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Abstract 

Outdoor PM2.5 samples were collected for 34 months in Pretoria, South Africa from 18 
April 2017 to 28 February 2020. The average total PM2.5 concentration was 
23.2 ± 17.3 µg.m3 (0.69–139 µg.m−3), with the highest mean recorded during winter 
and the lowest during summer (p < 0.05). The sources were determined by means of 
cross referencing the US EPA PMF 5.0 program and the NOAA HYsplit model. The 
sources of the total PM2.5 were mining (33%), resuspended dust (24%), industry 
(15%), general exhaust (12%), vehicular emissions (12%) and biomass burning (4%). 
Sources of air pollutants are both ubiquitous and seasonal. 

Highlights 

 In central Pretoria, the largest contributing sources of PM2.5 are resuspended 
dust matrix and mining from surrounding areas; 

 A winter analysis was run where As, Se and Pb was included in the dataset, 
confirming biomass burning sources which were typically higher during the 
winter season; and 

 Air quality management policies should address both ubiquitous and seasonal 
sources. 
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Introduction 

“Aerosolized” particulate matter (PM), found in air streams, is a complex mixture of 
both chemical and biological components (Cao et al. 2014; Liang et al. 2014; Pascal 
et al. 2013). The constituents of ambient PM include biological organisms (e.g., 
bacteria, fungi and viruses), organic compounds (e.g., polycyclic aromatic 
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hydrocarbons [PAHs] and their nitro-derivatives [NPAHs]), nitrates, sulfates, trace 
metals (e.g., iron, copper, nickel, zinc and vanadium) (Kalisa et al. 2018, 2019; Shi 
et al. 2016) and carbon compounds (black carbon [BC] and organic carbon [OC]). 

These components vary substantially according to time, location, season and climate 
(Safari-Kagabo et al. 2020). Suspended particulates are further defined by size. 
Coarse particulates have a diameter between 2.5 and 10 µg.m−3, whilst fine 
particulates (PM2.5) have a diameter smaller than 2.5 µg.m−3 (Ruuskanen et al. 2001). 

The chemical composition and its relative proportions differ between urban and rural 
locations as either locations are subject to not only different characteristic variations 
in source strength but also to shifting meteorological conditions over time and space 
(Eklund et al. 2014; Tramuto et al. 2011; Djolov and Tshehla 2018; Tshehla and Wright 
2019) (Chimidza and Moloi 2000; Dimitriou and Kassomenos 2014; Hao et al. 2019). 

In 2020, Pretoria had an overall population of 2,566,000 (Stats 2020). Geographically, 
Pretoria is situated approximately 55 km (34 mi) north-northeast of Johannesburg in 
the northeast of South Africa, in a transitional belt between the plateau of the Highveld 
to the south and the lower-lying Bushveld to the north. Pretoria is situated at an altitude 
of about 1339 m (4393 ft) above sea level surrounded by the hills of the Magaliesberg 
range with agricultural and mining activities in the surrounds. Pretoria experiences 
summer rainfall and very dry winter seasons. 

Soot, BC and UV-PM are an ever-present feature in urban societies in both developed 
and developing countries (Nazarpour et al. 2019; Ngo 2013; Novakov et al. 2005; Zhi 
et al. 2021; Zhou et al. 2013, 2020). In the United States, the Congress on Black 
Carbon, US EPA defines BC as the “carbonaceous component of PM that absorbs all 
wavelengths of solar radiation” (hence, the appropriateness of the term “black”) (Long, 
Nascarella, and Valberg 2013). In its 2012 report, the Joint World Health Organization 
(WHO)/Convention Task Force on Health Aspects of Air Pollution similarly describes 
BC as “an operationally defined term, which describes carbon as measured by light 
absorption” (Singh et al. 2014; Venter et al. 2012). 

Although the composition of BC particles was not investigated in this project, it is 
interesting to note that BC has variable chemical compositions depending on their 
sources. These are sometimes primarily elemental carbon (EC), but often existing as 
complex mixtures of EC, OC and other non-carbon species such as ionic species and 
trace metals (Long, Nascarella, and Valberg 2013; Singh et al. 2014; Wichmann and 
Voyi 2012). Maritz et al. (2015) and Sahu et al. (2011) established the seasonal and 
diurnal variations of BC and UV-PM where the mean concentrations were higher 
during dry seasons (Sahu et al. 2011). In South Africa, this will not be the case due to 
winter biomass burning (Adeyemi et al. 2021; Djolov and Tshehla 2018). 

Positive Matrix Factorization (PMF) has been used extensively for source 
apportionment of ambient PM in environmental studies, where the goal is to resolve 
the mixture of sources that contributes to PM samples (Hopke et al. 2020; Molnár, 
Johannesson, and Quass 2014). 
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An advantage of PMF when working with environmental data is it forces all the values 
in the solution profiles and contributions to be nonnegative, which is more realistic than 
solutions from methods like principal components analysis (PCA) (Norris et al. 2014). 

Assigning sources to the factors are subjective and the relative percentage presence 
of BC, UV-PM and the tracer elements are relied upon. The objectives of the project 
were to 

 investigate if there were any temporal trends in PM2.5 and their trace element 
content; and 

 establish potential sources of emissions by means of trace elemental 
combinations. 

Methods 
PM2.5 Sampling Site 

The site was located at the School of Health Systems and Public Health (SHSPH), 
University of Pretoria, and aerosol samples were collected approximately 20 m above 
ground, on the roof of HW Snyman South Building, Prinshof Campus (S25° 43′ 57′′ 
E28° 12′ 10′′). The study site can be characterized as an urban background area. 
Activities surrounding the site are large educational institutions, two governmental 
hospitals and industries in the northern and north-western areas including metal and 
motor manufacturing, ferrochrome smelters and mining (Djolov and Tshehla 2018) 
(Figure 1). 

 

Figure 1. ••• 
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PM2.5 Sampling 

This project used the same sampling methodology as in previous South African 
studies (Adeyemi et al. 2021; Howlett-Downing et al. 2022; Novela et al. 2020; 
Williams, Petrik, and Wichmann 2020). Of 24-h samples were collected every third 
day from 9:00 to 9:00 am the next day using GilAir-5 personal air samplers with 2.0 µm 
PFTE (Zefluor) 37 mm filters (Zefon International, Inc., Ocala, FL34474), between 18 
April 2017 and 28 February 2020. The total dataset included 350 PM2.5 filter samples 
with 59 duplicate samples. 

Gravimetric and Chemical Analysis of Filters 

Gravimetric analyses of PM2.5 filters were carried out using a 1 µg sensitivity 
microbalance (Mettler Toledo, XP6) under climate-controlled conditions (temperature 
and relative humidity were maintained at 21 ± 0.5 °C and 50 ± 5%, respectively) at the 
Air Quality Laboratory, SHSPH. The elemental composition of aerosol particles on all 
filters was determined using an XEPOS 5 energy-dispersive X-ray fluorescence 
(EDXRF) spectrometer (Spectro Analytical Instruments GmbH, Kleve, Germany) at 
the Department of Chemistry and Molecular Biology, Atmospheric Science Division, 
University of Gothenburg. BC and UV-PM were measured using a Model OT21 Optical 
Transmissometer (Magee Scientific Corp., Berkeley, CA) (Boman et al. 2009; Molnár, 
Johannesson, and Quass 2014; Molnár et al. 2017). 

Source Apportionment 

PMF is a multivariate receptor modeling concept that uses a weighted least square 
approach to estimate source profiles and contributions (Paatero et al. 2014; Paatero 
and Hopke 2003, 2009). The Environmental Protection Agency program EPA PMF 
version 5.0 was used to conduct the source apportionment study (Molnár et al. 2017). 
An iterative process is used to minimize a residual function for optimization of the 
calculations. In the case of missing data, the median was substituted and the 
uncertainty was calculated using four times the median (Reff, Eberly, and Bhave 
2007). 

Back Trajectory Calculations 

The origins of air masses passing through Pretoria, South Africa, were used as a proxy 
for the long-range transport of air pollutants from distant sources. The HYbrid Single 
Particle Lagrangian Integrated Trajectory (HYsplit) program was used to generate 
backward trajectories for each year of the sampling campaign (i.e., 18 April 2017 to 
16 April 2018, 19 April 2018 to 22 April 2019 and 25 April 2019 to 28 February 2020) 
(Figure 2). Every 6 h (0:00; 6:00; 12:00; 18:00), an analysis field (resolution 2.5° × 2.5° 
and 17 vertical levels) was generated, and the wind field was interpolated linearly 
between each analysis. Since a single backward trajectory has a significant 
uncertainty and is of little importance, as in previous studies, this study used an 
ensemble of trajectories with a 500 m starting height and a fixed offset grid factor of 
250 m (i.e., 250 m and 750 m). For cluster analysis, the average daily trajectories were 
estimated backwards for 72 h. For the study period, 13,512 backward trajectories were 
generated (Howlett-Downing et al. 2022). 



5 
 

 

Figure 2. ••• 

Data Preparation 

There is no standard rule on what species to select or leave out in multiple-year studies 
where the range of species varies per year (Reff, Eberly, and Bhave 2007). For the 
main 34-month dataset used in the PMF model, trace elements above the level of 
detection (LoD) was included. Two sensitivity studies were then run where a winter 
analysis and a dataset including an adjusted Ni was performed. The winter analysis 
included As, Se and Pb which were below the LoD for the 34-month study but were 
above the LoD during the winter months. 

Statistical Analysis 

The factors were tested for independence and seasonality by means of a Kruskal–
Wallis test (H0: µ1 ≠ µ2 ≠ µ3 ≠ µ4) using STATA version 15 (StataCorp LLC, College 
Station, TX). A Spearman’s Rank Correlation test was performed to test for 
correlations between constituents of total PM2.5, BC, UV-PM and trace elements. 

Results 

A summary of descriptive statistics of meteorological conditions, PM2.5, soot, BC, OC 
and trace elemental concentrations during the measurement period from 18 April 2017 
to 28 February 2020 is given in Table 1. 

Table 1. Descriptive statistics of 24-h PM2.5, soot, black carbon, organic carbon and trace elemental 
levels and meteorological conditions on 350 d at the School of Health Systems and Public Health, 
University of Pretoria during 18 April 2017 and 28 February 2020. 

 

 Correlations between Variables 

PM2.5, soot, BC and UV-PM were correlated by means of a Spearman’s Rank 
correlation test (p < 0.001) (Table S4). The strongest correlation was observed 
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between BC and UV-PM, whilst soot had the weakest correlations with PM2.5, BC and 
UV-PM. 

Br is positively correlated with Cl, K and Ti (rho = 0.64, 0.65 and 0.56, p < 0.001, 
respectively). These were the coarse particulates and seasonal (p < 0.001), which 
implies winter biomass burning as well as urban industrial activities (Adeyemi et al. 
2021; Pachon et al. 2013; Srivastava, Goel, and Agrawal 2016; G. Thurston, Ito, and 
Lall 2011; Zhang, Chen, and Xu 2020). Further coarse particulate correlations include 
Si and Ti (rho = 0.60, p < 0.001). Ni was poorly correlated with S and Si (rho = 0.14 
and 0.17, p < 0.001, respectively). K, S and Si are correlated (rho = 0.53 and 0.50, 
p < 0.001, respectively). K, S and Si are tracers for the burning of coal and other 
exhaust emissions (Adeyemi et al. 2021; Pachon et al. 2013; Srivastava, Goel, and 
Agrawal 2016; G. Thurston, Ito, and Lall 2011; Zhang, Chen, and Xu 2020). 

PMF Analysis of the Total Dataset 

The PMF analysis was performed for 4, 5 and 6 factors. In the four-factor run, coal 
and biomass burning, secondary S and the resuspended dust matrix were separated 
while industry and vehicular emissions shared a factor. In the five-factor run, the 
industry and vehicular emissions factor were delineated. It was decided to select the 
six-factor configuration where industry was separated from mining and vehicular 
emissions, p < 0.05 (Table 2 and Figure 3). The presence of PM2.5, BC, UV-PM, Ti, 
Fe, Cu, Br and U was attributed to mining for the first factor. This factor constituted the 
largest factor in the PMF modeling process with 33% of the total PM2.5. This could be 
due to the proximity to surrounding mining activities as well as dust from legacy mines 
(Davy et al. 2012; Thurston and Spengler 1985). The large BC, UV-PM percentage 
contribution could be attributed to industrial exhaust emissions and accrued dust from 
industry and mining (Kim, Hopke, and Edgerton 2003). 

Table 2. A summary of the constituents of each factor configuration for the full dataset above LoD from 
18 April 2017 to 28 February 2020 as modeled by PMF. 

  

The second factor, being the resuspended dust matrix factor contributed 24% to the 
total assessed PM2.5 in the PMF modeling process. The constituents of this factor were 
PM2.5, BC, UV-PM, Ca, Ti and Br. The Ni-U combination in the third factor was 
attributed to industry from the surrounding areas contributing 15% to the total 
assessed PM2.5 (Moreno et al. 2010; Djolov and Tshehla 2018; Venter et al. 2012; 
Wang et al. 2006). Here, 90% of the total Fe mass was attributed to this factor, this 
implies a strong influence from pyrometallurgical activities in the surrounds of Pretoria 
(Van Zyl et al. 2014; Venter et al. 2012). The presence of S and Si was attributed to 
general exhaust fumes and contributed 12% to the total assessed PM2.5 by the PMF 
process. The presence of Cl, Zn and Br was attributed to vehicular emissions and the 
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fifth factor contributes 12% to the total assessed PM2.5 by the PMF process (G. D. 
Thurston, Ito, and Lall 2011; Zhou et al. 2013). 

 

Figure 3. ••• 

Vehicles can contribute to air emissions by means of combustion as well as a range 
of non-exhaust particulates including wear of brake pads and tires (Chan et al. 2008; 
Iijima et al. 2008, 2009; Wahlin, Berkowicz, and Palmgren 2006). The presence of a 
Cl and K combination was attributed to coal/biomass burning and the sixth factor 
contributes 4% to the total assessed PM2.5 by the PMF process. The factor contains 
75 and 73% of the Cl and K contributions, respectively. 
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PMF Analysis for Winter Months 

The ambient mass concentrations for As, Se and Pb were above the LoD during the 
winter months but not as an annual average over the 34 months. When running a 
winter analysis, the six-factor configuration for the PMF analysis, including As, Se and 
Pb in the analysis, resulted in the sources coal burning (29%), industry (24%), general 
exhaust (13%), mining (12%), vehicular emissions (12%) and fossil fuel burning 
(9.7%). It is interesting to note that during winter, the factor for coal burning could be 
demarked from other fossil fuel sources due to the inclusion of As and Pb. (Bartkowiak, 
Lemanowicz, and Breza-Boruta 2017; Fernández-Camacho et al. 2012; Jeong and Ra 
2021) The Cu–Pb–Zn combination supported the assigning of a coal-burning factor. 

HYsplit, Sources and Seasons for Full Study 

Four main transport clusters were decided upon for the 34-month analysis when 
amalgamating the three individual years model output. Of the four-cluster 
configuration, 42% of the three-year wind trajectories are from the westerly direction 
(W). The other three main clusters are from the easterly direction, 29% from the north 
easterly (NE), 15% from the south easterly (SE) and 14% from the long-range Indian 
Ocean (LRIO) direction. Notably, the highest concentration of total PM2.5 is transported 
via the western and south-eastern cluster with 48 and 51 observations respectively. 
The three separate years are presented in  

(Howlett-Downing et al. 2022). 

Discussion 
PMF Analysis of the Total Dataset 

The 6-factor source contribution according to the PMF analysis is shown in Table 2. 
The assigning of sources to factors is a subjective practice (Hopke 2000; Hopke et al. 
2006, 2020). It is standard practice to assign sources based on previous PMF 
outcomes (Mathuthu, Dudu, and Manjoro 2019; Molnár, Johannesson, and Quass 
2014; Srivastava, Goel, and Agrawal 2016; G. Thurston, Ito, and Lall 2011; Wahlin, 
Berkowicz, and Palmgren 2006; Willis, Ellenson, and Conner 2001; Yin et al. 2010) as 
well as studies on the prevalence of the PM2.5 constituents in known processes 
(Genchi et al. 2020; Gieré, Kaltenmeier, and Pourcelot 2012; Jaszczak et al. 2017; 
Jayasekher 2009; Ngo et al. 2015; Novak et al. 2016; Quincey 2007; Ruuskanen et al. 
2001; Singh et al. 2014; Thorpe and Harrison 2008; Visschedijk et al. 2013; Wien et al. 
2001; Yu et al. 2018; Zychowski et al. 2018). The main determinants of the sources in 
this study were proximity to industry and coal-fuelled power stations, proximity to 
ocean or inland areas, geomorphology of landscape, rural or urban settlements (Maritz 
et al. 2015; Djolov and Tshehla 2018; Venter et al. 2012). 

In this study, the sum of BC and UV-PM constitute approximately 11% and 9%, 
respectively, of the total PM2.5 concentration (Howlett-Downing 2022). According to 
Junker and Liousse (2008), biomass burning and biofuel emissions usually have 
higher UV-PM/BC ratios than fossil fuel sources. Bove et al. (2014) allocated the 
burning of diesel to an OM (organic matter) – BC ratio of about 1.8. A similar ratio of 
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UV-PM/BC in the Pretoria study (1.4) was determined, implying vehicle and industrial 
sources of air pollutants near the sampling site. 

Vehicular and resuspended dust have ratios of 1.4 and 1.2, respectively, whilst 
exhaust and mining have ratios of approximately 1. A ratio of 1.55 was attributed to 
vehicular emissions, implied fresh gasoline exhaust fumes contributed to the exhaust 
factor (Guhirwa 2018; Maritz et al. 2015; Ruuskanen et al. 2001; Safari-Kagabo et al. 
2020). In Europe, vehicular emissions (Belis et al. 2013) have been identified as the 
highest source targeted for abatement measures, in developing countries it was 
exhaust fumes (Naidja, Ali-Khodja, and Khardi 2017) and emissions from burning of 
coal, which should be targeted (Karagulian and Belis 2012; Karagulian et al. 2015). 

In Europe, vehicular emissions (Belis et al. 2013) have been identified as the source 
targeted for abatement measures, in developing countries it is exhaust fumes in 
general (Naidja, Ali-Khodja, and Khardi 2017) and emissions from burning of coal 
which should be targeted (Karagulian and Belis 2012; Karagulian et al. 2015). 

Two sources can be attributed to vehicles, exhaust fumes as well and the tyre and 
break lining which is attributed to non-exhaust vehicular emissions (Thorpe and 
Harrison 2008). In this project, these are aligned to the vehicular emissions factor but 
exhaust emissions may also contribute to the exhaust factor due to the presence of a 
low Cu–Zn combination (9% and 3%). 

The resuspended dust matrix was seasonal (p < 0.001), with the highest mean 
concentration in winter (8.2 µg.m−3) and during summer, was four times the mean 
PM2.5 (1.9 µg.m−3). The exhaust factor was the highest during autumn and summer 
(2.4 and 1.1 µg.m−3, respectively) which tentatively supported the allocation of the 
contributing percentage of S to exhaust rather than to secondary sulfur due to the 
photochemical process (Ito, Xue, and Thurston 2004; Thorpe and Harrison 2008; G. 
Thurston, Ito, and Lall 2011). The highest mean concentration in winter (9.2 µg/m3) 
could be allocated to processes which rely on coal combustion (Li et al. 2017; 
Sandradewi et al. 2008; G. Thurston, Ito, and Lall 2011; Yu et al. 2013; Zhang, Chen, 
and Xu 2020). The presence of Cl was higher in the winter months (p < 0.001) possibly 
due to the burning of coal and biomass as a domestic source of fuel (Luo et al. 2019). 

Recently, Muyemeki et al. (2021) studied three sites in the Vaal Triangle Airshed 
Priority Area (VTAPA) which was situated in a highly industrialized region south of 
Gauteng, South Africa. The highest seasonal median concentrations of PM10-2.5 
(116 µg.m−3) and PM2.5 (88 µg.m−3) were observed in Sharpeville during the winter. 
The lowest median concentrations of PM10-2.5 (25 µg.m−3) and PM2.5 (18 µg.m−3) were 
detected in Zamdela during the summer/autumn period. At all sites, there was an 
abundance of crustal elements in PM10-2.5 and a dominance of coal and biomass 
combustion-related elements in PM2.5. The Positive Matrix Factorization receptor 
model identified dust-related and secondary aerosols as the major contributing 
sources of PM10-2.5. PM2.5 contributions were predominantly from coal burning for 
Sebokeng and Sharpeville and from industry, wood and biomass burning, and 
secondary aerosols for Kliprivier and Zamdela (Muyemeki et al. 2021). 

Similar results were determined by Djolov and Tshehla (2018) in the Greater Tubatse 
Municipality in Limpopo where three ferrochrome smelters and over fifteen operational 
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mines which are mining chromium, platinum or silica. The allocated source factors 
where agriculture/wood combustion, coal combustion, crustal/road dust, ferrochrome 
smelters and vehicle emissions as the main sources in the area (Djolov and Tshehla 
2018). 

When considering collinearity during the assigning of sources (Belis et al. 2013), there 
were combinations that were repeated in other factors. The Ti–Fe combination was 
attributed to both mining and industry. The presence of the Cl–Br combination was a 
tracer for both coal burning and biofuel (Huang et al. 2021; Wahlin, Berkowicz, and 
Palmgren 2006). The S–Ti–Si combination was attributed to exhaust emissions with 
the strong possibility of the presence of secondary S during autumn and summer (Ito, 
Xue, and Thurston 2004; Srivastava, Goel, and Agrawal 2016; G. Thurston, Ito, and 
Lall 2011; Venter et al. 2012). The large 94% contribution of S within the exhaust factor 
could have accrued from several sources including coal burning (Molnár et al. 2017) 
and secondary sulfur production due to photochemical activities in the atmosphere in 
warmer temperatures (Kim, Hopke, and Edgerton 2003). The high Ni content (90%) 
attributed to industry could be attributed to pyrometallurgy activities, non-ferrous 
activities as well as oil combustion in industry (Belis et al. 2013; Molnár et al. 2017). 
The exhaust factor was referred to as an activity rather than as a point source or 
particular industry due to the innate heterogenous nature of industrial emissions (Belis 
et al. 2013). 

PMF Analysis for Winter Months 

There are strengths and limitations to removing or keeping in trace elements in a study 
(Ganser and Hewett 2010; Hornung and Reed 1990). Three trace elements including 
As Se and Pb were included in the main dataset to support the factor allocation as 
these were seasonal. 

The three trace elements were above the LoD during winter and tracers for coal, wood 
and biomass burning (Eklund et al. 2014; Safari-Kagabo et al. 2020; Szidat et al. 
2009). This was evident in the factors that were modeled by the PMF model. 

The exhaust factor which was characterized with the high S content and could include 
both industrial exhaust emissions and coal-burning emissions during winter. The As–
Pb combination is a tracer for coal burning (Agency 1998; Saikia et al. 2013). The As–
Se combination is a tracer for soils, coal or biofuels during winter (Wen and Carignan 
2007). The inclusion of the tracer elements did not affect the more ubiquitous factors 
including vehicular emissions, mining and resuspended dust matrix but do confirm the 
factors assigned to exhaust and biofuel emissions. 

HYsplit, Sources and Seasons for Full Study 

The transport analysis by means of HYsplit approximated the transport clusters by 
means of meteorological data (de Hoogh et al. 2014; Leelőssy et al. 2014; Stein et al. 
2015). This project does not explore the deposition rates of the heavier metals which 
could account for selective loss or the selective gains in constituent PM2.5 due to 
chemical formation or condensation (Belis et al. 2013). 
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The trace element Ti featured in all six factors but largely in resuspended dust matrix 
(20%), mining (21%) and in industry (43). Titanium is a crustal size particulate and a 
tracer for natural dust; however, titanium is mined in South Africa (Richards Bay and 
the west coast). The high mean concentration of 4.5 and 4.3 µg.m−3 attributed to 
coarse particulates was transported by cluster 2 (SE) with only 52 observations and 
cluster 4 (LRIO) with 48 observations. These transport clusters originated or traveled 
near mining activities (Chimidza and Moloi 2000; Venter et al. 2012, 2017). Zn, Cu, Ni 
and Pb will deposit in soils and in turn be present in the form of resuspended dust 
(Bartkowiak, Lemanowicz, and Breza-Boruta 2017) (Table 4). 

During winter the high mean concentration contribution was equal for three clusters, 
NE, SE and W (30.7, 30.1 and 29.5 µg.m−3, respectively) and higher for the LRIO with 
36.1 µg.m−3. Resuspended dust and exhaust emissions have the highest mean 
concentrations in cluster 2 (SE). The Vaal priority area could contribute to these 
sources. The platinum mining activities in the Rustenburg area and the bushveld 
igneous complex could contribute to these sources (Maritz et al. 2015; Djolov and 
Tshehla 2018; Tshehla and Wright 2019; Van Zyl et al. 2014; Venter et al. 2012; Yu 
et al. 2018) (Table 3). 

Table 3. Summary of the seasonal mean and range for PM2.5 levels (µg.m−3) as measured at the School 
of Health Systems and Public Health, University of Pretoria from 18 April 2017 to 28 February 2020. 

 

Table 4. The mean concentration of PM2.5 (µg.m−3) within a cluster per season, as estimated by the 
positive matrix factorization model as modeled by the NOAA HYSPLIT. 
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Figure 4. ••• 

The seasonal Trend of the Sources 

The mean seasonal concentration for all six individual sources was the highest during 
winters (Table 4 and Figure 4). All factors demonstrated seasonality (p < 0.05). This 
could be attributed to winter fuel sources (Luo et al. 2019) as well as temperature, 
relative humidity and wind speed (Macdonald 2003; Stein et al. 2015). The sum of 
mean concentrated PM2.5 modeled by the PMF is 30.8 µg.m−3 in winter compared to 
9.2 µg.m−3 in summer. All sources except for exhaust emissions are higher in winter 
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than in summer. Vehicular emissions were 10 times higher (5.2 µg.m−3) in winter than 
in summer (0.4 µg.m−3). Industry with coarse heavy metal tracers including Ti, Fe, Ni 
and Si had a mean concentration of 1.4 µg.m−3 in winter and 0.68 µg.m−3 in summer. 
The high contribution of Si could be attributed to soil dust (Yu et al. 2013), road dust 
(Thorpe and Harrison 2008) and tail pipe particulates (Yu et al. 2013). The inversion 
layer as well as deposition mechanisms may account for this trend (Leelőssy et al. 
2014; Macdonald 2003; Stein et al. 2015). The heavy metals in the mining source 
where the mean seasonal concentration was 3x higher in winter (9.2 µg.m−3) than in 
summer (2.9 µg.m−3) could also follow the above trend (Figure 5). 

 

Figure 5. ••• 

Chlorine is tracer for biomass burning during winter (Luo et al. 2019) with seasonal 
average concentrations for the 34-month study, being 0.7 µg.m−3 (77 observations) in 
autumn, 0.5 µg.m−3 (91 observations) in spring, 0.2 µg.m−3 (90 observations) in 
summer and 1.9 µg.m−3 (90 observations) in winter. Potassium was also seasonal with 
0.50 µg.m−3 in winter, 0.075 µg/m3 in summer, 0.02 µg.m−3 in spring and autumn. The 
K–Br (15%) and Cl–Br combinations were reported to be tracers for wood burning 
during the winter months (Pachon et al. 2013). The presence of Cl (75%) has 
previously been attributed to coal burning during winter by Wahlin, Berkowicz, and 
Palmgren (2006). Biomass sources peak in June (2.3 µg.m−3) and this corresponded 
to the highest triannual Cl (1.3 µg.m−3) and K (1.9 µg.m−3) concentrations (Figure 5). 

The exhaust factor was 3 × higher in autumn (3.1 µg.m−3) than in spring (1.0 µg.m−3). 
Sulfur had the highest total mean concentration sampled at the SHSPH (1.16 µg.m−3). 
The mean concentration for S in autumn was double (1.7 µg.m−3) that of the summer 
mean average (0.7 µg.m−3). The mean seasonal windspeed for summer was 1.2 ms−1 
and for autumn, 0.96 m.s−1 (Figure 5). 

The highest recorded Si concentrations occurred from May to August in all three years 
(1039, 1160 and 688 ng.m−3). The high presence of the total annual contribution of Ti 
could come from mining as well as natural sources. The dust matrix is more than 4 × 
in winter (8.6 µg.m−3) than in summer (1.9 µg.m−3). 
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In terms of the number of observations of sources per cluster, cluster 3 (W) has the 
least variability ranging from 34 counts in autumn to 39 in summer. Cluster 4 (LRIO) 
displays the most variability, ranging from 3 counts in autumn to 24 in spring. 

Conclusion 

The 34-month study corresponds very well with the 12-month study done previously 
by Adeyemi et al. (2021) in a single city study (Adeyemi et al. 2021). Trace elements 
constituted 20% of the total PM2.5 load. The reliance of metal trace elements only 
during receptor source apportionment could result in overestimation. Biomass burning 
is a major source of PM2.5 in European studies since strong policies for vehicular and 
industrial emissions are well implemented. By contrast, in Pretoria, industrial, mining 
and resuspended dust matrix sources were ubiquitous and biomass burning was 
seasonal. The sensitivity analysis for the adjusted Ni marginally confirmed the 
allocation of factors since the majority of Ni was allocated to the industrial source in 
both instances. Secondary compounds including SO2 and NO2 were not analyzed. 
Allocating secondary S products as a source to a factor was a thus a tentative 
allocation. The S–Pb combination due to combustion was a more reliable tracer for 
coal in this study. Pb was below the LoD in an all-year mean but above the LoD during 
the winter months. A winter season analysis was beneficial since coal burning could 
be delineated from biofuel burning. It is recommended that parallel studies, and an 
analysis of local soils complement the source apportionment study. 
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