

‖

2
𝐏𝑤

)

,

s.t. 𝐱𝑘+1 = 𝑓 (𝐱𝑘,𝐮𝑘,𝐩, 𝑘) + 𝐰𝑘
𝐲𝑘 = 𝑔(𝐱𝑘,𝐮𝑘,𝐩, 𝑘) + 𝐯𝑘

⎫

⎪

⎬

⎪

𝑘 = 0,… , 𝑁 ,
(10)
ℎ(𝐱𝑘,𝐮𝑘,𝐩, 𝑘) ≤ 0
⎭

o

3 
where ‖𝐱‖2𝐏 denotes 𝐱𝑇𝐏𝐱 and ℎ is the function of nonlinear constraints.
The MHE can be implemented using the do-mpc Python library (Lucia
et al., 2017). Eq. (10) is solved numerically using ipopt in conjunction

ith the MA57 linear solver from the Harwell Subroutine Library
HSL) (HSL, 2013).

Only the initial states (𝐱0) for each horizon are varied during
ptimisation, with deviation from the previous estimate of that state
𝐱̂0) penalised by 𝐏𝑥. The values of 𝐩 are assumed to remain constant
ver the entire horizon but are allowed to vary between horizons, with
eviations from the previous estimate (𝐩̂) penalised by 𝐏𝑝. The states
re propagated using 𝑓 , with 𝐰𝑘 considered an optimisation variable.
he estimated 𝐰𝑘 and observed 𝐯𝑘 magnitudes over the entire horizon
re penalised by 𝐏𝑤 and 𝐏𝑣 respectively. The tuning matrices (𝐏𝑥, 𝐏𝑝,
𝑣 and 𝐏𝑤) are diagonal positive semi-definite matrices, with at least
ne positive definite matrix. The tuning matrices, the horizon length
𝑁) and variable constraints play an important role in the optimisation

problem solution and estimator performance.

2.3. Performance metrics

For the objective evaluation of state estimation performance, quan-
itative measures of performance are essential. In this work, the root
ean square error (RMSE) is used as a performance metric. It is
ecomposed as follows:

𝑅𝑀 𝑆 𝐸 =
√

𝑅𝑀 𝑆 𝐸 𝑠2 + 𝑅𝑀 𝑆 𝐸 𝑢2, (11)

where 𝑅𝑀 𝑆 𝐸 𝑠 indicates the estimation error due to a modelling bias
(systematic error) and 𝑅𝑀 𝑆 𝐸 𝑢 indicates the error caused by random
noise (unsystematic error). The values for 𝑅𝑀 𝑆 𝐸 𝑠 and 𝑅𝑀 𝑆 𝐸 𝑢 were
calculated as proposed by Willmott (1981) based on a linear line of
best-fit

𝑃𝑖 = 𝑎 + 𝑏𝑂𝑖 (12)

on the parity plot of predictions 𝑃 vs. observations 𝑂. The values of the
wo sub-metrics are calculated with

𝑅𝑀 𝑆 𝐸 𝑠 =
√

√

√

√𝑛−1
𝑛
∑

𝑖=1
(𝑃𝑖 − 𝑂𝑖)2, (13a)

𝑅𝑀 𝑆 𝐸 𝑢 =

√

√

√

√𝑛−1
𝑛
∑

𝑖=1
(𝑃𝑖 − 𝑃𝑖)2. (13b)

A high ratio between these two values

𝑆∕𝑈 = 𝑅𝑀 𝑆 𝐸 𝑠
𝑅𝑀 𝑆 𝐸 𝑢 (14)

indicates the systematic component is much larger than the unsystem-
atic component and implies poor estimation performance.

3. Plant and measurement description

3.1. Plant overview

This study considers an industrial flotation circuit which has been
he subject of several studies (Venkatesan et al., 2014; Steyn and

Sandrock, 2021; Horn et al., 2022). A brief overview of the flotation
ircuit is given below.

After being crushed in a dry section, ore is fed to a primary SAG mill
hich feeds into two parallel rougher banks of 7 cells each. The second

ougher bank will be the focus of this work, as it only uses Dorr-Olivier
orced air cells (labelled FT1–FT7 for the purposes of this study) and

no naturally aspirated cells. Fig. 2 shows a simplified diagram of the
econd rougher bank with the available measurements and manipulated
ariables (MVs).

The bank is fed from a surge tank. The concentrates from the first
wo and last five cells are combined into two separate concentrate
anks (subscripts 𝐻1 and 𝐻2). Variable speed pumps on the tank
utlets are used to pump the concentrates to downstream processes.
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Fig. 1. The MHE-MPC set-up with parameter estimation as proposed by Oosthuizen (2023) is shown in black. The offline configuration used in the current study to evaluate the
MHE performance using plant data is shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The configuration of the industrial rougher bank used in this study. Variables that are applicable to multiple cells are indicated with a subscript 𝑘.
e
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t
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𝑞

m

The concentrate from the first two cells can either go directly to the
final concentrate or the cleaners bank. The combined concentrate of the
ast five cells is sent to the cleaners for further upgrading. The tailings
re collected in a sump from which it is sent to a scavenger section via
 secondary comminution circuit.

3.2. Available dynamic data

The data used in this study was obtained from the plant historian
and the pulp sensor vendor. (The data is protected for commercial
reasons. Please refer to the Appendix where data for an example system
is given.)

3.2.1. Level, density and flow-rate
The cell pulp levels (𝐿𝑘) are measured with a ball-float and sonar

plate set-up. The concentrate tank levels (𝐿𝐻𝑞
) are measured with a

reflective float and sonar level transducer over the entire tank height.
While physical distances were used throughout, as required by the
model, any level data will be reported as deviation variables for com-

ercial reasons.
The flow-rates between cells (𝑄𝑇𝑘 ) are manipulated using dual dart-

valves with split-range control and are not measured. The plant level
controller specifies a total valve fraction (𝑣𝑎,𝑘) which is then divided
between the two valves. Only the total 𝑣𝑎,𝑘 value is available in the
historian.

The volumetric flow-rates for the feed (𝑄𝐹1 ), the concentrate
streams (𝑄𝐻𝑞

) and combined tailings (𝑄𝑇 𝑜𝑡
𝑇 ) are measured online. The

ulk densities of these streams (𝜌𝐹 , 𝜌𝐻𝑞
and 𝜌𝑇 respectively) are also

easured online.
4 
3.2.2. Superficial gas velocity
The linear air velocity in the air feed pipe to each cell (𝑞𝑎𝑖𝑟,𝑘) is

measured online. On the industrial plant, low-level PID controllers
control 𝑞𝑎𝑖𝑟,𝑘 to a set-point specified by the plant operator based on
experience or calculated by an advanced process control (APC) system.
Therefore, 𝑞𝑎𝑖𝑟,𝑘 is different from the ‘‘true’’ superficial gas velocity (𝐽𝑔𝑘 )
in the cell, which is typically used in the flotation models (Quintanilla
t al., 2021c; Oosthuizen, 2023). This is due not only to the difference

in pipe and cell cross-sectional areas (𝐴𝑎𝑖𝑟 and 𝐴𝑘), but also the varying
ressure the gas is subjected to as it moves from the impeller to the top

of the froth, infrequent sensor calibration, uncertainty regarding the
rue pipe diameter at the measurement point (Venkatesan et al., 2014).
t is, therefore, necessary to determine the correct conversion between
𝑎𝑖𝑟,𝑘 and 𝐽𝑔𝑘 , as was done in previous studies (Venkatesan et al., 2014;

Steyn and Sandrock, 2021) where Anglo Platinum Bubble Sizer (APBS)
measurements were used.

For this study, data from image-based online pulp sensors that
easure 𝐽𝑔𝑘 directly for the first two cells in Fig. 2 was used to calibrate

the conversion

𝐽𝑔𝑘 = 𝑚𝐽𝑔 ,𝑘𝑞𝑎𝑖𝑟,𝑘, (15)

where 𝑚𝐽𝑔 ,𝑘 is fitted using least square regression. The online mea-
surements of 𝐽𝑔𝑘 were not used directly due to high levels of noise
compared to measurements of 𝑞𝑎𝑖𝑟,𝑘. Strictly speaking, the 𝑞𝑎𝑖𝑟,𝑘 control
valve fractions should be used as the MVs in the model analysis, but
the dynamics from the valves to 𝑞𝑎𝑖𝑟,𝑘 are assumed to be sufficiently
fast to be negligible and the 𝑞𝑎𝑖𝑟,𝑘 conversion to 𝐽𝑔𝑘 was found to be
sufficiently accurate to treat the calculated 𝐽 as the MVs.
𝑔𝑘
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3.2.3. Air recovery
Air recovery (𝛼𝑘) is the fraction of air fed to the cell (𝑄𝑎𝑘 ) recovered

as overflowing froth, calculated as (Oosthuizen, 2023; Phillpotts et al.,
2021)

𝛼𝑘 =
𝑤ℎ𝑓 ,𝑜,𝑘𝑣𝑓 ,𝑜,𝑘

𝐽𝑔𝑘𝐴𝑘
. (16)

where 𝑤 is the launder lip length, ℎ𝑓 ,𝑜,𝑘 is the froth height over the lip
measured by a laser froth height sensor and 𝑣𝑓 ,𝑜,𝑘 is the froth overflow
velocity measured by a froth camera. (Note that ℎ𝑓 ,𝑜,𝑘 used in (16) is
different from ℎ𝑓𝑘 used in (18a) and (18b).)

It is assumed that the froth overflows the entire launder length of
the cell at the same velocity and the same height. While unlikely, it is
not possible to confirm the homogeneity of the froth from one camera
per cell. The general air recovery trend should, however, remain rel-
atively unchanged with this assumption, especially when approaching
steady-state operation.

The composite nature of 𝛼𝑘 in (16) means that it is subject to
very high uncertainty as the uncertainties of all the constituent mea-
surements are combined. High measurement noise could obscure the
required dynamic information required to estimate the 𝛼𝑘 model pa-
rameters. Errors in the measured 𝛼𝑘 (as would be introduced by incor-
rect 𝐽𝑔𝑘 measurements or non-homogeneous overflow conditions) could
also pose a problem to the use of phenomenological models.

3.2.4. Froth bubble size
The top-of-froth bubble size for each cell (𝐷𝐵 𝐹𝑘 ) is measured using

froth cameras. The mean bubble size is sampled at a rate of 2 min.
This sampling time is much slower than the other online measurements
used, which are sampled every 10 s. To achieve the same sampling
rate, the 𝐷𝐵 𝐹𝑘 measurements were up-sampled by the historian using
polynomial fit interpolation. The expected speed of the 𝐷𝐵 𝐹𝑘 dynamics
is much faster than the 2 min sampling time (Oosthuizen, 2023). The
amount of dynamic information contained in the 𝐷𝐵 𝐹𝑘 measurements
is, therefore, expected to be severely limited which could complicate
parameter estimation.

3.3. Static data

Currently, only 8 h shiftly composite assays, sampled every 10 min
and then combined, are available for the feed of the rougher section
and the individual bank tailings. The assays report on Pt, Pd and Rh
(3E) content for the tails and the feed. The feed assays additionally
report on the Fe content and particle size distribution. No concentrate
stream assays are available for the rougher section. Unfortunately, the
lab results are typically only available one to three days after the
samples are taken, making the assays unusable as measurements for
any real-time control or estimation purposes.

4. Model and analysis

4.1. Model description

A diagram of a single forced air flotation cell in Fig. 2 is shown in
Fig. 3. The cell can be described by the dynamic model of Oosthuizen
et al. (2021) and Oosthuizen (2023). As this paper is primarily con-
cerned with the validation and not the expansion/development of the
model, only a brief summary of the model equations is provided below.
The model variables, inputs and parameters are summarised in Table 1,
Table 2 and Table 3.

For ease of notation, let the concentration of species 𝑖 and class 𝑗 in
tank ▿ be

𝐶 𝑖,𝑗 =
𝑀 𝑖,𝑗

▿ . (17)
▿ 𝐿▿𝐴▿

5 
Fig. 3. Diagram of forced air flotation cell indicating the measured variables relevant
to a cell and the cell dimensions.

Table 1
Model states and auxiliary variables.

Variable Unit Description

Subscripts and superscripts

⋄ – Stream subscript (concentrate (𝐶), tailings
(𝑇 ) and feed (𝐹 ))

▿ – Tank subscript (hopper (𝐻𝑞) or flotation
cell (𝑘))

𝑖, 𝑗 – Superscripts for mineral species and class
𝑘 – Subscript for flotation cell

States

𝛼𝑘 – Air recovery
𝐷𝐵 𝐹𝑘

mm Mean top-of-froth bubble size
𝐿▿ m Tank level (cell or hopper)
𝑀 𝑖,𝑗

▿ kg Species mass in tank ▿

Auxiliary variables

𝐶𝑠,⋄, 𝐶𝑠,▿ – Mass fraction solids in stream ⋄ or tank ▿
𝐶 𝑖,𝑗
▿ kg m−3 Concentration in tank ▿ for mineral 𝑖, 𝑗

𝑑𝑖,𝑗
𝑝𝑟𝑡 mm Particle size for 50 % entrainment for

mineral 𝑖, 𝑗
𝐸 𝑛𝑡𝑖,𝑗𝐹 𝑟𝑎𝑐 – Entrainment factor for mineral 𝑖, 𝑗
ℎ𝑓𝑘 mm Froth height
𝜆air𝑘 s Froth residence time
𝑄𝑤𝑘

m3 h−1 Water recovery flow-rate
𝑄⋄▿

m3 h−1 Volumetric flow-rate of stream ⋄ to/from
tank ▿

𝑀̇ 𝑖,𝑗
⋄▿

k g h−1 Mass flow-rate in stream ⋄ to/from tank ▿
for mineral 𝑖, 𝑗

𝑆𝑏𝑘 s−1 Bubble surface-area flux for cell 𝑘

The air recovery and top-of-froth bubble size for a single cell (𝛼𝑘 and

𝐷𝐵 𝐹𝑘 ) and the concentrate tank and mechanical cell levels (𝐿𝐻𝑞
and

𝐿𝑘) and mineral masses (𝑀 𝑖,𝑗
𝐻𝑞

and 𝑀 𝑖,𝑗
𝑘 ) are modelled as

d𝛼𝑘 =
𝐾𝛼𝐽𝑔

(

𝐽𝑔𝑘 −𝐾0,𝛼𝐽𝑔𝑘
−𝐾𝛼ℎ𝑓

ℎ𝑓𝑘

)2
+ 𝛼𝑂 𝑆𝑘

− 𝛼𝑘
, (18a)
d𝑡 𝜆air𝑘
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Table 2
Model inputs and exogenous variables.

Variable Unit Description

Inputs

𝐽𝑔𝑘 mm s−1 Superficial gas velocity
𝑄𝐻𝑞

m3 h−1 Concentrate flow-rate from hopper
𝑣𝑎,𝑘 – Valve fraction

Exogenous variables

𝑑𝑝,max μm Particle maximum diameter
𝑑𝑝,min μm Particle minimum diameter
𝐺𝑖,𝑗

𝐹1
– Mass fraction of mineral 𝑖, 𝑗 in feed solids

𝛷𝑠,𝐹1
k g m−3 Mass of solids per volume feed

𝑄𝐹1
m3 h−1 Bank feed flow-rate

𝜌𝐹 k g m−3 Feed density

Table 3
Model parameters.

Symbol Unit Description

𝐴𝑘 , 𝐴𝐻𝑞
m2 Cell and hopper cross-sectional area

𝛼𝑂 𝑆𝑘
– Air recovery offset

𝐶𝑃 𝐵 – Plateau border drag coefficient
𝐶𝑣𝑘 m2.5 h−1 Valve parameter
𝛥ℎ𝑘

m Cell height difference
𝐷𝑂 𝑆𝑘

mm Bubble size offset
𝐷𝐵 𝑃𝑘

mm Sauter mean bubble diameter in pulp
𝑔 m s−2 Gravitational acceleration
𝐻cell m Cell height
𝑘1 – Fluid properties parameter
𝐾0,𝛼𝐽𝑔𝑘

mm s−1 Parameter related to air recovery peak
𝐾𝛼ℎ𝑓

s−1 Effect of ℎ𝑓𝑘 on peak air recovery
𝐾𝛼𝐽𝑔

s2 mm−2 Effect of suboptimal 𝐽𝑔𝑘 on 𝛼𝑘
𝐾𝐵 𝑆𝐽𝑔

s Effect of 𝐽𝑔𝑘 on 𝐷𝐵 𝐹𝑘

𝐾𝐵 𝑆𝜆
mm s−1 Effect of 𝜆air𝑘 on 𝐷𝐵 𝐹𝑘

𝐾 𝑖,𝑗 – Flotation rate constant for mineral 𝑖, 𝑗
𝜇 Pa s Fluid viscosity
𝑃 𝑒 – Dispersion Peclet number
𝜌 k g m−3 Fluid density
𝜌𝑖,𝑗𝑠 k g m−3 Solids density for mineral 𝑖, 𝑗

d𝐷𝐵 𝐹𝑘
d𝑡

=
𝐾𝐵 𝑆𝐽𝑔

𝐽𝑔𝑘 +𝐾𝐵 𝑆𝜆
𝜆air𝑘 +𝐷𝑂 𝑆𝑘

−𝐷𝐵 𝐹𝑘
𝜆air𝑘

, (18b)

d𝐿𝐻𝑞

d𝑡
= 1

𝐴𝐻𝑞

( 𝑛
∑

𝑘=𝑚
𝑄𝐶𝑘

−𝑄𝐻𝑞

)

, (18c)

d𝐿𝑘
d𝑡

= 1
𝐴𝑘

(

𝑄𝐹𝑘 −𝑄𝑇𝑘 −𝑄𝐶𝑘

)

, (18d)

d𝑀 𝑖,𝑗
𝐻𝑞

d𝑡
=

𝑏
∑

𝑘=𝑎
𝑀̇ 𝑖,𝑗

𝐶𝑘
− 𝐶 𝑖,𝑗

𝐻𝑞
𝑄𝐻𝑞

, (18e)

d𝑀 𝑖,𝑗
𝑘

d𝑡
= 𝑀̇ 𝑖,𝑗

𝐹𝑘
− 𝑀̇ 𝑖,𝑗

𝐶𝑘
− 𝐶 𝑖,𝑗

𝑘 𝑄𝑇𝑘 , (18f)

where 𝑄𝐹1 is considered a measured disturbance, 𝑄𝐻𝑞
is taken as an

MV and 𝑎 and 𝑏 denote the range of cells for which the concentrate is
collected into tank 𝐻𝑞 . Typically 𝑀̇ 𝑖,𝑗

𝐹𝑘
= 𝐶 𝑖,𝑗

𝑘−1𝑄𝑇𝑘−1 , except for the first
cell in which case 𝑀̇ 𝑖,𝑗

𝐹𝑘
is determined by the feed conditions using

𝑀̇ 𝑖,𝑗
𝐹1

= 𝑄𝐹1𝐺
𝑖,𝑗
𝐹1
𝛷𝑠,𝐹1 (19)

where 𝛷𝑠,𝐹1 is the mass of solids per volume of feed and 𝐺𝑖,𝑗
𝐹1

is the
mass fraction of mineral 𝑖, 𝑗 in the feed solids. The froth height (ℎ𝑓𝑘 )
and froth residence time (𝜆air𝑘 ) are taken as

ℎ𝑓𝑘 = 1000(𝐻cell − 𝐿𝑘), (20a)

air𝑘 =
ℎ𝑓𝑘
𝐽𝑔𝑘

. (20b)
6 
The tailings flow-rate is given by

𝑄𝑇𝑘 = 𝑣𝑎,𝑘𝐶𝑣𝑘

√

𝐿𝑘 − 𝐿𝑘+1 + 𝛥ℎ𝑘 , (21)

where 𝑣𝑎,𝑘 is the valve fraction. The concentrate volumetric flow-rate
(𝑄𝐶𝑘

) is

𝑄𝐶𝑘
= 𝑄𝑤𝑘

+
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0

𝑀̇ 𝑖,𝑗
𝐶𝑘

𝜌𝑖,𝑗𝑠
(22)

where the water recovery is Neethling and Cilliers (2003)

𝑄𝑤𝑘

𝐴𝑘
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

6.81𝐽 2
𝑔𝑘

𝑘1𝐷2
𝐵 𝐹𝑘

(

1 − 𝛼𝑘
)

𝛼𝑘 0 < 𝛼𝑘 < 0.5

6.81𝐽 2
𝑔𝑘

4𝑘1𝐷2
𝐵 𝐹𝑘

𝛼𝑘 ≥ 0.5,

(23a)

𝑘1 =
𝜌𝑔

3𝜇 𝐶𝑃 𝐵
. (23b)

The mass flow-rates leaving a cell in the concentrate (𝑀̇ 𝑖,𝑗
𝐶𝑘

) are calcu-
lated as

𝑀̇ 𝑖,𝑗
𝐶𝑘

= 𝐾 𝑖,𝑗𝑀 𝑖,𝑗
𝑘 𝑆𝑏𝑘𝛼𝑘 + 𝐸 𝑛𝑡𝑖,𝑗𝐹 𝑟𝑎𝑐𝐶

𝑖,𝑗
𝑘 𝑄𝑤𝑘

, (24)

where 𝐾 𝑖,𝑗 is the flotation rate constant and the bubble surface area
flux (𝑆𝑏𝑘 ) is
𝑆𝑏𝑘 = 6

𝐽𝑔𝑘
𝐷𝐵 𝑃𝑘

. (25)

The entrainment factor is Oosthuizen (2023)

𝐸 𝑛𝑡𝑖,𝑗𝐹 𝑟𝑎𝑐 =
ln
(

𝑑𝑖,𝑗𝑝𝑟𝑡
)

− ln (𝑑𝑝,min
)

ln
(

𝑑𝑝,max
)

− ln (𝑑𝑝,min
) , (26)

where 𝑑𝑝,min and 𝑑𝑝,max are the minimum and maximum particle diam-
ters respectively. The 50 % entrained particle diameter is

𝑑𝑖,𝑗𝑝𝑟𝑡 =
3

√

√

√

√

ln(0.5)𝐽 2
𝑔𝑘

𝐾 𝑖,𝑗
𝑒𝑛𝑡ℎ𝑓𝑘

, (27)

where

𝐾 𝑖,𝑗
𝑒𝑛𝑡 =

⎡

⎢

⎢

⎢

⎣

1
3

𝑔
(

𝜌𝑖,𝑗𝑠 − 𝜌
)

18𝜇

⎤

⎥

⎥

⎥

⎦

1.5 √

𝑘1(
√

3 − 𝜋∕2)𝑃 𝑒
√

𝛼𝑘
(

1 − 𝛼𝑘
)

. (28)

Eq. (28) is a simplified version of the entrainment factor model devel-
ped by Neethling and Cilliers (2009).

The empirical form of (18a) is based on the results in Hadler et al.
(2010, 2012) and ensures there is a peak in 𝛼𝑘 at an optimal 𝐽𝑔𝑘 that is
ependent on ℎ𝑓𝑘 (Oosthuizen, 2023). In (18a), the peak in air recovery

occurs at

𝐽𝑔𝑘,opt = 𝐾0,𝛼𝐽𝑔𝑘
+𝐾𝛼ℎ𝑓

ℎ𝑓𝑘 , (29)

where 𝐾𝛼ℎ𝑓
captures the effect of ℎ𝑓𝑘 on the peak and 𝐾0,𝛼𝐽𝑔𝑘

is the
𝑦-axis intercept for the theoretical case where ℎ𝑓𝑘 = 0. Finally, 𝐾𝛼𝐽𝑔
characterises the impact of a suboptimal 𝐽𝑔𝑘 on 𝛼𝑘.

The concentrate (𝜌𝐻𝑞
) and tails (𝜌𝑇 ) density measurements are

modelled as

𝜌𝐻𝑞
=

∑𝑚
𝑖=0

∑𝑛
𝑗=0 𝑀

𝑖,𝑗
𝐻𝑞

+ 𝜌

(

𝐴𝐻𝑞
𝐿𝐻𝑞

−
∑𝑚

𝑖=0
∑𝑛

𝑗=0

𝑀 𝑖,𝑗
𝐻𝑞

𝜌𝑖,𝑗

)

𝐴𝐻𝑞
𝐿𝐻𝑞

, (30a)

𝜌𝑇 =

∑𝑚
𝑖=0

∑𝑛
𝑗=0 𝑀

𝑖,𝑗
𝑓 + 𝜌

(

𝐴𝑓𝐿𝑓 −
∑𝑚

𝑖=0
∑𝑛

𝑗=0
𝑀 𝑖,𝑗

𝑓
𝜌𝑖,𝑗

)

𝐴𝑓𝐿𝑓
, (30b)

where 𝑓 denotes the final cell in the bank. The mass fraction desired
ineral in concentrate solids (𝐺0,0

𝐻𝑞
) and tailings solids (𝐺0,0

𝑇 ), i.e., the

grade of the concentrate and tailings, are
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𝐺0,0
𝐻𝑞

=
𝑀0,0

𝐻𝑞
∑𝑚

𝑖=0
∑𝑛

𝑗=0 𝑀
𝑖,𝑗
𝐻𝑞

, (31a)

𝐺0,0
𝑇 =

𝑀0,0
𝑇 ,𝑓

∑𝑚
𝑖=0

∑𝑛
𝑗=0 𝑀

𝑖,𝑗
𝑓

. (31b)

4.2. Observability analysis

4.2.1. Existing analysis
Oosthuizen (2023) performed an observability analysis on the state-

space model given by (18) and found that the model states

𝐱1 =
[

𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
, 𝐿𝑘, 𝑀 𝑖,𝑗

𝐻𝑞
, 𝑀 𝑖,𝑗

𝑘

]𝑇
, (32)

and the parameters

𝐩1 =

[

𝛼𝑂 𝑆𝑘
, 𝐶𝑃 𝐵 , 𝐶𝑣𝑘 , 𝐷𝑂 𝑆𝑘

, 𝐾 𝑖,𝑗 , 𝐾0,𝛼𝐽𝑔𝑘
,

𝐾𝛼ℎ𝑓
, 𝐾𝐵 𝑆𝜆

]𝑇
,

(33)

are nonlinearly observable and identifiable given the inputs

𝐮1 =
[

𝐽𝑔𝑘 , 𝑄𝐻 , 𝑣𝑎,𝑘
]𝑇

, (34)

and output

𝐲1 =
[

𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
, 𝐿𝑘, 𝐺0,0

𝐻𝑞
, 𝐺0,0

𝑇 , 𝐶𝑠,𝐻𝑞
, 𝐶𝑠,𝑇

]𝑇
. (35)

All parameters in Table 3 that are not in 𝐩1 in (33) are assumed
to be known constants. Note that 𝐾𝛼𝐽𝑔

was assumed to be a known
onstant as it was unidentifiable with the given model structure and
vailable measurements. The value for 𝐾𝐵 𝑆𝐽𝑔

was also assumed to
e a known constant as it would require 𝐽𝑔𝑘 input excitation to be
bservable. In Venter et al. (2022) 𝐾𝐵 𝑆𝐽𝑔

is shown to have very low
ensitivity relative to 𝐾𝐵 𝑆𝜆

and 𝐷𝑂 𝑆𝑘
, making its exact value less

mportant. This assumption ensures the identifiability of 𝐷𝑂 𝑆𝑘
for each

ell without requiring input excitation. Since all states and parameters
re observable for this model, it should theoretically be possible to
evelop an online observer to estimate 𝐱1 and 𝐩1.

4.2.2. Concentrate grade measurements
Oosthuizen et al. (2021) and Oosthuizen (2023) assume that on-

ine compositional analyses of the desired mineral are available for
he feed, concentrate and tailings. Removing the concentrate grade
easurements for both concentrate streams of the model yields a

ank deficiency of 2 with all four 𝑀 𝑖,𝑗
𝐻𝑞

(assuming two mineral species
nd two concentrate tanks) as the possibly unobservable variables.
irst-order input excitation (see Section 2.1.2) could not make 𝑀 𝑖,𝑗

𝐻𝑞
bservable.

It was found that, at the very least, a combined concentrate grade
measurement

𝐺0,0
𝐶 ,𝑡 =

∑2
𝑞=1 𝑄𝐻𝑞

𝐶0,0
𝐻𝑞

∑2
𝑞=1 𝑄𝐻𝑞

(

𝐶0,0
𝐻𝑞

+ 𝐶1,0
𝐻𝑞

) , (36)

is required for full observability and identifiability of 𝐱1 and 𝐩1, with
he output vector

𝐲2 =
[

𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
, 𝐿𝑘, 𝐺0,0

𝐶 ,𝑡, 𝐺0,0
𝑇 , 𝜌𝐻𝑞

, 𝜌𝑇
]𝑇

. (37)

For the vectors 𝐱1, 𝐲2, 𝐩1 and 𝐮1 for the seven cells (𝑘 ∈ {1, 2,… , 7}),
two mineral species and one class (𝑖 ∈ {0, 1} and 𝑗 = 0) and two
concentrate tanks (𝑞 ∈ {1, 2}), there are 41 states and 33 parameters
to be estimated from 28 measurements and 16 MVs. The observability
matrix rank results are summarised in Table 4. Table 4 shows that NOIC
as per (3) is fulfilled only if the combined concentrate measurement in
36) is available. The model was linearised at steady-state and the LOIC
as evaluated. Unfortunately, the LOIC as per (2) was not fulfilled. As
7 
Table 4
Observability analysis results.
𝐿𝑖

𝑓 𝑔 order With 𝐺0,0
𝐶 ,𝑡 Without 𝐺0,0

𝐶 ,𝑡
r ank (d) 𝑟𝑑 r ank (d) 𝑟𝑑

𝑖 = 0 28 46 27 47
𝑖 = 1 56 18 54 20
𝑖 = 2 73 1 71 3
𝑖 = 3 74 0 72 2
𝑖 = 4 74 0 72 2

the model is not observable at steady-state, it indicates that the system
requires perturbation for the states and parameters to be observable.
The more perturbation visible in the output, the quicker the estimator
should be able to converge to a solution. This is not ideal in a practical
sense as perturbations around steady-state operation are not ideal.

Even if there is sufficient excitation and movement in the outputs,
the results in Table 4 show that state and parameter estimation of the

odel in Section 4.1 is not possible without online compositional mea-
surements of the concentrate from the bank sampled at a sufficiently
high rate.

It is unlikely that feed-back model-based control that accounts for
he recovery of different mineral species, as is desirable for flotation
rade and recovery optimisation (Oosthuizen et al., 2017; Quintanilla
t al., 2021a; Steyn and Sandrock, 2021; Oosthuizen, 2023), can suc-

ceed without compositional measurements.

5. Reduced model

Given the available measurements in Section 3.2 and the absence of
concentrate stream compositional assays (Section 3.3), synthesising the
necessary 𝐺0,0

𝐶 ,𝑡 and 𝐺0,0
𝑇 at a reasonable frequency for state estimation

is not possible. Therefore, the implementation of an MHE based on the
full model described in Section 4.1 is not feasible. Instead, a reduced
model is developed that is observable with the available measurements.

5.1. Model summary

The first two cells in the bank are the most instrumented with online
𝑔𝑘 data and their concentrates are combined into a single concentrate

tank. Furthermore, Steyn and Sandrock (2021) report that the first two
cells alone achieve 61 % recovery, while the total recovery of the bank
is around 64 %. This makes the first two cells a natural subsystem for a
reduced model.

All solids mass balance related equations (flotation, entrainment,
component balances etc..) in the Oosthuizen (2023) model are removed,
as their inclusion requires compositional measurements. In (23a) of the
riginal model, the lumped parameter 𝑘1 only accounts for the water
ecovery. However, in the reduced model, without the solid recovery
echanisms, an equation for water and solids recovery is required. The

ame form as (23a) is assumed, but with a different parameter (𝑘𝑚) to
account for the solids recovery as well. Thus, 𝑄𝐶𝑘

is given by

𝑄𝐶𝑘

𝐴𝑘
≈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

6.81𝐽 2
𝑔𝑘

𝑘𝑚𝐷2
𝐵 𝐹𝑘

(

1 − 𝛼𝑘
)

𝛼𝑘 0 < 𝛼𝑘 < 0.5

6.81𝐽 2
𝑔𝑘

4𝑘𝑚𝐷2
𝐵 𝐹𝑘

𝛼𝑘 ≥ 0.5

. (38)

The remaining equations for the reduced model are summarised in
Table 5.

Removing the solids mass balance equations also necessitates re-
moving the 𝜌𝑇 and 𝜌𝐻𝑞

in (30) from the set of available measurements.
This prevents the estimator from using any dynamic information con-
tained in these measurements that could contribute to better estimation
results. Including the 𝜌 measurement in a meaningful way requires
𝐻1
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Table 5
Equations for the reduced model.

Unit Description Equation

States

𝛼𝑘 – Air recovery
d𝛼𝑘
d𝑡

=
𝐾𝛼𝐽𝑔

(

𝐽𝑔𝑘 −𝐾0,𝛼𝐽𝑔𝑘
−𝐾𝛼ℎ𝑓

ℎ𝑓𝑘

)2
+ 𝛼𝑂 𝑆𝑘

− 𝛼𝑘

𝜆air𝑘
(18a)

𝐷𝐵 𝐹𝑘
mm Froth bubble size

d𝐷𝐵 𝐹𝑘

d𝑡
=

𝐾𝐵 𝑆𝐽𝑔
𝐽𝑔𝑘 +𝐾𝐵 𝑆𝜆

𝜆air𝑘 +𝐷𝑂 𝑆𝑘
−𝐷𝐵 𝐹𝑘

𝜆air𝑘
(18b)

𝐿𝐻𝑞
m Hopper level

d𝐿𝐻𝑞

d𝑡
=

( 𝑛
∑

𝑘=𝑚
𝑄𝐶𝑘

−𝑄𝐻𝑞

)

∕𝐴𝐻𝑞
(18c)

𝐿𝑘 m Cell level
d𝐿𝑘

d𝑡
=
(

𝑄𝐹𝑘
−𝑄𝑇𝑘 −𝑄𝐶𝑘

)

∕𝐴𝑘 (18d)

Auxiliary variables

ℎ𝑓𝑘 mm Froth height ℎ𝑓𝑘 = 1000(𝐻cell − 𝐿𝑘) (20a)

𝜆air𝑘 s Froth residence time 𝜆air𝑘 =
ℎ𝑓𝑘

𝐽𝑔𝑘
(20b)

𝑄𝐶𝑘
m3 h−1 Concentrate flow-rate

𝑄𝐶𝑘

𝐴𝑘
≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

6.81𝐽 2
𝑔𝑘

𝑘𝑚𝐷2
𝐵 𝐹𝑘

(

1 − 𝛼𝑘
)

𝛼𝑘 0 < 𝛼𝑘 < 0.5

6.81𝐽 2
𝑔𝑘

4𝑘𝑚𝐷2
𝐵 𝐹𝑘

𝛼𝑘 ≥ 0.5
(38)

𝑄𝑇𝑘 m3 h−1 Tank outlet flow-rate 𝑄𝑇𝑘 = 𝑣𝑎,𝑘𝐶𝑣𝑘

√

𝐿𝑘 − 𝐿𝑘+1 + 𝛥ℎ𝑘
(21)
w
t
t
t
s
w
i
i
f
e

m

at least one additional state to be added to track the percentage of
he total solids in the concentrate hopper and at least one estimated
arameter that quantifies the amount of solids recovered with the
alculated 𝑄𝑤𝑘

in the form

𝑄𝐶𝑘
= (1 + 𝑘𝑠𝑜𝑙)𝑄𝑤𝑘

. (39)

While initial observability analysis showed that such a model reduction
is observable, estimation results showed no improvement over the re-
uced model as summarised in Table 5. The addition of two additional
tates and only a single, rather noisy, measurement likely limits the

amount of information possibly gained from this approach. As such,
the reduced model in Table 5 was used.

Note, the purpose of the reduced model is for model-based process
ontrol. As long as the reduced model is capable of predicting the trends
f the variables over the short-term, a feedback controller can be built
o control the process. Although the model assumes the feed particle
ize distribution, chemical reagent dosages, and feed mineralogical
omposition remain constant, at least in the short term, a controller in
losed-loop with an estimator can reject these disturbances if variable
esponse directions are predicted correctly.

5.2. Observability results

The reduced model variable vectors used in the observability anal-
ysis are

𝐱3 =
[

𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
, 𝐿𝑘

]𝑇
, (40a)

3 =
[

𝛼𝑂 𝑆𝑘
, 𝐶𝑣𝑘 , 𝐷𝑂 𝑆𝑘

, 𝐾0,𝛼𝐽𝑔𝑘
, 𝐾𝛼ℎ𝑓

, 𝐾𝐵 𝑆𝜆
, 𝑘𝑚

]𝑇
, (40b)

3 =
[

𝐽𝑔𝑘 , 𝑄𝐻𝑞
, 𝑣𝑎,𝑘

]𝑇
, (40c)

𝐲3 =
[

𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
, 𝐿𝑘

]𝑇
. (40d)

The vectors are for two cells (𝑘 ∈ 1, 2) and one concentrate tank (𝑞 ∈ 1),
resulting in 7 states, 11 estimated parameters, 7 measurements and
5 inputs. Note that 𝐾𝐵 𝑆𝐽𝑔

is assumed to be a known constant. The
observability analysis results for the reduced model are summarised in
Table 6. This includes the identification of the possibly unidentifiable
parameters (PUPs), determined using the procedure in Section 2.1.3.
 l

8 
Table 6
Observability results for the reduced model.
𝐿𝑖

𝑓 𝑔 order d rank 𝑟𝑑 PUPs #PUPs

0 7 11 𝛼𝑂 𝑆𝑘
, 𝐶𝑣𝑘 , 𝐷𝑂 𝑆𝑘

, 𝐾0,𝛼𝐽𝑔𝑘
,

𝐾𝛼ℎ𝑓
, 𝐾𝐵 𝑆𝜆

, 𝑘𝑚

11

1 14 4 𝛼𝑂 𝑆𝑘
, 𝐷𝑂 𝑆𝑘

, 𝐾0,𝛼𝐽𝑔𝑘
, 𝐾𝛼ℎ𝑓

,
𝐾𝐵 𝑆𝜆

8

2 17 1 𝛼𝑂 𝑆𝑘
, 𝐾0,𝛼𝐽𝑔𝑘

, 𝐾𝛼ℎ𝑓
5

3 18 0 – 0

Table 6 shows that NOIC as per (3) is fulfilled for the reduced model.
If the model is linearised, the LOIC as per (2) is not fulfilled with a
rank deficiency of 4. Therefore, the states and parameters can only be
estimated if the system is sufficiently perturbed.

6. MHE setup

This section describes how the MHE described in (10) is configured
to estimate the states and parameters of the reduced model in Section 5
from industrial plant data discussed in Section 3.2.

6.1. Data and initialisation

A 12 h section of data containing some step changes in the 𝐽𝑔𝑘 values
as obtained from the plant. The step changes are meant to ensure

hat there is a large enough degree of perturbation in the output for
he states and parameters to be observable. The ability of the estimator
o converge to the correct state and parameter will deteriorate as the
ystem returns to steady-state after a step in the input. An exponentially
eighted moving average filter was used to reduce the amount of noise

n the data. A smoothing factor value of 0.8 was used (a higher value
mplies less memory of the previous measurement). Given the relatively
ast sampling rate for most variables, the lag introduced by the filter is
xpected to be minimal.

Initial parameter estimates for 𝐩3 were obtained by fitting the
odels of 𝛼𝑘, 𝐷𝐵 𝐹𝑘 and 𝑄𝑇𝑘 ((18a), (21) and (18b), with the derivatives

set equal to zero) to steady-state datapoints manually sampled from the
arger dataset.
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6.2. Model and constraints

The MHE in (10) was implemented with the vectors in (40). The
tate differential equations in Table 5 ((18a) to (18d)) represent 𝑓 in
10) and the function 𝑔 is the same as 𝐲3 in (40d).

The constraint function ℎ consists of state and parameter constraints
and additional algebraic constraints. State constraints were determined
y the physical limits of the process and observed operating ranges. 𝛼𝑘
as constrained between 0 and 1.2 (due to the observed measurements

exceeding 1), 𝐷𝐵 𝐹𝑘 was constrained between 0 mm and 120 mm (based
n operating range) and the levels 𝐿𝐻1

and 𝐿𝑘 were constrained to
he physical dimensions of the cells. The lower bound for 𝐿𝑘 was set

such that the estimated ℎ𝑓𝑘 could not exceed the normal operating
range determined by the plant operators. For the parameters, 𝛼𝑂 𝑆𝑘
was constrained to the same range as 𝛼𝑘. The remaining parameters
(𝐶𝑣𝑘 , 𝐷𝑂 𝑆𝑘

, 𝐾0,𝛼𝐽𝑔𝑘
, 𝐾𝛼ℎ𝑓

, 𝐾𝐵 𝑆𝜆
and 𝑘𝑚) were constrained around their

initially fitted values through trial and error to the largest allowed
range that still resulted in reasonable estimates. 𝐾𝛼ℎ𝑓

, 𝐾0,𝛼𝐽𝑔𝑘
, 𝐾𝐵 𝑆𝜆

and 𝑘𝑚 were also constrained to be positive based on the physical
meaning of the parameters and observed trends in Oosthuizen (2023).
Additionally, the algebraic inequality constraint

𝐾𝛼𝐽𝑔

(

𝐽𝑔𝑘 −𝐾0,𝛼𝐽𝑔𝑘
−𝐾𝛼ℎ𝑓

ℎ𝑓𝑘

)2
+ 𝛼𝑂 𝑆𝑘

≥ 0, (41)

was placed on the estimated steady-state 𝛼𝑘 in (18a). This ensures that
the combined effect of the estimated parameters does not result in
physically unrealistic steady-state 𝛼𝑘 model predictions. This signifi-
cantly improved the parameter estimation performance by restricting
the possible solution space.

6.3. Sampling time and horizon

The plant has per-cell froth residence times of between 20 s and 65 s
that increase down the bank. The pulp residence time is approximately
300 s per cell. Data at the plant is available at a sampling rate of 10 s.
This sampling rate is also used for the MHE. In terms of the estimation
horizon, a shorter horizon allows for faster tracking of changing param-
eters, while a longer horizon lends more noise rejection (Oosthuizen,
2023). A horizon of 𝑁 = 20 was used.

6.4. Tuning

There are various guidelines and heuristic principles available to
elect the weighting matrices for MPC (Alhajeri and Soroush, 2020;

Garriga and Soroush, 2010; Yamashita et al., 2023). Since MPC and
HE are similar in terms of the optimisation problem shown in (10),

these principles are applicable to MHE. Unfortunately, since the ob-
jective function, the process, the requirements and aims vary for each
problem, there is no formal process to select weighting matrices for
MPC or MHE. Therefore, the choice of weighting matrices for the
MHE implementation in this paper relied on heuristics and knowledge
egarding the expected uncertainties in the data. (Although there are
xamples of data-driven MHEs (Nejatbakhsh Esfahani et al., 2023;

Wang et al., 2024), this was not considered in this study.)
The weighting matrices are specified in Table 7 as a relative weight-

ing value for each matrix and an operating range. The eventual diag-
onal matrix entry is determined by dividing the 𝐏 entry in Table 7 by
he corresponding Range value squared. This allows for the specification
f the 𝐏 values based on the relative uncertainties and importance of
he variables and parameters without needing to constantly account for
he differences in magnitude. The squared ranges are used as all the
bjective function terms in (10) are quadratic.

The operating ranges for the states and parameters were estimated
from plant data and kept constant. The 𝐏𝑣 values were initially set
to low values (especially for the noisy 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 measurements)
and increased until a further increase led to poor noise rejection or
9 
Table 7
MHE tuning parameters.

Variable Range 𝐏𝑥 𝐏𝑝 𝐏𝑣 𝐏𝑤

𝛼𝑘 0.1 0.001 – 0.01 1 × 104
𝐷𝐵 𝐹𝑘

20 0.0001 – 0.1 1 × 107
𝐿𝐻𝑞

0.1 1 – 100 1 × 105
𝐿𝑘 0.1 1 – 100 1 × 105
𝛼𝑂 𝑆𝑘

0.2 – 1 – –
𝐷𝑂 𝑆𝑘

20 – 10 – –
𝐶𝑣𝑘 1000 – 10 – –
𝐾0,𝛼𝐽𝑔𝑘

1 – 1 – –
𝐾𝛼ℎ𝑓

0.001 – 0.1 – –
𝐾𝐵 𝑆𝜆

0.1 – 100 – –
𝑘𝑚 500 – 0.01 – –

Fig. 4. State estimates for 𝛼𝑘.

significant increases in the parameter estimate variance. 𝐏𝑝 values
for the 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 models ((18a) and (18b)) were set to lower
alues as these models are reliant on empirical parameters with lim-
ted validity ranges, but were increased if the parameter estimates
isplayed significant variance. The 𝐏𝑥 and 𝐏𝑤 values were tuned based
n the prediction performance discussed in Section 7.2. High values

for these weights mean that the model parameters will be changed
to account for disturbances, rather than rejecting deviation of the
model from the measurements as measurement noise. While this causes
increased parameter and state estimate variance and reduced noise
rejection, it is necessary to ensure that model predictions can track
uture measurements given unmodelled and unmeasured disturbances.

For this paper, weighting changes by a factor smaller than between
wo and five did not result in significant changes to the estimation and
rediction performance. A further increase or decrease in weighting
esulted in a rapid deterioration in estimation performance.

7. Estimation and prediction performance

7.1. Estimation results

This section presents the MHE estimation results from industrial
lant data. The state estimates 𝐱3 in (40a) compared to the measure-

ments 𝐲3 in (40d) are shown in Figs. 4 to 6. The estimation errors
according to (11) and (14) are shown in Table 8. The error metrics
in Table 8 were calculated using the measured values of the states as
the ‘‘true’’ values.

Considering the large uncertainty in the 𝛼𝑘 measurements and like-
ihood of non-uniform overflows, the 𝛼𝑘 estimates in Fig. 4 are reason-

able. The S/U ratios for 𝛼𝑘 in Table 8 are close to 1 which means that
the systematic error is close in size to the unsystematic error. While
this could indicate potential issues in the state estimation, the state
estimates are relatively well-centred in the measured values and follow
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Fig. 5. State estimates for 𝐷𝐵 𝐹𝑘
.

Fig. 6. State estimates for 𝐿𝐻1
and 𝐿𝑘.

the large obvious dynamic changes quite well. The large S/U value can
in part be explained by the tendency of the state estimates to vary
much less than the measurements, rejecting some actual variance in
he measured values as measurement noise. Deficiency in the modelling

of 𝛼𝑘 and/or 𝑄𝐶𝑘
may force estimates further from the measurements

in order to better fit the level measurements and volume balances.
Furthermore, the estimated dynamics lag slightly behind the measured
dynamics. This could indicate that the model parameters are being
adjusted to account for unmodelled factors causing the movement in
𝛼𝑘.

The 𝐷𝐵 𝐹𝑘 estimates shown in Fig. 5 appear to correlate relatively
well with the observed dynamics. However, as seen in Table 8, the S/U
atios for the 𝐷𝐵 𝐹𝑘 models are also close to 1 which implies inaccurate
stimation. Due to the longer 𝐷𝐵 𝐹𝑘 sampling time (see Section 3.2.4),

it is more difficult to determine which 𝐷𝐵 𝐹𝑘 movement is purely due
to measurement noise rather than actual dynamics. The interpolation
required for resampling also created many additional datapoints which
would skew the error metrics. This would also increase the S/U ratio.
As 𝐷𝐵 𝐹𝑘 plays an integral role in the 𝑄𝐶𝑘

model, future investigation
into the measurements and model is warranted.

The 𝐿𝐻1
and 𝐿𝑘 state estimates in Fig. 6 followed the measure-

ments quite closely throughout, resulting in low estimation RMSE
 t

10 
Table 8
Estimation and prediction error metrics.

State Estimation Prediction

RMSE S/U RMSE S/U

𝛼1 0.10 0.70 0.11 0.65
𝛼2 0.10 1.05 0.11 0.99
𝐷𝐵 𝐹1

8.42 0.76 8.70 0.75
𝐷𝐵 𝐹2

12.81 1.18 13.65 1.22
𝐿𝐻1

0.006 0.10 0.05 0.11
𝐿1 0.002 0.11 0.06 0.18
𝐿2 0.007 0.14 0.03 0.15

Fig. 7. Estimated parameter values over the entire dataset. All values were offset from
heir actual values. Note the correlation between large parameter changes and 𝐽𝑔𝑘 steps.

values shown in Table 8 for these states. As these measurements are
expected to be relatively reliable, this was deemed acceptable. Due
to the measurement uncertainty of 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 , ‘‘good’’ estimates of
these states are expected to reject a considerable amount of variance
as measurement noise.

Given the reasonable state estimation results, the parameter esti-
mates in Fig. 7 are expected to be realistic. The parameter estimates
ary considerably more and less gradually around step changes in

the operating conditions than when the inputs are kept constant. The
hanges in 𝛼𝑂 𝑆𝑘

, 𝐾𝛼ℎ𝑓
and 𝐾0,𝛼𝐽𝑔𝑘

, in particular, are correlated with
he 𝐽𝑔𝑘 steps shown in Fig. 8. This indicates that the 𝛼𝑘 model does not
xtrapolate very well to different operating conditions. The estimates
or 𝐷𝑂 𝑆𝑘

and 𝐾𝐵 𝑆𝜆
were significantly more consistent. This indicates

hat 𝐷 captures the investigated operating range reasonably well.
𝐵 𝐹𝑘
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Fig. 8. FT1 state predictions initialised every 10 min. 𝐿1 and 𝐽𝑔1 were offset from their actual values to protect sensitive operational information.
0

v
e

i
t

For the most part, the 𝐶𝑣𝑘 estimates remain within a relatively
narrow band, as would be expected from the valve characteristics. How-
ever, a large sudden spike in 𝐿2 around 06:00 in Fig. 6 is accompanied
y a sudden dip in both 𝐶𝑣𝑘 estimates.

As 𝑘𝑚 in (38) represents a combination of recovery mechanisms, a
ery small weight was assigned to the parameter in Table 7. Therefore,

it is to be expected that this single parameter has a large variance, as
een in Fig. 7.

7.2. Prediction results

While the state and parameter estimates are mostly reasonable, the
predictive accuracy of the model must also be considered. Not only will
this evaluate the accuracy of the model and parameter estimates, but it

ill also show the feasibility of using the model for feedback control.
An MPC horizon spanning 10 min was selected. Oosthuizen (2023)

mplemented an MPC with a 5 min horizon and showed good control
esults. As the current plant dynamics are slower, a longer horizon was
hosen. For the model prediction to be deemed sufficiently accurate
or feedback control, it should be able to predict at least directional
hanges over this horizon. Any longer time horizons investigated typi-
ally resulted in worse prediction performance towards the end of the
orizon (especially regarding the 𝐿𝑘 predictions which already diverge
rom the measured values after 5 min in some intervals). However, any
ontrol actions for the later horizon sections would be recalculated at
very time step using an updated model, making the initial prediction
ccuracy much more important.

The prediction accuracy over the entire section of data was tested by
nitialising a simulator for every 10 min section of data using the state
nd parameter estimates at the start of that section. The states were
imulated over the rest of the section using the plant input data. No
urther state or parameter updates were made over the course of the

simulation and the simulator did not have access to 𝐰 estimates. The
𝑘
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prediction results are shown in Figs. 8, 9 and 10. The error metrics as
in (11) and (14) for the various predictions are given in Table 8.

First consider the 𝐿𝑘 predictions in Figs. 8 and 9. The predictions are
good over large sections, deviating from the measured 𝐿𝑘 by less than
.05 m over most of the data-set. However, the prediction sometimes

diverges substantially from the measured values. Given the importance
of 𝐿𝑘 in the rest of the model equations, this will have a cascading
effect on the rest of the model in such sections.

The 𝐽𝑔𝑘 steps have an impact on 𝐷𝐵 𝐹1 and the predictions in Fig. 8
generally follow the correct trend (increasing or decreasing). However,
the magnitude of the changes is often underestimated. See for example
the increase in 𝐽𝑔1 around 08:00 in Fig. 8, for which a clear increase
in 𝐷𝐵 𝐹1 is predicted, but the magnitude is underestimated. The RMSE
alues in Table 8 show that there is little difference between the
stimated and predicted 𝐷𝐵 𝐹𝑘 accuracy relative to the measured values.

The prediction quality of the 𝛼𝑘 values in Figs. 8 and 9 are incon-
sistent. For example, the 𝛼2 predictions between 00:30 and 06:30 in
Fig. 9 are good and at least capture the directionality of 𝛼2 changes.
The large decrease in 𝛼2 at 06:00 which corresponds to the decrease
n 𝐽𝑔2 is predicted in the proper direction, although the magnitude of
he change is overestimated. In contrast, the effect of a step change

in 𝐽𝑔1 at 08:00 in Fig. 8 is predicted in the wrong direction, which
indicates that the location of the optimal 𝐽𝑔𝑘 value is on the wrong side
of the measured 𝐽𝑔𝑘 . Incorrect 𝛼𝑘 predictions will result in incorrect 𝑄𝐶𝑘
values, which have a cascading effect throughout the model. The 𝛼𝑘
model parameter estimates in Fig. 7 vary significantly. While changes
in the plant dynamics are certainly expected due to changing frother
dosages and other operating conditions, it is also quite possible that
the parameter estimates are compensating too much for unmodelled
dynamics. The S/U ratios for the 𝛼𝑘 predictions in Table 8 are somewhat
higher than desired, which aligns with the observed prediction errors.
Given the parabolic nature of the optimal 𝐽 value, the difficulty in
𝑔𝑘
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Fig. 9. FT2 state predictions initialised every 10 min. 𝐿2 and 𝐽𝑔2 were offset from their actual values to protect sensitive operational information.
Fig. 10. 𝐿𝐻𝑞
predictions, initialised every 10 min and the input 𝑄𝐻1

along with the
predicted ∑

𝑄𝐶𝑘
.

estimating the correct optimal 𝐽𝑔𝑘 with few dynamics, large uncertainty
in the 𝛼𝑘 measurements and the simplified model is not unexpected.

An issue observed in both 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 model predictions is that
ccasionally there are clear changes in the states, but the model pre-

dicts no change, e.g., in the last 30 min of 𝐷𝐵 𝐹1 in Fig. 8. This results in
the disjointed horizontal lines observed in the predictions. This is most
likely due to some unmodelled factors that influence 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 and
the only tracking then achieved between horizons is due to the update
of the state estimate and prediction model reinitialisation.

It is relatively easy to evaluate the accuracy of the 𝛼𝑘, 𝐷𝐵 𝐹𝑘 , 𝐿𝐻𝑞
and

𝐿𝑘 models by comparing the predicted values to the measured values.
However, without measurements of 𝑄𝐶𝑘

the validity of (38) has to be
evaluated based on the 𝐿 predictions, shown in Fig. 10.
𝐻1

12 
The model of 𝐿𝐻1
predicts very well on sections shown in Fig. 10

where the gradient of 𝐿𝐻1
is relatively constant. The model even

manages to capture the change in slope around the peak of 𝐿𝐻1
at

06:00. However, the predictions for a drastic change in gradient of 𝐿𝐻1
are less accurate (e.g., at around 08:00) and the 𝐿𝐻1

prediction goes in
the opposite direction from the measured values. Where the S/U ratio
in Table 8 for 𝛼𝑘 and 𝐷𝐵 𝐹𝑘 stays roughly the same and decreases for 𝐿𝑘,
the RMSEs and S/U values increase sharply for 𝐿𝐻1

from estimation to
prediction.

8. Conclusion and recommendations

This study expanded on the work of Oosthuizen (2023) in an
attempt to validate the proposed model on dynamic plant data. This
included an expanded observability analysis, model reduction, the
development of an MHE using the reduced model and validating the
estimation performance on industrial data.

• The observability analysis showed that if online compositional
measurements are available, state and parameter estimation is
possible for the nonlinear model in the presence of sufficient
system perturbation. However, observability is lost at steady-state
operation.

• The lack of online compositional analysers, especially for the
concentrate grade, severely limits the potential scope of the
model and parameter estimation. Shiftly assays are unsuitable
substitutes for these measurements due to the loss of dynamic in-
formation, especially since there are no concentrate grade assays.
A reduced model is developed that does not require compositional
measurements.
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• The reduced model is observable in the nonlinear sense, but
observability is lost at steady-state operation. Therefore, the sys-
tem needs to be perturbed to estimate the model states and
parameters. Also, the reduced model requires several simplifying
assumptions that may reduce the model predictive capability and
range considerably.

• The reduced model was evaluated using step-test data from an
industrial plant. The steps provide the necessary perturbation to
meet the observability criteria. Slightly lagging state estimates
and considerable variance in the parameter estimates indicate
that the parameter estimation compensates for a considerable
amount of unmodelled dynamics or unmeasured disturbances.

• The model predictions over a 10 min horizon contain sections
where the dynamic changes of the states are captured reasonably
well and sections where the model diverges from the observed
values. Eliminating the uncertainty in measurements (especially
𝛼𝑘) and improving parameter estimation can improve prediction
accuracy.

• The plant under consideration can be regarded as a
well-instrumented plant. The results indicate that it is not a trivial
task to do parameter estimation using the available measure-
ments, but that relatively simple semi-empirical models show
potential for long-term model-based supervisory control.

Accurate and reliable online measurements remain essential for
the success of any model-based control strategy. Online compositional
measurements are relatively expensive (Brooks and Koorts, 2017), but
his expense is worthwhile when compared to the benefits it provides
y enabling the implementation of model-based control strategies.
here is also potential for improving the state and parameter estima-

tion through the use of alternative estimation strategies such as dual
estimation (Olivier et al., 2012).

Furthermore, refining the current model or making use of alterna-
ive dynamic models should be investigated in order to better capture
he system dynamics. A side-by-side comparison of the reduced model
ith parameter estimation and a more complex but static model such
s found in Brooks and Koorts (2017) or Quintanilla et al. (2023) on the
ame plant data could also provide valuable insights into the value of
he proposed approach, given the reliance of the parameter estimation
n available measurements. In the absence of concentrate grade mea-
urements, data-driven methods could potentially be used to augment
undamental and semi-empirical models to provide better modelling
esults. Ways of incorporating additional measurements, such as the
oncentrate density should also be investigated.
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Appendix. Example system

The state and parameter values for the current plant are not pub-
ished as they are protected for commercial reasons. To allow readers to

experiment with the model as described in Section 4.1, example values
are given in Tables A.9 and A.10. These values represent the steady-
state operation of the system shown in Fig. A.11 consisting of two tanks
(𝑘 = 2), one hopper (𝑞 = 1), two mineral species (𝑖 ∈ {0, 1}) and one
lass (𝑗 = 1).

The system in Fig. A.11 can be modelled in state-space form:

𝐱̇(𝑡) = 𝐟 (𝑡, 𝐱,𝐮,𝐩) (A.1)

𝐲(𝑡) = 𝐠(𝑡, 𝐱,𝐮,𝐩). (A.2)

The variables are:

• Process states (see (18)):

𝐱 =

[

𝛼1, 𝛼2, 𝐷𝐵 𝐹1 , 𝐷𝐵 𝐹2 , 𝐿𝐻1
, 𝐿1, 𝐿2,

𝑀0,0
1 , 𝑀1,0

1 , 𝑀0,0
2 , 𝑀1,0

2 , 𝑀0,0
𝐻1

, 𝑀1,0
𝐻1

]𝑇
.

• Outputs (see (30) and (31)):
𝐲 =

[

𝛼1, 𝛼2, 𝐷𝐵 𝐹1 , 𝐷𝐵 𝐹2 , 𝐿𝐻1
, 𝐿1, 𝐿2, 𝜌𝐻1

, 𝜌𝑇 , 𝐺0,0
𝐻 , 𝐺0,0

𝑇

]𝑇
.

• Inputs: 𝐮 =
[

𝐽𝑔1 , 𝐽𝑔2 , 𝑄𝐹1 , 𝑄𝐻1
, 𝑣𝑎1 , 𝑣𝑎2

]𝑇
.

• Parameters 𝐩 as listed in Table A.9.
• Exogenous variables as listed in Table A.10.

The auxiliary variables are:

• Froth height ℎ𝑓𝑘 and froth residence time 𝜆𝑎𝑖𝑟𝑘 (see (20)).
• Tailings flow rate 𝑄𝑇𝑘 (see (21)).
• Concentrate flow rate 𝑄𝐶𝑘

(see (22)).
• Mass concentrate flow-rate 𝑀̇ 𝑖,𝑗

𝐶𝑘
(see (24)).

The exogenous variables in Table A.10 can be varied to allow for dis-
turbances to the system. It is assumed the tailings of the 2-tank system
flow into a third tank with a measured pulp level 𝐿3. The initial mass
lowrates, 𝑀̇ 𝑖,𝑗

𝐹1
for both species are given in Table A.10. The reduced

model in Table 5 can easily be simulated by selecting the relevant
parameters, variable values and equations. Regulatory controllers are
required if any steps are applied to the inputs to maintain process
tability.

Interested readers can contact the authors for a copy of the code.

Fig. A.11. An example 2-tank system.
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Table A.9
Parameter values.

Symbol Unit Value

Parameters

𝐴𝑘 m2 8.82
𝐴𝐻1

m2 0.2
𝛼𝑂 𝑆1

– 0.410
𝛼𝑂 𝑆2

– 0.269
𝐶𝑃 𝐵 – 50
𝐶𝑣𝑘 m2.5 h−1 2500
𝛥ℎ𝑘

m 0.5
𝐷𝑂 𝑆1

mm 9.79
𝐷𝑂 𝑆2

mm 6.35
𝐷𝐵 𝑃𝑘

mm 0.6
𝑔 m s−2 9.81
𝐻cell m 1.4
𝑘𝑚 – 11 000
𝐾0,𝛼𝐽𝑔1

mm s−1 7.20
𝐾0,𝛼𝐽𝑔2

mm s−1 7.30
𝐾𝛼ℎ𝑓

s−1 0.01
𝐾𝛼𝐽𝑔

s2 mm−2 −0.0248
𝐾𝐵 𝑆𝐽𝑔

s 0.529
𝐾𝐵 𝑆𝜆

mm s−1 0.313
𝐾0,0 – 2.3
𝐾1,0 – 2.142 × 10−4
𝜇 Pa s 0.006
𝑃 𝑒 – 0.15
𝜌 k g m−3 1000
𝜌0,0𝑠 k g m−3 3000
𝜌1,0𝑠 k g m−3 2650

Table A.10
Input, exogenous variables and process state values for
steady-state operation.

Symbol Unit Value

Inputs

𝐽𝑔1 mm s−1 8.4
𝐽𝑔2 mm s−1 8.5
𝑄𝐹1

m3 h−1 730
𝑄𝐻1

m3 h−1 2.29
𝑣𝑎,1 – 0.413
𝑣𝑎,2 – 0.412

Exogenous variables
𝑑𝑝,max μm 232
𝑑𝑝,min μm 2.77
𝐺0,0

𝐹 – 0.017
𝐺1,0

𝐹1
– 0.983

𝐿3 m 1.295
𝑀̇0,0

𝐹1
k g h−1 7684

𝑀̇1,0
𝐹1

k g h−1 445 903
𝛷𝑠,𝐹1

k g m−3 621.35

Process states
𝛼1 – 0.410
𝛼2 – 0.269
𝐷𝐵 𝐹1

mm 18.47
𝐷𝐵 𝐹2

mm 14.93
𝐿𝐻1

m 0.168
𝐿1 m 1.292
𝐿2 m 1.294
𝑀0,0

1 kg 54.1
𝑀0,0

2 kg 29.5
𝑀1,0

1 kg 6942
𝑀1,0

2 kg 6998
𝑀0,0

𝐻1
kg 15.597

𝑀1,0
𝐻1

kg 5.436

Data availability

The data that has been used is confidential.
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