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ABSTRACT 
The mitochondrial genome of Dematophora necatrix is 121,350 base pairs in length with a GþC con-
tent of 30.19%. Phylogenetic analysis showed that D. necatrix grouped with other members of the 
Xylariaceae, with which its mitogenome also shares a broadly similar architecture and gene content. 
The D. necatrix mitogenome contains 14 protein-coding and 26 tRNA-encoding genes, as well as one 
copy each of the rnl, rns, rps3 and nat1 genes. However, as much as 80% of this genome is intronic or 
non-coding. This is likely due to expansions and rearrangements caused by the large number of group 
I introns and the homing endonucleases and reverse-transcriptases they encode. Our study thus pro-
vides a valuable foundation from which to explore the mitochondrion’s role in the biology of D. neca-
trix, and also serves as a resource for investigating the pathogen’s population biology and general 
ecology.
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Introduction

Dematophora necatrix Berl. ex Prill. 1904 (Ascomycota, 
Sordariomycetes, Xylariales, Xylariaceae), also known as 
Rosellinia necatrix, causes the destructive white root rot 
(WRR) disease of various plant species (Sawant et al. 2021). In 
avocado (Persea americana Mill.), D. necatrix hampers produc-
tion due to susceptibility of rootstocks to WRR (Figure 1A 
and 1B) (L�opez et al. 2008; van den Berg et al. 2018; 
Mart�ınez-Ferri et al. 2019). Severity of the disease is further 
compounded by the pathogen’s resistance to drought and 
various fungicides (P�erez-Jim�enez 2006; Pliego et al. 2009; 
Magagula et al. 2021). Consequently, D. necatrix remains a 
major concern in avocado-growing regions, globally (van den 
Berg et al. 2018; Zumaquero et al. 2019).

Effective strategies for curbing the pathogen’s establish-
ment and spread require detailed knowledge regarding its 
pathogenesis mechanisms, population biology and general 
ecology. As a result, whole genome sequences for several D. 
necatrix strains have been published (Shimizu et al. 2018; 
Chavarro-Carrero et al. 2024, including one obtained from a 
diseased avocado tree in South Africa (Wingfield et al. 2022). 
Despite the availability of these resources, an annotated 
assembly for the mitogenome of this fungus is not available. 
Therefore, the aim of the current study was to assemble and 

annotate the mitogenome for the South African strain of D. 
necatrix.

Materials and methods

Strain CMW50482 of D. necatrix was collected from a symp-
tomatic avocado tree in the Limpopo province (GPS coordi-
nates: 23�44’59.5"S 30�08’02.4"E) of South Africa (Wingfield 
et al. 2022). A specimen (voucher number CMW50482) was 
deposited in the culture collection of the Forestry and 
Agricultural Biotechnology Institute (University of Pretoria) 
(https://www.fabinet.up.ac.za/index.php/research-groups/fungal- 
culture-collections) curated by Dr Seonju Marincowitz (Seonju. 
Marincowitz@up.ac.za).

Whole genome shotgun sequences (251 bp paired-end 
reads) for strain CMW50482, which we previously generated 
using Illumina HiSeq (Wingfield et al. 2022), were used in this 
study. The mitogenome was assembled using NOVOPlasty 
v4.3.1 with default parameters (Dierckxsens et al. 2017). The 
de novo assembly was annotated using mitochondrial genetic 
code 4 and GeSeq - Annotation of Organellar Genomes tool 
(Tillich et al. 2017) with the following parameters: circular 
sequence, mitochondrial sequence source, 25% BLAST pro-
tein search identity and 85% identity for BLAST rRNA, tRNA 
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and DNA search, third party tRNA annotator ARAGORN 
v1.2.38 and tRNAScan-SE v2.0, and Annulohypoxylon stygium 
(NC_023117) as Refseq choice. We then used MFannot v1.0 
(Lang et al. 2023) and mitochondrial genetic code 4 to assess 
the gene predictions, while open reading frames (ORFs) and 
introns were verified using BLAST analyses (https://blast.ncbi. 
nlm.nih.gov) and the ExPASy translation tool (http://web. 
expasy.org/translate/).

Size and coding content of the D. necatrix mitogenome 
were compared to those assembled for other Xylariales species 
using data from GenBank (https://www.ncbi.nlm.nih.gov). Also, 
protein-coding genes typically found in fungal mitogenomes 
(Sandor et al. 2018) were subjected to maximum-likelihood 
(ML) phylogenetic analysis. Here, the inferred protein sequen-
ces for atp6,8,9, cox1,2,3, nad1,2,3,4,4L,5,6 and cob were used. 
Following alignment with the stand-alone version of MAFFT 
(–thread 10 –auto –reorder –adjustdirection), the sequences 
were concatenated using FASconCAT-G v1.04 (K€uck and Longo 
2014). The concatenated dataset consisted of our D. necatrix 
sequences, as well as those for 25 other filamentous 
Ascomycota for which relevant data were available in 
GenBank. Maximum Likelihood (ML) phylogenetic analysis was 
conducted with IQ-TREE 2 v2.2.2.6 (Minh et al. 2020) using the 
LG model (Le and Gascuel 2008), while MEGA v11.0 (Tamura 
et al. 2021) was used for Neighbor-Joining (NJ) phylogenetic 
analysis based on Poisson distances with rate uniformity 
among sites. In both cases, branch support was estimated 
using 1,000 bootstrap replicates.

Results

The D. necatrix mitogenome assembled as a circular DNA 
molecule consisting of 121,350 bp (Figure 2). The GþC 

content averaged at 30.19%, with mean base compositions 
for A, C, G, and T of 35.4%, 13.3%, 16.9%, and 34.4%, respect-
ively. The average coverage depth was 3622x (Figure S1).

The D. necatrix mitogenome contained the 14 expected 
protein-coding genes. These included genes encoding the 
cytochrome oxidase subunits of Complex IV, apocytochrome 
b of Complex III, NADH dehydrogenase subunits of Complex 
I and the ATP synthase subunits (Figures 2, S2A and S2B). 
The assembly also contained genes encoding ribosomal pro-
tein S3 (rps3) and N-acetyltransferase (nat1). In terms of RNA 
coding genes, the mitogenome contained the large and small 
subunit ribosomal RNA (rRNA) genes rnl and rns, respectively, 
as well as 26 transfer RNA (tRNA) genes that mostly clustered 
at two regions (Figures 2, S2B and S2C). The tRNA genes 
occurred as single copies, except for the tRNA-Arg (four cop-
ies) and tRNA-Val (two copies) and tRNA-Met genes (three 
copies) (Figures 2, S2D). A total of 22 introns were detected, 
of which two represented group II introns. The rest were 
group I introns and contained ORFs coding for homing endo-
nucleases or reverse-transcriptases (Table S1).

The ML an NJ phylogenies grouped D. necatrix with the 
Xylariales, where it was more closely related to members of the 
Xylariaceae (i.e. Nemania diffusa and Xylaria hypoxylon) than to 
taxa from other families (Figure 3). This close relationship was 
also evident from the syntenic nature of their mitogenomes 
(Figures S2B, S2C and SD). Like D. necatrix, the N. diffusa, 
Annulohypoxylon stygium, and Apiospora arundinis mitoge-
nomes also contained rps3 (albeit within the borders of rnl), 
while the N. diffusa and Pestalotiopsis fici mitogenomes also 
contained the nat1 gene. Additionally, most of the D. necatrix 
mitogenome was non-coding and/or represented by introns, 
which is similar to other Xylariales. These similarities were des-
pite gene losses in X. hypoxylon (Zhou et al. 2019) and A. 

Figure 1. Morphological observation of dematophora necatrix. Avocado tree roots colonized with D. necatrix, forming a white mycelial mass characteristic of the 
white root rot disease (a). Mycelial growth cultured on PDA medium at 25 �C for 2 weeks (B). Photos taken by raven wienk.

1208 M. A. VAN DER NEST ET AL.

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
http://web.expasy.org/translate/
http://web.expasy.org/translate/
https://www.ncbi.nlm.nih.gov
https://doi.org/10.1080/23802359.2024.2403411
https://doi.org/10.1080/23802359.2024.2403411
https://doi.org/10.1080/23802359.2024.2403411


arundinis (GenBank accession KY775582), and a large inversion 
in the N. diffusa mitogenome (Tang et al. 2020).

Discussion and conclusion

The D. necatrix mitogenome closely resembles those published 
for other members of the Xylariales (Deng et al. 2018; Zhou 
et al. 2019; Tang et al. 2020). As in these fungi, the D. necatrix 
mitogenome encoded all of its protein-coding and rRNA genes 
in the same order and orientation. Likewise, the bulk of the D. 
necatrix tRNA genes occurred in clusters between the rns and 
nad6 genes, and between the nrl and nad2 genes.

Two notable protein-coding genes annotated in the D. neca-
trix mitogenome are rps3 and nat1. In fungi, the rps3 gene is 
often cycled between the nuclear and mitochondrial genomes 
by mobile genetic elements (Wai et al. 2019), and its product is 

a vital component of many cellular processes (Graifer et al. 
2014; Medina et al. 2020). Not much is known about N-acetyl-
transferase-encoding genes such as nat1, but they have been 
implicated in mitochondrial turnover and the detoxification of 
plant defence compounds (Sharma et al. 2020). Therefore, 
these genes are potential targets for studies aiming to explore 
the molecular basis of pathogenesis in D. necatrix.

The large number of introns predicted in the D. necatrix 
mitogenome is consistent with previous reports from mem-
bers of the Xylariales (Zhang et al. 2017; Deng et al. 2018) 
and Sordariomycetes (Medina et al. 2020). Indeed, these ele-
ments are implicated in the size variation and expansion of 
fungal mitogenomes (Wu et al. 2015). As expected for fungi 
(Mukhopadhyay and Hausner 2021), the D. necatrix mitoge-
nome also contained more group I introns than group II 
introns. Due to their impact on the overall architecture of the 

Figure 2. Circular map of the mitochondrial genome of dematophora necatrix prepared using OGDRAW program (https://chlorobox.mpimp-golm.mpg.de/OGDraw. 
html). Genes are color-coded by their functional classification. Genes on the outside of each ring indicate that they are on the forward strand, while genes within 
the ring indicates those located on the reverse strand. The inner, grayscale bar graph shows Gþ C content (%), with the Middle line marking the 50% threshold. 
The positions of the two main clusters of tRNA genes are indicated with the dotted brackets (see supplementary figure S2 for details).
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mitogenome (Mukhopadhyay and Hausner 2021), intron 
activity may also impact the overall biology of the fungus 
harboring them. In certain fungi, for example, a particular 
allele of the group I type D intron occurring in cob has been 
shown to confer resistance to QoI (quinone outside inhibitor) 
fungicides (Cinget and B�elanger 2020).

The mitogenome assembled and characterized in this 
study provides many opportunities to improve our under-
standing of the biology and ecology of D. necatrix in South 
Africa. Apart from providing a sound foundation from which 
to explore the role of this organelle in the biology of the 
species, our findings would also serve as a valuable resource 
for exploring the genetic diversity and population biology of 
this important pathogen.
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Figure 3. Maximum likelihood (ML) phylogenetic tree showing the relationships between dematophora necatrix strain CMW50482 and other members of the asco-
mycota, which were inferred from the concatenated amino acid sequences of the 14 conserved protein-coding genes encoded on the mitogenome. Similar cluster-
ing patterns were observed in our Neighbor-Joining (NJ) phylogeny. ML bootstrap support values are indicated above the nodes, while NJ bootstrap support values 
are indicated below the nodes. Accession numbers are indicated after the species names. Species used include the following: Xylaria hypoxylon (MK574676) (Zhou 
et al. 2019), Dematophora necatrix (PP377641) (this paper), Nemania diffusa (MN780510) (Tang et al. 2020), Annulohypoxylon stygium (MH620791) (Deng et al. 2018), 
pestalotiopsis fici (NC_031828) (unpublished), Apiospora arundinis (KY775582) (Yuan et al. 2019), Podospora comata (LR026971) (Unpublished), Neurospora crassa 
(NC_026614) (Monteiro et al. 2021), Colletotrichum lupini (NC_029213) (Pszcz�ołkowska et al. 2020), Fusarium verticillioides (NC_016687) (Al-Reedy et al. 2012), 
Trichoderma asperellum (KR952346) (Unpublished), Metarhizium brunneum (CP058939) (Unpublished), Purpureocillium lilacinum (LC716767) (Unpublished), 
Drechmeria coniospora (JYHR02000004) (Unpublished), Glarea lozoyensis (KF169905) (Youssar et al. 2013), Monilinia fructicola (MK163638) (Unpublished), Sclerotinia 
borealis (KJ434027) (Mardanov et al. 2014), Sclerotinia sclerotiorum (NC_035155) (Unpublished), Pyronema omphalodes (NC_029745) (Unpublished) and Aspergillus 
chevalieri (AP024424) (Kadooka et al. 2021).
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