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Abstract

Subseasonal-to-seasonal (S2S) prediction has gained momentum in the recent

past as a need for predictions between the weather forecasting timescale and

seasonal timescale exists. The availability of S2S databases makes prediction

and predictability studies possible over all the regions of the globe. Most S2S

studies are, however, relevant to the northern hemisphere. In this review, the

S2S literature relevant to the southern hemisphere (SH) are presented. Predic-

tive skill, sources of predictability, and the application of S2S predictions are

discussed. Indications from the subseasonal predictability studies for the SH

regions suggest that predictive skill is limited to 2 weeks in general, particu-

larly for temperature and rainfall, which are the variables most frequently

investigated. However, temperature has enhanced skill compared to rainfall.

More S2S prediction studies that include the quantification of the sources of

predictability and the identification of windows of opportunity need to be con-

ducted for the SH, particularly for the southern African region. The African

continent is vulnerable to weather- and climate-related disasters, and S2S fore-

casts can assist in alleviating the risk of such disasters.
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1 | INTRODUCTION

Weather forecasting and climate predictions have been in
existence for the past few decades (Cohen et al., 2018;
Hudson et al., 2011). National Meteorological and
Hydrological Services (NMHS) have been providing
weather forecasts and seasonal climate forecasts for sur-
face temperature and precipitation (Phakula et al., 2018;
Saha et al., 2014), leading to decision-making that is there-
fore generally based on weather or seasonal forecasts
(Crochemore et al., 2021). There is a need for predictions

of meteorological conditions outside weather forecasting
timescales (Mariotti et al., 2020). Forecasts between
weather and seasonal timescales are referred to as the
subseasonal-to-seasonal (S2S) forecasts (Vitart et al., 2017).
The S2S timescale is generally defined as ranging from
2 weeks to 2 months (de Andrade et al., 2021; Klingaman
et al., 2021; Mariotti et al., 2018; Moron et al., 2018;
Mundhenk et al., 2017; Wang & Robertson, 2018; White
et al., 2017) and is inherently difficult to predict (Li &
Robertson, 2015; Luo & Wood, 2006; Vitart, 2014). The dif-
ficulty in S2S prediction is due to the lead time being
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sufficiently long that much of the memory of the
atmospheric initial conditions is lost and it is too short for
the variability of the ocean to have a strong influence on
the atmosphere (Black et al., 2017; DelSole et al., 2017).

Predictability for forecasting the day-to-day weather
comes primarily from accurate initial conditions
(Landman et al., 2012; Vitart et al., 2017) that are well
represented in the Numerical Weather Prediction (NWP)
models. The dependency of the forecasts on accurate ini-
tial conditions originates from the chaotic and non-
periodic characteristics of the atmosphere. Reliability of
the weather forecasts is limited to about 7 days due to
uncertainties in the observations and the imperfections
in the prediction models (Krishnamurthy, 2019). Beyond
the synoptic weather timescale of about 10 days, day-
to-day weather forecasting becomes challenging (Hudson
et al., 2013; Lin et al., 2017; Weyn et al., 2021).

Seasonal forecasts depend on the slowly evolving
components of the earth system such as sea-surface tem-
peratures (SSTs), soil moisture, and sea ice components
(Conil et al., 2007; Huang & Shin, 2019; Shin et al., 2020;
Tian et al., 2017; White et al., 2017). Moreover, skillful
seasonal forecasts are possible due to the predictability of
the slowly evolving SST anomalies of the equatorial
Pacific El Niño–Southern Oscillation (ENSO) (Flugel &
Chang, 1998). In fact, ENSO is regarded as the primary
climate driver for seasonal forecasting (Choi & Son, 2022;
Huang & Shin, 2019). Over southern Africa, seasonal
forecast skill is highest in summer during the El Niño
and La Niña phases, with the El Niño phases usually
resulting in anomalously dry conditions and the La Niña
phases in anomalously wet conditions.

Recent studies suggest that the Indian Ocean Dipole
(IOD) plays an important role in predicting the ENSO in
the tropical Pacific through teleconnections (Li et al., 2022;
Liu et al., 2023). The positive IOD events are associated
with reduced rainfall over western and southern Australia
(Zhao et al., 2019), enhanced rainfall in eastern and south-
ern Africa (Black et al., 2003), and reduced rainfall over
central and southeastern Brazil and enhanced rainfall over
the Amazon (Sena & Magnusdottir, 2021). Furthermore,
ENSO can modulate the Madden Julian Oscillation (MJO)
through teleconnection (e.g., Lee et al., 2019; Wei & Ren,
2019; Fernandes & Grimm, 2023). MJO is regarded as the
main source of subseasonal forecasting (Alvarez
et al., 2020; Waliser et al., 2006; Woolnough, 2019). MJO
modulates rainfall variability during the main wet season
in southern Africa (Pohl et al., 2007), in Australia (Cowan
et al., 2019), and in South America (Grimm et al., 2021;
Klingaman et al., 2021). Stratosphere–troposphere interac-
tion is another potential source of S2S predictability
(e.g., Mariotti et al., 2020). Stratospheric processes have a
longer memory than tropospheric processes, and as a

result, this coupling provides a potential source of
extended-range predictability of surface weather and cli-
mate (Lim, Hendon, & Thompson, 2018). The atmospheric
climate models coupling to the ocean, and land surface
and sea ice models led to improved seasonal climate fore-
casts, including in South Africa.

Land–atmosphere feedback can play an important
role in exacerbating weather extremes and could also
contribute to their predictability on subseasonal time-
scales (Dirmeyer et al., 2021). In a warming climate,
land surface feedback associated with soil moisture
availability can play an important role in amplifying
hot extremes (Wehrli et al., 2019). A positive relation-
ship between soil dryness and heat exists such that
high air temperatures are conductive to drying soil by
increasing evaporative demand (Dirmeyer et al., 2021).
Furthermore, land–atmosphere feedback alters day-
time atmospheric boundary layer, in turn affecting
cloud formation, precipitation, and the state of the free
atmosphere beyond the boundary layer (Dirmeyer
et al., 2021).

Despite the challenges associated with S2S prediction,
there has been an increasing demand for such forecasts
(Alvarez et al., 2020; Pendergrass et al., 2020; Robertson
et al., 2019; Ruiz-Vasquez et al., 2022; Viguad et al., 2017;
Zamora et al., 2021). The demand for S2S forecasts is
due to their relevance for decision-making and early
warnings across a range of sectors, such as agriculture,
water, energy, and disaster risk management (e.g., Black
et al., 2017; Endris et al., 2021; Mariotti et al., 2018). The
establishment of the S2S Prediction Project (Vitart
et al., 2017) and its associated public available database
facilitated a notable increase in S2S-related studies over
the different regions of the globe. A Scopus search (per-
formed on December 1, 2022) with the search criteria
“TITLE (subseasonal, OR subseasonal, OR s2s, AND pre-
diction, OR predictability, OR forecasts) AND (LIMIT-TO
(DOCTYPE, “ar”))” resulted in 319 studies that were
identified. After these studies were examined, two of the
articles were found not to fit into the climate discipline.
Figure 1 shows the yearly frequency of the 317 S2S stud-
ies that were identified in this specific Scopus search. Of
the 317 studies, only 34 studies (about 11%) were per-
formed specifically for regions or countries within the
southern hemisphere (SH).

Due to the potential applications of S2S predictions
and the increasing demand for such forecasts, the World
Weather Research Programme (WWRP) and World
Climate Research Programme (WCRP) jointly established
the S2S Project database that contains near-real-time fore-
casts and reforecasts from 11 operational centers (Lim,
Son, & Kim, 2018; Vitart et al., 2017). The freely available
S2S project database provides a great opportunity for
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researchers to evaluate and compare the forecast skill of
the state-of-the-art global prediction systems (Endris
et al., 2021; Lim, Hendon, & Thompson, 2018; Yang
et al., 2018). In addition, the US National Oceanic and
Atmospheric Administration (NOAA) established the
Subseasonal Experiment (SubX) Project mainly for
research and operations related to S2S predictions and
model development (Pegion et al., 2019). The SubX pro-
vides a publicly available database of 17 years of refore-
casts and more than 18 months of real-time forecasts
from seven US and Canadian modeling groups. The
atmospheric chaotic nature might limit the S2S predict-
ability (e.g., Mariotti et al., 2018; Peng et al., 2023; Zuo
et al., 2016). However, with the availability of S2S data-
bases, improvement of numerical prediction models,
improved ensemble prediction systems, and initialization
in the recent past, skillful S2S predictions are possible
(Hudson et al., 2013; Vitart et al., 2008).

The main purpose of this review article is to provide
a comprehensive background on the state of S2S predic-
tion relevant to the SH. This includes a summary of
S2S prediction skill and predictability, a comprehensive
summary of the studies that have highlighted the need
for S2S predictions and to identify the gap(s) that still
need to be addressed. This research is focused on the
SH region because there are many studies conducted
for the northern hemisphere (NH), with fewer for
the SH. Moreover, SH is equally affected by weather
and climate extremes that fall in the S2S timescales.
The remainder of this paper is organized as follows.
Section 2 gives a summary of the sources of S2S pre-
dictability, with an emphasis on SH, Section 3 briefly
provides the progress of the S2S predictions in SH,
Section 4 provides a summary of the need for S2S pre-
dictions, and summary and conclusion is presented in
Section 5.

2 | SOURCES OF S2S
PREDICTABILITY WITHIN THE
CONTEXT OF THE SOUTHERN
HEMISPHERE

Improving the skill of S2S forecasts is paramount to increas-
ing their value to society. Enhancing forecast skill begins
with understanding the sources and limits of S2S predict-
ability within the Earth system. Previous studies revealed
that there are potential sources of predictability for the S2S
timescales, including the MJO, the state of ENSO, soil mois-
ture, snow cover and sea ice, stratosphere–troposphere
interaction, and tropical–extratropical teleconnections
(e.g., Ferreira et al., 2022; Ichikawa & Inatsu, 2017; Kim
et al., 2014; Mariotti et al., 2020; Wang et al., 2016). The
sources of S2S predictability are each briefly discussed as
follows:

2.1 | Madden Julian oscillation

The MJO is regarded as the dominant mode of subseaso-
nal (intraseasonal) variability in the tropics that couples
with organized convective activity (Jones et al., 2004;
Krouma et al., 2023; Liess et al., 2005; Neena et al., 2014;
Pobon & Dorado, 2008; Pohl et al., 2007; Pohl &
Camberlin, 2014; Sultan et al., 2009; Tam & Lau, 2005;
Wang et al., 2011) and represents a primary source of pre-
dictability in the intraseasonal timescales and modulates
and influences different scales of atmospheric and oce-
anic variability from the tropics to the extratropics (Wang
et al., 2018). According to Vitart et al. (2017), the S2S
project models can skillfully predict the MJO up to
3–4 weeks ahead. Grimm et al. (2021) established that
the subseasonal prediction skill of the ECMWF and
NCEP models in predicting the active and break phases

FIGURE 1 Number of articles per

calendar year from the Scopus search

based on the following criteria: TITLE

(sub-seasonal, OR subseasonal, OR s2s,

AND prediction, OR predictability, OR

forecasts) AND (LIMIT-TO (DOCTYPE,

“ar”)) totaling to 317 from 2000 to 2022.

SH + NH is for both the southern and

northern hemispheres, SH is for

southern hemisphere, and NH is for the

northern hemisphere.
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of the South American monsoon modulated by the MJO
was up to week 3. According to Marshall and Hendon
(2015), the predictive skill of POAMA-2 in predicting
Australian monsoon rainfall is limited to about 2 weeks,
and the predictability beyond week 1 is primarily pro-
vided by the MJO. de Andrade et al. (2021) demonstrated
that the MJO improves subseasonal rainfall skill, by
showing that removing the MJO signal from the models
reduces the skill. The MJO can influence the South
Atlantic convergence zone (SACZ) in the intraseasonal
timescales (Carvalho et al., 2004; Cunningham &
Cavalcanti, 2006; Rosso et al., 2018). The SACZ is the
main summer atmospheric phenomenon occurring in
South America, and it is of great importance because it
regulates the rainy season in the most populated regions
of Brazil (Rosso et al., 2018). Cavalcanti et al. (2017)
established that the BAM system was able to reproduce
the precipitation dipole between southeast and south of
Brazil in the summer season related to the SACZ
variability.

2.2 | El Niño–Southern Oscillation

ENSO plays an important role in the S2S timescale in
that it provides a large source of equatorial Pacific SST
boundary forcing that can act as an important source of
subseasonal prediction (e.g., Cavalcanti et al., 2021).
ENSO is a coupled atmosphere–ocean mode of variability
that involves slow variations in the equatorial Pacific that
impact SSTs in the central and eastern Pacific, and asso-
ciated changes in surface pressure and winds in the
atmosphere that extend over most of the tropical regions
(e.g., Horel & Wallace, 1981; Izumo et al., 2010;
Rautenbach & Smith, 2001; Ropelewski & Halpert, 1987).
In South America, Klingaman et al. (2021) established
that the ECMWF, UKMO, NCEP, and BAM S2S models
captured very well the spatial pattern and magnitude of
ENSO-driven rainfall in week 1, and by week 5, these
anomalies weakened substantially, suggesting inability of
the models to maintain the ENSO-driven anomalous
meridional overturning circulation. Moreover, de
Andrade et al. (2019) found improved subseasonal rain-
fall forecast skill when the ENSO signal was present and
reduced skill after removing ENSO-related precipitation
pattern. The ENSO phase may impact the nature of the
MJO and subseasonal anomalies in the SH (Shimizu &
Ambrizzi, 2015). The interplay between ENSO and MJO
teleconnections raises the prospect of an enhanced “win-
dow of opportunity” for skillful S2S predictions when
and where these teleconnections are active and interact-
ing (Johnson et al., 2014). According to Pohl et al. (2007),
intraseasonal variability is higher during El Niño events

than during La Niña events, even though the convection
itself is less active during El Niño events. Furthermore,
Hoell et al. (2021) found that there is an ENSO effect in
monthly precipitation in southern Africa.

2.3 | Soil moisture

Soil moisture is one of the most important land surface
features for S2S predictability and significantly modulates
evaporation and ultimately precipitation through local
and regional water and energy circles (Cavalcanti
et al., 2021; Chevuturi et al., 2021). The memory of soil
moisture can last several weeks, which can influence the
atmosphere through changes in evaporation and surface
energy budget and can affect the forecast of air tempera-
ture and precipitation on subseasonal timescales (Arsego
et al., 2023; Koster et al., 2000). Moreover, Hirsch et al.
(2014) showed that realistic soil moisture initialization in
models improved skill of predicting maximum tempera-
tures in southeast Australia up to 16–30 days in advance.
Wang, Chen, et al. (2020) established that soil moisture
has large variance in South Africa and Australia, with
variations of 10–30 days dominant in South Africa and
30–50 days for Australia. Soil moisture memory is con-
trolled by the seasonality of the atmospheric state, the
dependence of evaporation on soil moisture, the variation
of runoff with soil moisture, and the coupling between
soil moisture and the atmosphere (Conil et al., 2007).

2.4 | Snow cover and sea ice

The cryosphere plays an important role in the Earth's cli-
mate system. Snow cover is a key component of the cryo-
sphere, with high reflectivity of sunlight, high infrared
emissivity, and low thermal conductivity compared to
other natural land components (Cohen & Rind, 1991).
Snow cover imposes a significant impact on the surface
radiation budget, turbulent energy fluxes, and local hydro-
logical fluxes in the atmosphere (Xu & Dirmeyer, 2011). In
addition, the positive snow–albedo feedback can further
amplify this impact as a strong forcing to the lower bound-
ary of the atmosphere. Furthermore, snowmelt in the
spring season may impact local soil moisture variability
and further influence the local precipitation–soil moisture
feedback in the following summer (Cohen & Rind, 1991).
Snow cover also plays an important role in the radiative
and thermal properties of widespread snow cover anoma-
lies and has the potential to modulate local and remote cli-
mate over monthly to seasonal timescales (Sobolowski
et al., 2010). Because of the significant effects of the conti-
nental snowpack, accurate snow simulation in a Land
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Surface Model (LSM) is critical to climate predictions
(Wang, Xie, et al., 2020). Inaccurate representation of
snow within an LSM could lead to substantial errors in
the atmospheric state in coupled simulations (Benjamin &
Rodell, 2008).

Sea ice plays a major role in the climate system and
has an impact on Earth's energy and water budget,
which, in turn, have an impact on atmospheric and oce-
anic circulations (Vihma et al., 2016). The atmosphere
plays a major role in driving sea ice variability, and if pre-
dictable, the atmospheric circulations can therefore
contribute to the prediction of the sea ice conditions
(Guemas et al., 2016). The long memory of the ocean
makes it a major source of climate predictability. The ori-
gin of the predictability of sea ice is mainly from the per-
sistence or advection of sea ice anomalies, interactions
with the ocean and atmosphere, and changes in radiative
forcing (Guemas et al., 2016). Sea ice prediction at S2S
timescales was found to be challenging due to a lack of in
situ observations to develop adequate sea ice models and
initialization techniques (Subramanian et al., 2019). In
fact, Zampieri et al. (2019) evaluated the ability of six
operational forecasting system from the S2S project in
predicting the evolution of the sea ice edge around the
Antarctic continent and found that only the ECMWF sys-
tem has skill up to 1 month in advance. In general, the
skill for the other forecasting systems was marginal. Fur-
thermore, the skill in the prediction of sea ice in the Ant-
arctic was found to be significantly lower compared to
the Arctic continent.

2.5 | Stratosphere–troposphere
interaction

The stratosphere is coupled to the troposphere through
teleconnections between atmospheric waves and large-
scale circulation drive weather patterns (Lim, Son, &
Kim, 2018). Byrne et al. (2019) demonstrated that the
stratosphere can be a source of S2S predictability of SH
circulation during austral spring and early summer sea-
sons through its influence on the zonal-mean eddy-
driven jet. However, the potential predictive skill gained
from stratospheric variability can be limited by biases in
representation of stratospheric processes and coupling of
the stratosphere with surface climate in forecast systems
(Lawrence et al., 2022). These biases can affect both the
mean state and the variability in the stratosphere and
have negative impact on troposphere coupling (Lawrence
et al., 2022). The sudden stratospheric warmings (SSWs)
are driven by the stratosphere–troposphere dynamical
coupling and are predictable at subseasonal timescale
(e.g., Karpechko et al., 2018; Rao et al., 2020). In austral

spring, when the SH stratosphere–troposphere coupling
is at its strongest, the S2S prediction skill of SSWs is
enhanced due to a well-resolved stratosphere (Rao
et al., 2020). Using the S2S project models, Rao et al.
(2020) showed that the models were able to predict the
September 2019 SSW in the SH up to 18 days in advance.
It is worth noting that the SSW events are rare in the SH
(e.g., Kozubek et al., 2020). Nevertheless, the status of the
polar vortex can be a source of predictability (Byrne
et al., 2019). Son et al. (2020) assessed the skill of 10 S2S
project models in predicting both the extratropical strato-
sphere and troposphere and found that most models reli-
ably predicted the stratospheric circulation up to about
4 weeks ahead and about 2 weeks for the troposphere
during austral summer and winter seasons. The strato-
sphere prediction skill is higher than the troposphere
skill in austral spring (Son et al., 2020).

Signals of changes in the polar vortex and Southern
Annular Mode (SAM) are believed to come from the strato-
sphere with the anomalous tropospheric flow lasting up to
about 2 months (Ashok et al., 2007). The SAM signal corre-
sponds to 22%–34% of the SH atmospheric circulation vari-
ance (Prado et al., 2021). SAM is the leading mode in
middle- to high-latitude atmospheric circulation (Prado
et al., 2021; Thompson et al., 2005). The weakening and
intensification of the SH polar vortex can lead to the nega-
tive and positive phases of the tropospheric SAM in spring,
respectively (Lim, Hendon, & Thompson, 2018). SAM pre-
sents positive and negative phases, with the positive phase
corresponding to negative mean sea-level pressure anoma-
lies north of 60� S and positive mean sea-level pressure
anomalies south of 60� S, and is associated with stronger
circumpolar westerlies, increased cyclone activity, and
stronger zonal winds (Prado et al., 2021). Furthermore, the
positive phase of SAM is associated with anomalously wet
conditions over most of Australia and Southern Africa
(Gillett et al., 2006). The positive phase of SAM is associ-
ated with anomalously high surface pressures near
New Zealand and southwest Australia (Cowan et al., 2019).
According to Yang et al. (2017), the MJO also plays an
important role in modulating the stratosphere by triggering
anomalous planetary waves and gravity waves. Further-
more, Alexander et al. (2018) suggested that the tropical
gravity waves drive subseasonal stratospheric zonal wind
anomalies that descend with increasing MJO phases
3 through 7.

2.6 | Ocean conditions

SST anomalies lead to changes in air–sea heat flux and
convection, which affect atmospheric circulation (Cronin
et al., 2019). The timescale of subseasonal prediction is
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such that the influence of atmospheric initial conditions on
the predictability is decreasing, while the contribution from
slowly evolving oceanic conditions is increasing (Hudson
et al., 2013). For this timescale, a realistic representation of
ocean–atmosphere coupling can be important. It is possible
that as the contribution of atmospheric initial conditions
on the prediction skill decreases, the relative contribution
of including a realistic ocean–atmosphere coupling on pre-
diction skill increases. Ma et al. (2021) using the NCEP,
ECMWF, and UKMO S2S project ocean–atmosphere
coupled models and the GEPS, ISAC-CNR, and Global
Ensemble Forecast System (GEFS) atmospheric models
showed that the predictability of the atmosphere in
coupled models is higher than in uncoupled models. More-
over, MJO prediction skill at S2S timescales was found to
be higher in coupled models compared to uncoupled
atmosphere-only models (Subramanian et al., 2019). Zhao
et al. (2021) showed that in the NCEP system, the predict-
ability limit of the lower troposphere is significantly higher
than in the GEFS due to the contribution of low-frequency
boundary signs from air–sea interactions.

2.7 | Tropical–extratropical
teleconnections

Skillful subseasonal forecasts generally depend on the
skillful prediction of the large-scale atmospheric circula-
tion, which is closely linked to large-scale teleconnection
patterns (Black et al., 2017). These teleconnection patterns
reflect large-scale changes in the atmospheric wave and jet
stream patterns and thus have strong impacts on tempera-
ture, precipitation, and storm tracks over vast geographical
areas (Black et al., 2017). In the SH, only two climatic tele-
connection patterns, namely, the Pacific–South American
(PSA) and SAM patterns, have been identified (Cavalcanti
et al., 2021; Stan et al., 2017). Cavalcanti et al. (2021)
investigated the skill of the ECMWF and NCEP S2S pro-
ject models in predicting the PSA and SAM patterns and
found skill up to 4 weeks and 3 weeks ahead, respectively.
Precipitation anomaly signals associated with these tele-
connection patterns were well predicted 2 weeks ahead.
The importance of the two-way interactions between the
tropics and the midlatitude and high latitude on intrasea-
sonal timescales of 10–100 days has been acknowledged
(Stan et al., 2017).

3 | S2S PREDICTIONS IN THE
SOUTHERN HEMISPHERE

Since the establishment of the S2S databases, research
studies to evaluate the skill of the S2S models in different

regions have been conducted. It is worth mentioning that
in the SH, only Australia and Brazil developed and run
S2S models, to our knowledge. Most of these studies are
conducted in the NH compared to the SH, with very few
studies for southern Africa. Hence, the focus of this
review is on the SH.

3.1 | South America

Klingaman et al. (2021) investigated the subseasonal fore-
cast skill of the European Centre for Medium-Range
Weather Forecasts (ECMWF; Vitart, 2014), National
Centres for Environmental Prediction (NCEP; Saha
et al., 2014), and United Kingdom Meteorological Office
(UKMO; MacLachlan et al., 2015) models from the S2S
Prediction project and the Brazilian Global Atmospheric
Model version 1.2 (BAM-1.2; Guimaraes et al., 2020) in
predicting austral summer South American rainfall for
week 1 (1–7), week 2 (8–14), week 3 (15–21), and week
4 (22–28) averages. Their result suggests that most of the
models have forecast skill in week 1 and week 2 over
the South American region, except that the skill was poor
over southern Amazonia and near the Andes. By week
3, forecast skill was only found in northern, northeastern,
and southeastern South America and no forecast skill
beyond week 3.

The skill of the individual SubX models, as well as
their Multi-Model Ensemble (MME), was evaluated in
predicting anomalous temperature and precipitation for
week 3 in South America (Pegion et al., 2019). Most
models and the MME have skill for temperature forecasts
over the whole of South America for all months. The skill
of the individual models and the MME was higher than
the skill of a persistence forecast, indicating that the skill
come from sources other than the trend and/or ENSO.
The MME has improved skill when compared to individ-
ual models. In predicting the precipitation, the only
region of statistical significance over all months in South
America was over the northeastern parts of Brazil. This
region of precipitation skill was consistent across the
individual models and has higher skill than a persistence
forecast. Again, the MME has higher skill than individual
models.

Alvarez et al. (2020) assessed the ECMWF S2S model
at predicting anomalously cold and warm week over cen-
tral and southeastern South America during July 2017
and found skill in predicting cold temperatures 1 week
in advance, and 2 weeks ahead for warm anomalies.
Fernandes et al. (2022), using SubX MME of week 2 pre-
cipitation, found that fire probability can be skillfully pre-
dicted over a large part of the Amazon. Osman and
Alvarez (2018) assessed the Predictive Ocean Atmosphere
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Model for Australia (POAMA) and Beijing Climate
Center Climate Prediction System version 1 (BCC-CPS)
from the S2S project at predicting an intense heat wave
that occurred during December 2013 in southern South
America and found that both models have high skill for
weeks 1 and 2. In South America, Coelho et al. (2018)
evaluated the skill of the ECMWF S2S model at predict-
ing precipitation and found high skill in weeks 1 and
2 compared to weeks 3 and 4.

The South American summer monsoon is the main
driver of rainfall variability across tropical and subtropi-
cal South America (e.g., Campos et al., 2019; Sena &
Magnusdottir, 2020). Active (break) phases of the South
American monsoon are associated with cyclonic westerly
(anticyclonic easterly) winds (Ferreira & Gan, 2011).
According to Grimm et al. (2021), skillful prediction of
active and break periods of the South American summer
monsoon at subseasonal timescales has great economic
and social importance. Grimm et al. (2021) assessed the
subseasonal prediction skill of the ECMWF and NCEP
models in predicting the active and break phases of the
South American monsoon and found that the models
have skill up to week 3 for both active and break phases.

3.2 | Australia

Hudson et al. (2011) assessed the forecast skill of the
POAMA1.5 system in predicting precipitation and mini-
mum and maximum temperatures over Australia. Their
focus was on the first fortnight (averaged days 1–14 of
the forecast) and the second fortnight (averaged days
15–28) for winter through to spring (June–November)
over a 27-year hindcast dataset. Their results showed that
the model has the highest skill in predicting the first fort-
night compared to the second fortnight for both the pre-
cipitation and temperatures. It is worth noting that the
Bureau of Meteorology upgraded the ACCESS-S1 system
to ACCESS-S2; however, there is no significant skill
improvement in predicting rainfall and maximum and
minimum temperature for multi-week forecasts in the
latter (Wedd et al., 2022).

Hudson et al. (2015), as part of the Managing Climate
Variability (MCV) project, investigated the skill of the
POAMA-2 at predicting heat extremes on weekly to sea-
sonal timescales over Australia. Their result showed that
the week 3 and week 3 + 4 forecasts are the least skillful.
For week 2 + 3, forecast skill was found in the autumn
and winter months, with high skill over the southeastern
parts in the spring months. In general, the highest skill is
found over northern Australia from late summer through
to winter and over the eastern to southeastern parts in
the winter and spring months.

Hudson and Marshall (2016) also assessed the forecast
skill of the POAMA-2 system at predicting the heatwaves
during December–January–February (DJF) for week
2, week 3, week 1 + 2, week 3 + 4, and month timescales.
They used the Relative Operating Characteristic (ROC) to
discriminate between events and non-events of the forecast
and reliability diagrams to determine the usefulness (reli-
ability) of the forecasts. Their result indicated that all of
Australia exhibits ROC significantly >0.5 for all forecast
lead times, implying good forecast discrimination in gen-
eral. The ROC showed better forecast discrimination for
the week 1 + 2 forecasts. There is particularly good forecast
discrimination over northern tropical Australia at all lead
times. In terms of reliability, the model seems to be either
over-confident or over-forecasting, particularly for the week
3 + 4 forecasts. Reliability is worst for the week 3 forecasts
and best for the month forecasts. Forecasts over southeast-
ern Australia tend to be over-confident, while forecasts
over northern Australia tend to be over-forecasting. It is
worth noting that the finding of Hudson et al. (2015) are
mostly in agreement with the finding of Hudson and
Marshall (2016).

Marshall and Hendon (2015) investigated subseasonal
prediction skill of POAMA-2 for predicting Australian
summer monsoon anomalies. Their results showed that
forecast model can predict the local large-scale zonal
wind anomalies beyond 4 weeks and monsoon rainfall
anomalies up to 2 weeks ahead, with the active episodes
more predictable than the break episodes. Like the South
American monsoon, active and break Australian mon-
soon rainfall phases during summer are associated with
large-scale cyclonic westerly and anticyclonic easterly
winds, respectively (Marshall & Hendon, 2015). King
et al. (2020) evaluated Australian Bureau of Meteorology
Seasonal Prediction System (ACCESS-S1) for predicting
rainfall extreme indices over Australia and found skill up
to 1 month ahead. However, they indicated that the skill
drops at lead time of a week or more.

Tsai et al. (2021) examined four S2S models at predict-
ing the subseasonal forecasts of the northern Queensland
floods of February 2019, and their findings suggest that
the models were able to predict the event up to 8–10 days
in advance. Cowan et al. (2019) showed that ACCESS-S1
predicted a 40%–60% probability of extreme rainfall, cold
temperatures, and high winds up to 2 weeks in advance.
They also showed that ACCESS-S1 skillfully predicted the
anomalous surface pressure ridge to the south of
Australia. In Australia, Schepen et al. (2018) evaluated the
skill of the ACCESS-S1 system at predicting rainfall for
12 catchments and found good skill for 2–10 day forecasts,
with skill gradually weakening for days 11–19 and 20–28.

Benthuysen et al. (2021) assessed the skill of the
ACCESS-S1 at predicting the 2020 marine heatwave
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(MHW) in the Great Barrier Reef and the Coral Sea.
Their results showed that the model was able to capture
the observed MHW's severity and spatial extent for the
week 1 forecasts. Hirsch et al. (2014) showed that subsea-
sonal forecast skill is sensitive to the land surface initiali-
zation methods over southeastern Australia. Using
the Weather Research and Forecasting (WRF) model
coupled to the Community Atmosphere-Biosphere Land
Exchange (CABLE) model, they showed that initializa-
tion from prior offline simulations improved subseasonal
predictability for temperature, particularly maximum
temperature. Oh et al. (2022) investigated the impact of
stratospheric ozone on the subseasonal prediction in the
SH spring. Their results showed that the Global Seasonal
Forecasting System version 5 (GloSea5) has skill at pre-
dicting the stratospheric ozone several weeks ahead and
has improved skill in week 6–7 maximum surface air
temperature over Australia.

3.3 | Southern Africa

The skill of the ECMWF, UKMO, and Centre National de
Recherches Meteorologiques (CNRM; Voldoire et al., 2013)
S2S project models and their MME was investigated in pre-
dicting minimum and maximum temperatures for days
1–14 (week 1 + 2), days 11–30, and days 1–30 (full month
calendar) over South Africa (Phakula et al., 2020). Higher
skill was found for week 1 + 2 in predicting both mini-
mum and maximum temperatures, with the MME outper-
forming the individual models. All individual models and
the MME have a higher skill for days 1–30 compared to
days 11–30 in predicting minimum and maximum temper-
atures, again the MME outperforms the individual models.
In fact, the skill has significantly reduced for days 11–30
compared to days 1–14 and days 1–30 timescales. Using
the NCEP CFSv2 and ECMWF hindcasts of 850-hPa geopo-
tential heights of the S2S prediction project, Engelbrecht
et al. (2021) assessed the subseasonal deterministic predic-
tion skill of low-level circulation for week 3 and week 4 that
are relevant to weather and climate of southern Africa.
They found skill relative to persistence into week 3 for
some warm and cold months. Their findings further
revealed that the hindcasts initialized in the warmer
months seem to have higher skill than the cold month
hindcasts.

In Africa, de Andrade et al. (2021) evaluated subsea-
sonal precipitation forecasts using hindcasts from the
ECMWF, UKMO, and NCEP S2S project models. They
divided Africa into sub-regions, namely, West Africa
Monsoon (WAM), Equatorial West Africa (EWA),
Equatorial East Africa (EEA), and Southern Africa (SA).
Here, the focus is on SA and DJF seasons. The DJF

season is the main rainy season in SA. Using Pearson's
correlation coefficient (deterministic verification) between
the hindcast ensemble mean and observed precipitation
anomalies, their result showed that all the models have
high skill in week 1, and skill drops significantly in weeks
2–4. ROC and attribute diagrams (probabilistic verifica-
tion) showed high skill in week 1 and week 2, with
reduced skill in week 3 and week 4. Musonda et al. (2021)
evaluated the ECMWF S2S 20 years reforecast for monthly
rainfall over Zambia, and their findings indicated that the
model realistically simulates the mean annual cycle skill-
fully by identifying the wet season from November–March
and the dry season from June–September.

There is a huge gap between the S2S prediction stud-
ies in the NH compared to the SH. For the NH, the vari-
ous aspects relevant to subseasonal prediction such as
prediction skill, sources of predictability, and windows of
opportunity are actively being investigated. This is also
the case for South America and Australia, although to a
lesser extent in terms of the number of studies, while for
southern Africa, only a few studies on subseasonal pre-
diction skill have been performed so far. To that effect,
there is a need for more S2S studies in the SH, particu-
larly for the southern African region. Most of African
countries are dependent on rain-fed agricultural activities
and are vulnerable to climate extreme events that have
detrimental socioeconomic impacts. Moreover, there is a
need to develop temperature and rainfall prediction sys-
tems at S2S timescales in the African region, particularly
to facility readiness for high-impact events such as flood
events along the Mozambique coast (e.g., Tropical
Cyclone Idai) and the eastern coast of South Africa as
have happened in April 2019 (Bopape et al., 2021). Fur-
thermore, it is imperative that governments in the region
invest more resources in S2S prediction studies, particu-
larly with the changing climate challenges that the world
is facing.

3.4 | Southern mid- and high-latitude
regions

Wang, Liu, et al. (2020) assessed the S2S predictive skill
of the Amundsen Sea Low (ASL) in two state-of-the-art
forecasting systems and found that the ASL predictability
during austral spring is higher than in the other seasons
for lead time up to 4 weeks. The highest skill is found in
weeks 1–2 compared to weeks 3–4. Their findings further
suggested that the stratosphere–troposphere coupling
provides an important source of predictability for the
Antarctic surface weather and climate on the S2S time-
scale. Rao et al. (2020) tested the skill of the 11 S2S
models in predicting the SH minor SSW of September
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2019. Their results indicated that the predictability of the
event was about 18 days in the high-top forecasting
models. Zampieri et al. (2019) evaluated the ability of
6 S2S operational forecasting systems in predicting the
evolution of the sea ice edge around the Antarctic and
found that only one system produced a potentially useful
forecast for up to 1 month. Gregory et al. (2020) assessed
the subseasonal tropical cyclone forecasts from the
ECMWF and ACCESS-S1 systems for the 2017/18 and
2018/19 SH cyclone seasons. Both systems showed good
skill in forecasting cyclone activity out to 3 weeks in
advance. Pérez-Fern�andez and Barreiro (2023) evaluated
the forecast skill of the NCEP CFSv2 and IAP-CAS
(Bao et al., 2018) S2S models in predicting the evolution
of observed Rossby wave pockets (RWPs) that last more
than 8 days during SH summer. Their results revealed
that both models forecasted the RWPs that rapidly lose
energy after the 6–7 lead days, which potentially limit
RWPs prediction to the synoptic time range.

4 | NEED FOR S2S PREDICTIONS

The S2S timescale is relevant to planning and prepared-
ness in sectors such as public health, water management,
energy, and agriculture (e.g., Cavalcanti et al., 2021;
White et al., 2017). The potential application sectors are
briefly discussed below:

4.1 | Public health sector

S2S prediction can have a very valuable applications for
high-impact weather events that have a societal impact
on public health (Li & Robertson, 2015; Robertson
et al., 2019). Extreme weather events, such as heat waves,
are common in SH, for example, the heatwaves of
2015/16 austral summer in southern Africa, extreme heat
waves in the summer of 2008 and 2009 that lasted for
15 and 13 days in Adelaide, South Australia (Nitschke
et al., 2011), and the heat wave of October 2020 in central
South America (Marengo et al., 2021). Extreme high-
temperature events over a prolonged period can lead to
hyperthermia (van der Walt & Fitchett, 2021). S2S fore-
casts of heat waves can aid decision-makers in the health
sector in planning and preparedness ahead of the events.

4.2 | Energy sector

Energy resources are a primary driver of sustainable
growth and development of a country's economy. A defi-
cit in energy resources can affect key economic sectors

such as agriculture, manufacturing, and households, among
others. Knowledge of climatic conditions at S2S timescales
can improve the decision-making of renewable energy gen-
eration and electricity demand (Soret et al., 2019). S2S rain-
fall variation on local and regional scale has an impact on
hydropower generation (Klingaman et al., 2021). Most of
the Brazilian energy system is associated with hydroelectric
generation, responsible for 53.7% of the total energy genera-
tion (Arsego et al., 2023). Extreme weather-related events,
particularly cold and heat waves, have a negative impact on
energy production and consumption and introduce a level
of unpredictability affecting operations and price volatility,
impacting energy security (Anel et al., 2017). S2S forecasts
of cold and heat waves can be beneficial for energy supply
and demand decision-making.

4.3 | Water management

Prolonged drought can lead to a shortage of water supply
to citizens, particularly with an increasing population.
One such example was during the 2014–2017 drought in
Cape Town, South Africa, where overall dam levels sup-
plying the city dropped from 92.5% to 23%, resulting in
the city water management announcing a “Day Zero”
in January 2018 (Calverley & Walther, 2022). “Day Zero”
meant that the city's dam levels will reach 13.5% and
water supply would be impossible. In South Australia,
freshwater managers and users rely on weather and cli-
mate information for water resource management, partic-
ularly during the Millennium Drought (Rayner, 2019).
On the other hand, excess of rainfall can have detrimen-
tal socioeconomic effects. For example, according to Begg
et al. (2021), on average, Figi's economy suffers flood
losses of approximately US$9.7 million per annum and
about 10 people lose their lives annually due to floods.
S2S forecasts cannot be used to make specific flood pre-
dictions but could be used to identify the increased likeli-
hood of flooding where stream flows have already been
predicted to be high (White et al., 2017).

4.4 | Agricultural sector

Skillful subseasonal forecasts have potential applications
to provide valuable guidance in the decision-making pro-
cess in the agricultural sector. Rainfall extremes, both
excess and lack, can be devastating to farmers. For exam-
ple, during the austral summer of 2018/2019, devastating
floods in northeast Australia killed approximately
625,000 head of cattle and 48,000 sheep (Tsai et al., 2021).
The 2015/2016 devastating drought in southern Africa
affected about 40 million people and resulted in a cereal
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deficit of 9.3 million tons and more than 643,000
livestock deaths (Matlou et al., 2021). According to
Thomasz et al. (2023), Argentina produces 50 million
tons of soybean annually and is the third largest in the
world after the USA and Brazil, and water deficit during
critical period and excess during harvest affect output.
The 1997/98 El Niño drought had a major impact on
New Zealand agriculture and resulted in a loss of
$618 million to the GDP (Salinger & Porteous, 2014).
Agricultural activities in the South Pacific region are
heavily dependent on rainfall due to the absence of
extensive irrigation (Beischer et al., 2021). South Pacific
Convergence Zone (SPCZ) affects rainfall variability of
the South Pacific region (e.g., Beischer et al., 2021;
Higgins et al., 2020; Narsey et al., 2022). Variations in
the SPCZ location, slope, and intensity affect water avail-
ability and as a result, productivity of subsistence crops is
affected (Beischer et al., 2021). Forecasts on the S2S lead
times could also be used to support dynamic updates of
crop yield estimates, which could support early planning
to alleviate food security issues.

5 | SUMMARY AND
CONCLUSIONS

This study reviewed the S2S prediction and predictabil-
ity with a focus on SH. This is because there are less
studies on S2S timescales conducted for SH compared
to NH. However, SH is equally affected by weather and
climate extremes that fall in S2S timescales. To lay a
good foundation for our study, we first reviewed the
S2S prediction in general. S2S timescale (between
2 weeks and 2 months) bridges the gap between
weather forecasting (0–7 days) and seasonal climate pre-
dictions (3–6 months). Due to its relevance for decision-
making and early warnings across a range of sectors,
there has been an increasing demand for accurate S2S
predictions from the applications community. The avail-
ability of S2S databases, such as the S2S prediction and
SubX projects, makes S2S prediction possible. Previous
studies reveal that there are potential sources of predict-
ability for the S2S time range, including the MJO, the
state of ENSO, soil moisture, snow cover and sea
ice, stratosphere–troposphere interaction, and tropical–
extratropical teleconnections. In this study, we review
the S2S predictions focusing on South America,
Australia, and southern Africa. From the studies we
have looked at, it seems that the S2S prediction skill in
SH is limited to 2 weeks ahead, irrespective of the vari-
ables of interest. However, temperature forecasts have
enhanced skill compared to rainfall forecasts. It is
worth noting that these studies used different methods

and skill metrics to assess the prediction skill of the
model forecasts, and that is a challenge. The use of
standard verification skill metrics for S2S predictions
for operational forecasts is required. Looking at the
number of S2S studies on the SH, there is a need to
conduct more studies for the SH, particularly for the
African continent. In fact, there are very few applica-
tions S2S prediction studies compared to seasonal pre-
diction studies in both hemispheres (Osman et al.,
2023). The African continent is vulnerable to weather-
and climate-related disasters, and S2S forecasts can
assist in alleviating the risk of such disasters.
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