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Abstract  The Kunming-Montreal Global Biodi-
versity Framework 2030 calls for the conservation 
of 30% of the world’s ecosystems, focusing on pro-
tecting areas vital to biodiversity, identifying and 
managing invasive species introduction pathways, 
and minimizing the impacts of climate change on 
biodiversity. While protected areas (PAs) have his-
torically limited the introduction, establishment, 
and spread of non-native species, climate change is 
likely to increase their susceptibility to invasion. Yet 
we know little about how pathways may shift in the 
future, making it difficult for managers to plan appro-
priately. This paper explores how climate change may 

affect primary and secondary pathways of introduc-
tion and presents an adaptive management approach 
to avoid, minimize, and mitigate impacts. Climate 
change has influenced introduction pathways by 
modifying human behaviors (e.g., forced migration 
and shifting travel and vacation destinations), and 
by altering transportation routes, natural dispersal 
mechanisms, and the environmental conditions along 
these pathways and in donor and receiver regions. 
These changes increase the risk of non-native species 
introductions and their subsequent spread within PAs. 
Implementing climate-smart adaptive biosecurity, 
an iterative process that includes the incorporation 
of new technologies and perspectives, will become 
increasingly important for invasive species prevention 
and management of PAs as it provides flexibility in Supplementary Information  The online version 
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management response and maximizes positive out-
comes when resources are limited.
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Introduction

Land use change, climate change, and invasive spe-
cies are leading drivers of biodiversity decline world-
wide (Díaz et  al. 2019). The Convention on Bio-
logical Diversity established the Kunming-Montreal 
Global Biodiversity Framework (GBF) to address 
biodiversity loss and reduce pressures on vulnerable 
ecosystems. This framework includes Target 3, which 
set the goal of designating 30% of the world’s terres-
trial, inland waters, marine, and coastal areas as pro-
tected (CBD 2022). Currently, the World Database of 
Protected Areas (PAs) lists over 295,000 PAs cover-
ing approximately 16% of terrestrial environments 
and inland waters, and 8% of the world’s oceans; a 
35% increase since January 2016 (WDPA 2024).

Target 6 of the GBF aims to reduce threats to bio-
diversity by eliminating, minimizing, or mitigating 
the impacts of non-native species (synonym for alien 
species) in part by reducing the rates of introduc-
tion and establishment through the identification and 
management of introduction pathways (CBD 2022). 
Because PAs preserve key elements of global biodi-
versity, the influx of invasive species into these areas 
can lead to substantial biodiversity loss, especially on 
islands (Carneiro et al. 2024). It is particularly impor-
tant to focus on PA pathways because they may expe-
rience different invasion pressures than non-protected 
areas by virtue of their protected status (Pickering 
2010; Du et  al. 2024). For instance, tourism can be 
concentrated in remote and scenic PAs (Pickering 
2010), mercy/prayer releases may be more preva-
lent in undisturbed protected natural areas that are 
also remote (Du et al. 2024), and areas set aside for 
wildlife or forest protection may be more suitable for 
vertebrate invasive species than other PAs (Xin et al. 
2024) leading to differential pathway interactions. 
Invasions inside areas that are protected for their 
landscapes and biodiversity may therefore arise from 

novel pathways distinct from those occurring in other 
areas such as urban or agricultural settings.

Climate change is expected to further impact bio-
diversity in PAs through melting ice caps, extreme 
climatic events, rising sea-levels, increased fire inten-
sity, and changes in water availability (Ranius et  al. 
2023). And because the effects of climate change are 
unevenly distributed worldwide, some PAs will likely 
face more severe impacts than others (Carneiro et al. 
2024). The combined effects of climate change and 
invasive species can complicate management plan-
ning and responses (Lopez et al. 2022). For example, 
climate change may influence introduction pathways, 
and which non-native species are introduced via these 
pathways (Hellman et  al. 2008). Research has dem-
onstrated that the boundaries of protected areas may 
limit the introduction of invasive species (Beaury 
et al. 2020). However, there is limited understanding 
of how climate change will impact the efficacy of pro-
tected area designations in reducing the introduction, 
establishment, and spread of invasive species (Gal-
lardo et al. 2017).

There are many current examples of how climate 
change affects introduction pathways. Reviewing 
the details of these examples and how they manifest 
within PAs, can inform current and future pathway 
risk analyses, surveillance, and other biosecurity 
measures. Here, we consider how climate change 
facilitates non-native species introduction into PAs 
and discuss current and future pathway manage-
ment for PAs. For the purposes of this paper, we 
define non-native species as those whose presence in 
a region outside their natural range is attributable to 
human activities, and invasive species as a subset of 
non-native species that have established, spread, and 
are causing negative impacts (Roy et al. 2023). While 
there has been considerable recent attention on man-
aging invasive species in PAs and the effects of cli-
mate change on PAs, to our knowledge, this overview 
is the first to synthesize these challenges in relation to 
introduction pathways.

Introduction pathways, climate change, and PAs

‘Introduction pathways’ refer to the many ways in 
which non-native species are moved from one loca-
tion to another (Roy et  al. 2023). Focusing manage-
ment efforts on high-risk introduction pathways (e.g., 
those that transport the largest number of species, or 
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the most impactful species) is an efficient approach 
to reduce the threat posed by several invasive spe-
cies at once (Hulme 2009). This strategy is particu-
larly compelling in PAs for which logistical, financial, 
and staffing resources are often limited (Genovesi and 
Monaco 2013).

An introduction pathway includes the vector that 
transports the non-native species (e.g., ship hulls, 
horticulture, aquaculture), and the geographical route 
along which it travels (Hulme et  al. 2008). Intro-
ductions of non-native species can be either inten-
tional, when the species serves a specific purpose 
in the recipient region (e.g., biological control; Sun 
et  al. 2022); unintentional, when a species is a con-
taminant or stowaway with the transport of goods and 
people (e.g., non-native flatworms spreading in con-
tainerized plants; Murchie and Justine 2021); or can 
occur when a non-native species naturally disperses 
through human-built corridors or from existing non-
native populations (Hulme et al. 2008; Faulkner et al. 
2024). Pathways can also be categorized as primary, 
where non-native species cross jurisdictional or bio-
geographic boundaries, or as secondary, where they 
move within these boundaries after an initial intro-
duction (e.g., secondary dispersal) (Faulkner et  al. 
2020).

Climate change can affect introduction pathways in 
four ways. First, human responses to climate change, 
including changes to global trade patterns and the 
movement of people (where they live or travel), will 
likely alter the risk of introducing non-native species 
(Robinson et  al. 2020). Second, climate change can 
modify human-mediated transport by creating new 
transport routes or altering the frequency of trans-
port along existing routes (Chan et  al. 2019). Third, 
natural dispersal vectors of non-native species can be 
altered by climate change, including extreme climatic 
events such as hurricanes, flooding, and wildfires 
(Hellmann et  al. 2008). Fourth, warming tempera-
tures, shifts in precipitation, increased disturbances, 
and other abiotic factors related to climate change can 
alter conditions along the route traveled and within 
receiving regions, affecting both primary introduction 
and secondary spread (Hellmann et al. 2008). Impor-
tantly, the effects of climate change on pathways can 
be compounded when they interact with other major 
drivers influencing introduction pathways such as 
increasing globalization, technological advancement, 
and income growth (Hulme 2009).

The following subsections describe these effects 
on introduction pathways within the context of PAs, 
using examples from specific ecosystems. How-
ever, these effects are not confined to a single eco-
system type. More examples of introduction path-
ways impacted by climate change are highlighted in 
Tables  1 and S1, with details of the applicable eco-
systems, the climate change pressure affecting the 
pathway, and brief descriptions of scenarios where 
the pathway is affected.

Human responses to climate change in terrestrial 
ecosystems

Climate change can significantly impact land use in 
and around PAs and subsequently, the livelihoods 
of local community members who rely on those 
lands (Xin et al. 2024; Thomas et al. 2024). Climatic 
stressors may lead to the abandonment of some agri-
cultural areas, making them susceptible to invasion, 
while prompting agricultural expansion into other 
regions (Bradley et  al. 2012; Xin et  al. 2024). Cur-
rently, human population density near PAs is a lead-
ing driver of non-native species introductions (Spear 
et  al. 2013). An estimated 1.2 billion people may 
face climate-driven displacement by 2050, poten-
tially relocating near PAs and increasing the risk of 
non-native species introductions that stem from home 
landscaping, agriculture, and other sources (Mat-
thew et  al. 2023). For example, in Africa, livestock 
are often kept near and sometimes graze within PAs. 
As climate change drives the movement of people 
and animals, it can facilitate the spread of native and 
non-native ticks and tick-borne diseases from domes-
ticated to wild animals (Espinaze et al. 2018), poten-
tially impacting wildlife in PAs. Similarly, non-native 
trees such as Acacia, Pinus, and Eucalyptus species 
are planted in buffer zones around PAs for fuelwood 
and other agroforestry purposes (Richardson et  al. 
2004; Hardy et  al. 2024). Climate-driven migration 
and settlement near or within PAs can further facili-
tate the introduction and spread of these non-native 
agroforestry species into protected ecosystems.

Tourists may increasingly choose to visit PAs 
with more favorable climatic conditions, potentially 
increasing propagule pressure as non-native species 
spread unintentionally via recreational equipment, 
hitchhike on clothing and pets, or are transported in 
infested firewood (Pickering and Mount 2010; Solano 
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Table 1   Interactions between selected pathways of introduc-
tion and climate change. The pathway is provided with the 
applicable ecosystem, the related pressure from climate change, 
and an example of where pathways and climate change inter-
act to impact invasions. Note that Ecos=ecosystem type and 

Var=variable, Ter=terrestrial, Fw=freshwater, and Mar=marine 
ecosystems. CC (Climate Change) type is the way climate 
change has affected the pathway. This table provides examples 
and should not be considered an exhaustive list of pathways.



Understanding and managing introduction pathways into protected areas in a changing climate﻿	 Page 5 of 15     74 

Vol.: (0123456789)

et  al. 2021). Additionally, tourism-driven construc-
tion of vacation homes near PAs poses a major threat, 
creating introduction pathways for non-native species 
(de la Fuente et al. 2020; Novoa et al. 2022). Trans-
port networks servicing these homes can act as con-
duits for non-native species to enter otherwise remote 
areas (Hulme et al. 2018). Further, the irregularity of 
homeowner visits permits the impacts of those orna-
mental plants that escape confinement and become 
invasive to persist unnoticed for extended periods, 
giving them more time to penetrate the borders of 
nearby PAs.

Target 8 of the GBF identifies the need to mitigate 
the impacts of climate change on biodiversity with 
an emphasis on ‘nature-based’ approaches but lacks 
guidance on the use of non-native species for this 
purpose (CBD 2022). This omission is significant, 
as using high-risk non-native species to mitigate cli-
mate change (e.g., biofuel crops) can yield short-term 

benefits that often overlook potential long-term con-
sequences (Lindenmayer et al. 2012). As the impacts 
of climate change become more pronounced and 
mitigation efforts increase, the risks associated with 
intentional introductions of non-native species to PAs 
will also grow. Currently, projects utilizing climate 
change-mitigating plants, including bamboo, are gain-
ing traction in vulnerable regions including Africa 
(Lobovikov et al. 2012). For example, in Cameroon’s 
Mbalmayo Forest Reserve, the oldest PA in the coun-
try, livelihood improvement projects in the form 
of bamboo plantations have been established using 
a mix of native and invasive bamboo species (i.e., 
Bambusa and Phyllostachys spp.; Fig. 1a) (Tchamba 
2022). Similar initiatives marketed as reforestation 
projects have been implemented across Africa (Cana-
van et al. 2019; Masisi et al. 2022), increasing inva-
sion risk as non-native bamboo can spread within or 
into adjacent PAs.

Fig. 1   Images from case studies demonstrating how climate 
change affects vulnerability of terrestrial, freshwater, marine, 
and island protected areas (PAs) to invasions: a Non-native 
bamboo species (Phyllostachys sp.) commonly used in culti-
vation, spreading in KwaZulu-Natal province, South Africa, 
b the Indo-Pacific moon crab (Matuta victor), a “Red-to-
Med” invasive species first recorded in the Mediterranean Sea 
from Israeli coasts in 2012, c African jewelfish (Hemichromis 
bimaculatus) introduced through illegal aquarium dumping in 

Florida could threaten PAs to the north through tropicaliza-
tion, d wildfire fueled by the range-shifting, invasive fountain 
grass (Cenchrus setaceus) in the Puʻuwaʻawaʻa State Forest 
Reserve, Hawaiʻi Island. Photo credits: a S. Canavan (Ollscoil 
na Gaillimhe – University of Galway), b Fuke, CC BY-SA 3.0, 
https://​commo​ns.​wikim​edia.​org/w/​index.​php?​curid=​72592​59, 
c USGS d E. Parsons (Pacific Islands Climate Adaptation Sci-
ence Center)

https://commons.wikimedia.org/w/index.php?curid=7259259


	 D. Lieurance et al.   74   Page 6 of 15

Vol:. (1234567890)

Changes in transport routes and frequency in marine 
ecosystems

The changing climate can alter human-mediated 
transport by creating new introduction pathways 
through the opening of new shipping routes, and 
through changes in the frequency of transport along 
existing routes (Chan et  al. 2019). As globalization 
accelerates, maritime traffic is expected to increase 
by up to 1200% by 2050, which when coupled with 
climate change, is forecast to result in a 3- to 20-fold 
increase in global invasion risk (Sardain et al. 2019).

The Mediterranean Sea has over a thousand des-
ignated marine PAs with varying levels of protec-
tion (MedPAN 2021). The Suez Canal is an artificial 
waterway that connects the Red and Mediterranean 
Seas. Since its construction, 384 Erythrean species 
(i.e. marine species that have migrated along the 
Suez Canal, usually from the Red Sea to the Medi-
terranean Sea) have been introduced including the 
aggressive Indo-Pacific moon crab (Matuta victor) 
(Fig. 1b; Shefer et al. 2004; Tavares et al. 2004; Galil 
et al. 2018). Initially, most of these invasions resulted 
from dispersal via natural biotic or abiotic vectors or 
were self-propelled (Schefer et  al. 2004). However, 
increased shipping traffic has amplified introduc-
tions via ballast water and biofouling (Galil 2000). 
The movement of species into the eastern Mediter-
ranean basin has resulted in more invasive species in 
the marine PAs within that region (Galil 2017). Cli-
mate change is projected to increase the suitability of 
the western Mediterranean for warm-water invaders, 
threatening the entire network of marine protected 
areas (Bianchi and Morri 2003). As shipping traf-
fic rises and the canal expands to accommodate the 
increasing size of ships, future transport related intro-
ductions are expected (Sardain et al. 2019).

Polar regions, which are home to multiple marine 
PAs, are experiencing a dramatic decline in sea ice 
cover (Melia et  al. 2016; WDPA 2024), which is 
opening new, shorter trans-Arctic trade routes and 
facilitating a prolonged shipping season, increasing 
the chances of unintentional species introductions 
(Melia et al. 2016; Chan et al. 2019). Reduced sea ice 
is also driving “last-chance tourism” to polar marine 
PAs, where visitors seek to visit destinations under 
threat from environmental degradation and climate 
change before they disappear (Chan et al. 2019). The 
growing cruise ship and marine expedition industry 

in these regions poses substantial risks as a vector of 
non-native species introductions (Hall 2010). While 
the biggest threats from tourism to the PAs in the 
region include further degradation of sensitive eco-
systems and the introduction of non-native species to 
terrestrial areas, marine ecosystems could be signifi-
cantly impacted by introductions through hull fouling 
and ballast water.

Alterations to natural dispersal pathways 
in freshwater ecosystems

Nearly all terrestrial PAs have freshwater resources 
within or adjacent to their boundaries. Climate 
change is expected to impact these ecosystems by 
altering the frequency, duration, and timing of floods 
and droughts, as well as by shifting seasonal water 
temperatures and disrupting hydrological cycles 
(Rahel and Olden 2008). In some cases, these changes 
can limit the movement of non-native species into 
PAs when drier conditions reduce river connectiv-
ity (Rahel and Olden 2008). In other cases, extreme 
weather, warmer conditions, and altered precipita-
tion (e.g., hurricanes, flooding, precipitation pulses) 
can facilitate natural dispersal across PA boundaries 
via interconnected freshwater systems (Fobert et  al. 
2013). These differing effects on introduction path-
ways underscore the context-dependent role of cli-
mate change in shaping introduction pathways.

Extreme weather events, such as floods made more 
severe by climate change, create conditions where 
non-native species (including the parasites and dis-
eases they may host) can escape confinement and 
disperse by water or by hitchhiking on other organ-
isms moving along new or enhanced routes (Rahel 
and Olden 2008; Everard et  al. 2009). For example, 
aquaculture is the fastest-growing sector of food 
production in the world (Ahmed et  al. 2019), and 
many aquaculture operations exist within or close to 
PAs (Rico-Sánchez et  al. 2020). As climate change 
increases the frequency and magnitude of flooding in 
freshwater ecosystems, the potential for non-native 
species to escape aquaculture facilities and move 
into PAs increases (Raj et  al. 2021). These species 
may also move through previously isolated drain-
ages, reaching PAs that were previously inaccessible 
to them (Fobert et  al. 2013). Such was the case in 
the Western Ghats Biodiversity Hotspot, a UNESCO 
World Heritage Site, where severe flooding in 2018 
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and 2019 led to the escape of at least ten non-native 
fish species into adjacent lakes and waterways from 
illegal farming operations and stocked reservoirs (Raj 
et  al. 2021). Illegal aquarium dumps including fish, 
snails, and plants can also spread via floodwaters to 
enter PAs (Nico et  al. 2019). For example, African 
jewelfish (Hemichromis bimaculatus; Fig.  1c), an 
omnivorous fish first introduced to Florida (United 
States) in 1965, has expanded its range along inter-
connected waterways. It is now abundant in Ever-
glades National Park and has spread via flood water 
connections through central Florida into various dis-
connected drainages, including the Lake Okeechobee 
Sanctuary and Indian River Lagoon Preserve State 
Park (Nico et al. 2019; Pfingsten et al. 2023). As cli-
mate change increases the frequency and severity of 
flooding events, we can expect increased movement 
of invasive species into PAs.

Altered conditions facilitate range shifts 
and expansions into islands PAs

Climate-induced changes in environmental suitability 
will interact with the previous three effects on path-
ways, creating new opportunities for the establish-
ment and spread of non-native species worldwide. 
Additionally, with climate change, non-native spe-
cies are likely to expand their ranges more rapidly 
than native species due to their broader climatic tol-
erances, giving them a clear advantage in a shifting 
climate (Bradley et al. 2024). While these effects will 
impact PAs across all ecosystem types, island PAs, 
which protect a disproportionate share of global bio-
diversity, face greater invasion risk and higher vul-
nerability compared to continental areas (Russell and 
Kueffer 2019).

The extremely remote, strictly protected sub-
Antarctic Prince Edward Islands are shielded from 
the introduction of non-native species through strin-
gent biosecurity measures (Fernandez Winzer et  al. 
2023), while the islands’ harsh climate can prevent 
their establishment (Duffy et  al. 2017). The islands’ 
climate, however, is changing (le Roux and McGeogh 
2008) and the arrival and establishment of new non-
native species is expected to increase as existing cli-
matic barriers weaken (Duffy et al. 2017).

On mountainous islands, climate change is 
expected to alter the suitability of conditions, causing 
invasive species limited by unsuitable temperatures 

to shift towards higher elevations as they follow their 
climate niches upslope (Rubenstein et  al. 2023). 
While this phenomenon is widespread globally 
(Rubenstein et al. 2023), it is especially troubling on 
islands because of the high vulnerability of endemic 
species to extinction (Fernández-Palacios et al. 2021). 
Climate-induced elevational shifts have been pro-
jected for a variety of non-native species on islands, 
including mosquitoes (Benning et al. 2002) and plants 
(Angelo and Daehler 2013). The potential for range-
shifting non-native species is concerning for manag-
ers in Hawaiʻi, where PAs protecting the most intact 
native ecosystems are located primarily at higher 
elevations (Yeung et  al. 2019). Invasive grasses are 
among the most troublesome species expanding their 
ranges on islands, as they fuel destructive wildfires 
that lead to the loss of human life and property, and 
the degradation of important ecosystems (Fig.  1d; 
D’Antonio and Vitousek 1992; Parsons and Martin 
2023). At Hawaiʻi Volcanoes National Park, invasive 
fire-prone grasses may be shifting to higher eleva-
tions by a greater amount than non-fire-adapted inva-
sive grasses, increasing the frequency of wildfires 
in the park three-fold (Angelo and Daehler 2013). 
Importantly, wildfires also create opportunities for the 
spread of these grasses further into native ecosystems.

Management of introduction pathways for PAs

Effective management of non-native species in PAs is 
hindered by many institutional and interagency obsta-
cles that impede coordinated responses to invasions, 
conflicting values and interests among stakeholders 
and community members, and inadequate staffing and 
funding for prevention and management initiatives 
(Genovesi and Monaco 2013). Because PAs protect 
areas with high biodiversity, threatened species, sen-
sitive biomes, and other areas with important ecosys-
tems (CBD 2022), there is a critical need for a more 
cost-effective and efficient approach to reducing the 
prevalence and impacts of invasive species, such as 
pathway management. Successful pathway manage-
ment relies on high-quality information that is often 
missing in many jurisdictions and at finer spatial 
scales, creating critical information gaps especially 
relevant for PAs (Roy et  al. 2023). One reason for 
these gaps is that pathway management is typically 
applied at the national level (e.g., import regulations 
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pre-border and mandatory quarantine at the border), 
rather than at the scale of PAs (Faulkner et al. 2016; 
van Wilgen et al. 2025).

The examples included in this paper, while not 
exhaustive, illustrate the growing diversity of chal-
lenges faced by invasive species practitioners work-
ing in PAs in a changing climate. Uncertainty, which 
amplifies these challenges, surrounds both risk pre-
diction and the potential impacts of climate change, 
emphasizing the need for action at finer scales where 
invasive species management takes place (Leung 
et al. 2012; Catford et al. 2022). And while invasive 
species practitioners working in PAs are often con-
cerned about the effects of climate change on man-
agement efforts, they are frequently overwhelmed 
by managing existing invasions, leaving limited 
resources for proactive management (Beaury et  al. 
2020). To increase the effectiveness of invasive spe-
cies management in this context, practitioners need a 
new approach that allows them to respond adaptively 
to the growing challenges they will face as the cli-
mate changes.

Adaptive management is a structured, iterative 
practice used in natural resource management that 
integrates lessons learned through monitoring and 
evaluation, to enable timely adjustments that improve 
management outcomes (Williams et al. 2016). Given 
the complexity and uncertainty associated with cli-
mate change and introduction pathways, we argue for 
climate-smart adaptive biosecurity as an approach to 
address uncertainty and mitigate harm from invasive 
species introduced through shifting introduction path-
ways (Lemic et al. 2024) (Fig. 2).

Climate‑smart adaptive biosecurity

Here we highlight how pathway management in 
PAs can be improved using a suite of tools (Fig. 2a; 
Table S2), and by considering the impacts of climate 
change on pathways.

Integrating climate change into proven prioriti-
zation methods, such as horizon scanning for inva-
sion threats and site prioritization schemes, can help 

Fig. 2   A conceptual diagram for an adaptive approach for 
managing potential invasive species threats and their pathways 
for introduction in present and future climate conditions. This 
is an iterative approach that benefits from the utilization of new 

technologies and processes, and their contributions to biosecu-
rity. Descriptions of the tools included in section (a.) can be 
found in Table S2
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improve our ability to identify and rank threats for 
future climate conditions. For example, high-volume 
introduction pathways can be identified and ranked 
for different climate scenarios, and PAs can be prior-
itized by their susceptibility to invasion, conservation 
value, and vulnerability to extreme weather events 
(Colberg et al. 2024). These findings can then be used 
to guide invasive species policy and regulation (e.g., 
injurious listing), pathway surveillance, and other 
precautionary management strategies. Furthermore, 
horizon scans are relatively inexpensive, can be con-
ducted at the PA level, and can be updated at regular 
intervals to incorporate new information and innova-
tions (e.g., emerging research and improved models) 
as a part of the adaptive biosecurity process. By inte-
grating climate-informed prioritization across these 
areas, we can enhance efficiency in resource alloca-
tion for management in a changing climate.

Ecological and biogeographical modeling has 
become increasingly popular in conservation for 
developing climate-adaptation strategies (Klausmeyer 
and Shaw 2009), spatial planning for species conser-
vation (Mukherjee et  al. 2021), and invasive species 
management (Wang et al. 2017). Species distribution 
models (SDMs), climate matching, and hotspot analy-
ses are valuable in adaptive biosecurity because these 
models can integrate future climate scenarios to pre-
dict how changes in temperature, precipitation, and 
other factors may affect the distribution and spread of 
invasive species (Colberg et  al. 2024), enabling PAs 
to anticipate threats and adjust management strate-
gies accordingly. Broadly applied in invasive species 
prevention and early detection and rapid response 
(EDRR), these models support risk assessment, sur-
veillance, and management (Martinez et  al. 2020). 
While initial predictive models are often developed 
with limited data (Hui 2023), adaptive approaches 
leverage data generated through management and 
monitoring to refine and improve model accuracy 
over time (Uden et al. 2015).

Since both accelerated climate change and the 
transport of non-native species stem from human 
activities, we can also improve our ability to manage 
and conserve PAs by incorporating human dimen-
sions—using what is learned from social science 
methods that examine cultural, sociological, and eco-
nomic factors—to enhance invasive species manage-
ment (Shackleton et  al. 2019; Pickering 2010). For 
example, culturomics and iEcology, which analyze 

data from internet sources such as search trends and 
social media metrics, can identify PAs that attract or 
are likely to attract tourists, assess trade patterns of 
non-native species, detect new invasions within or 
near PAs, and measure public support for manage-
ment strategies (Jarić et  al. 2020; 2021). As well, 
deliberative engagement, an approach that incorpo-
rates diverse stakeholder perspectives through struc-
tured decision-making, can be effective for address-
ing complex challenges like the combined effects of 
invasive species and climate change (Magness et  al. 
2022). This approach also addresses GBF Targets 
22 and 23, which promote equitable, inclusive, and 
gender-responsive representation and participation in 
decision-making (CBD 2022).

Artificial (AI) driven modeling applies computa-
tional methods and advanced data processing to sup-
port the prevention and management of non-native 
species in PAs. By running multiple iterations of 
models, AI improves accuracy and ensures consistent 
results (e.g., Bagnara et al. 2022). Examples include 
self-organizing maps, a type of artificial neural net-
work used to cluster high-dimensional data for iden-
tifying regions with similar invasive species assem-
blages, ranking invasion risks across multiple species, 
and simulating their potential movement into climati-
cally suitable areas (Worner et  al. 2013); machine 
learning techniques to analyze how environmental 
conditions influence the movement of non-native spe-
cies (Wang 2019); and network analysis to model the 
transport, introduction, and spread of species in new 
regions (Bagnara et al. 2022). Combined, these tech-
nologies enhance risk prediction and strengthen sur-
veillance activities.

Detecting invasive species can be challenging 
within vectors and along pathways, or when they are 
first introduced to a receiver region, especially when 
populations are small, the species is difficult to detect, 
or the area is difficult to access. Recent advancements 
in surveillance technologies, such as bioacoustics 
(Chhaya et al. 2021), eDNA metabarcoding (Pascher 
et  al. 2022; Clarke et  al. 2023), and wireless sensor 
networks (Liakos et  al. 2021), are helping address 
these challenges. These innovations improve the 
likelihood and efficiency of detecting invasive spe-
cies while also enhancing the speed and accuracy of 
their identification. These tools have minimal impacts 
on native ecosystems compared to traditional meth-
ods, offering significant benefits for PA management. 
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Additionally, data collected by these tools can support 
the adaptive component of climate-smart biosecurity. 
For example, eDNA sampling in remote areas can 
provide occurrence data to help develop more precise 
and accurate SDMs (e.g., Muha et  al. 2017), while 
machine learning algorithms can process information 
from smart sensors to improve the sensors’ ability to 
accurately distinguish species (Gonzáles-Pérez et  al. 
2022).

These tools contribute to the ‘planning’ portion of 
the framework, which involves generating prioritized 
lists of species, pathways, and protected areas, as well 
as assessing resource capacity (Fig.  2b). This infor-
mation is then incorporated into the ‘analysis’ stage, 
which includes risk analysis and scenario planning 
(Fig. 2c). Risk analysis involves detailed risk determi-
nation and how best to mitigate or manage the risks 
identified (Lieurance et al. 2024). Scenario planning, 
increasingly used by climate adaptation specialists 
(Roura-Pascual et  al. 2024), helps managers pre-
pare for uncertainties associated with future climate 
change, including the varied impacts of different cli-
mate scenarios on invasive species (Lawrence et  al. 
2021). Together, these methods inform the selection 
of appropriate management interventions (Fig.  2d). 
For example, during a 2023 a workshop in Hawaiʻi, 
managers of a forested protected area in North Kona 
and group participants explored the possible effects 
of two climate change scenarios (a low and high 
emissions scenario) on a prioritized list of high-risk 
invasive species and identified species-specific man-
agement interventions for each scenario (E. Parsons, 
unpublished results). Once the management interven-
tion has been implemented, an evaluation and adjust-
ment phase can help assess successes and failures, 
identify resource gaps, and adjustments for the next 
iteration of the management cycle (Fig. 2e).

Meeting target 6 in a changing climate

GBF Target 6 calls for reducing the impacts of inva-
sive species on biodiversity and ecosystem services 
by identifying and managing introduction pathways 
and preventing the introduction of priority (e.g., high 
risk) species with a focus on high priority sites (CBD 
2022). However, Target 6 does not integrate climate 
change into prevention recommendations. Our cli-
mate-smart approach to adaptive biosecurity employs 

old and new tools to analyze, assess, and prioritize 
management. Further, we stress building a network of 
interested parties including researchers, practitioners, 
policymakers, and Indigenous and local communities 
and the value of coordinated and accessible informa-
tion sharing. Finally, evidence has accumulated show-
ing that interventions targeting invasive species, PAs, 
and sustainable management have yielded positive 
outcomes and enhanced the state of biodiversity glob-
ally (Langhammer et  al. 2024). We believe imple-
mentation of our climate-smart adaptive biosecurity 
approach can assist conservation efforts, help practi-
tioners reach Target 6, and slow biodiversity loss in a 
changing climate.
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