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Abstract: Count regression models, particularly negative binomial regression (NBR), are widely
used in various fields, including biometrics, ecology, and insurance. Over-dispersion is likely
when dealing with count data, and NBR has gained attention as an effective tool to address this
challenge. However, multicollinearity among covariates and the presence of outliers can lead
to inflated confidence intervals and inaccurate predictions in the model. This study proposes a
comprehensive approach integrating robust and regularization techniques to handle the simultaneous
impact of multicollinearity and outliers in the negative binomial regression model (NBRM). We
investigate the estimators’ performance through extensive simulation studies and provide analytical
comparisons. The simulation results and the theoretical comparisons demonstrate the superiority of
the proposed robust hybrid KL estimator (M-NBKLE) with predictive accuracy and stability when
multicollinearity and outliers exist. We illustrate the application of our methodology by analyzing a
forestry dataset. Our findings complement and reinforce the simulation and theoretical results.

Keywords: negative binomial; multicollinearity; outliers; regularization; robust hybrid KL estimator;
over-dispersion

MSC: 62J05; 62J07; 62J12

1. Introduction

Count regression models play an important role in modern applied statistics, with
applications across fields such as biometrics, ecology, and insurance. These models are
advantageous when the response variable, y, is a count data, as in studies that model the
number of falls in medical research [1]. The relationship between the response variable y
and a set of covariates x =

(
1, x1, . . . , xp

)T is often expressed as E(y|x) = g−1(xT β
)
, where

β =
(

β0, β1, . . . , βp
)T are the regression coefficients and g(·) is the canonical link function

within the framework of generalized linear model (GLM) [2]. This formulation provides a
flexible approach to modeling count data while accounting for various covariates, making
it widely applicable in many disciplines.

In recent years, the NBR has gained significant attention as an effective tool for mod-
eling count data in the presence of overdispersion. The primary goal is to estimate β
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accurately. However, multicollinearity among covariates (predictors) can lead to inflated
confidence intervals and inaccurate predictions for the response variable [2,3]. Outlying
observations can also significantly impact the estimates, making it essential to develop
robust strategies to eliminate their misleading effects [3]. Unfortunately, in the GLM,
multicollinearity and outliers are often considered separately, leading to incomplete anal-
yses that fail to address the simultaneous impact of multicollinearity and outliers on the
model’s performance. Although there have been various studies addressing the issue of
multicollinearity in the NBRM, such as the development of ridge and Liu estimators [4–6],
and the Jackknifed Liu-type estimator [7], the robust inference in the presence of outliers
is neglected.

Outliers are common occurrences in real-life applications and can often result in mis-
leading results and conclusions in data science. Causes of outliers include human error,
measurement error, and recording error, or can be simply inherent in the data. It is crucial to
identify and remove such outliers using appropriate data-cleaning methods and employing
methods that are not susceptible to outliers to ensure robustness in data science [8,9]. While
considerable research has been conducted on robust regression modeling, relatively few
studies have specifically addressed the issue of outliers in NBR [1,8–10]. For a comprehen-
sive review of the robust inference for the GLMs, Medina and Ronchetti’s [10] work is a
valuable resource.

Lukman et al. [11,12] pointed out the simultaneous impact of multicollinearity and
outliers on the Poisson and linear regression models. Roozbeh et al. [13,14] developed
numerical algorithms to solve nonlinear equations resulting from the estimation of regres-
sion coefficients in the presence of multicollinearity and outliers. While both issues have
received detailed attention in linear and Poisson regression models, more focus is needed
in the NB framework. To the best of our knowledge, there is currently no available research
handling multicollinearity and outliers in the context of NBRMs at the time of writing.

The primary objective of this article is to examine the difficulties associated with
multicollinearity and outliers in NBR modeling and propose solutions to overcome these
obstacles. To achieve this, we will integrate robust and regularization techniques for
NBR modeling to effectively address the issues of multicollinearity and outliers. The main
contribution of this work is the introduction of a new estimator for the NBRM that combines
the shrinkage estimator with the robust regression to account for both multicollinearity
and outliers in NBR.

The rest of the paper is as follows. Section 2 reviews some existing methods and devel-
ops new estimators. Additionally, this section includes analytical comparisons, where we
theoretically compare the proposed methods with existing alternatives using performance
measures. In Section 3, an extensive simulation study is considered, where we intensively
study the effect of multicollinearity and outliers on the NBRM. The study is supported
by a real-life application in Section 4, followed by the conclusion in Section 5. We have
included the code used for the real-life application to facilitate replication of our results in
Supplementary Material.

2. Methodology
2.1. Negative Binomial Regression Model

NBR is a generalization of Poisson regression designed to handle overdispersion,
where the variance of the response variable exceeds the mean. NBR provides a more
flexible alternative to Poisson regression for count data that exhibit greater dispersion by
introducing an additional parameter to model this extra variability. Given a sample of n
observations y1, y2, . . . , yn, the probability mass function (p.m.f.) of the NB distribution is
expressed as the following equation:

f(yi|xi) =
Γ
(
γ−1 + yi

)
Γ(γ−1) Γ(1 + yi)

(
γ−1

γ−1 + µi

)γ−1(
µi

γ−1 + µi

)yi

yi = 0, 1, 2, . . . , i = 1, 2, . . . , n. (1)
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The overdispersion parameter γ is defined as (γ =
1
τ

). µi denotes the mean of the
distribution for the i-th observation and Γ(.) is the gamma function. The conditional mean
and variance are calculated as follows:

E(yi|µi, τi) = µi. (2)

Var(yi|µi, τi) = µi(1 + γµi). (3)

The maximum likelihood (ML) method is commonly used to estimate the parameter
vector β by maximizing the log-likelihood function. The mean parameter µi is often
modelled as a function of the explanatory variables xi through a log-link: logµi = xT

i β.
Thus, the log-likelihood function is given as follows:

ℓ(β, γ) = ∑n
J=1

[
logΓ

(
γ−1 + yi

)
− logΓ(yi + 1)− logΓ

(
γ−1

)
+ γ−1log

(
γ−1

γ−1 + µi

)
+ yilog

(
µi

γ−1 + µi

)]
. (4)

The score function, which results from taking the first derivative of the log-likelihood
function to β is given as follows:

∂ ℓ(β, γ)

∂ β j
= ∑n

i=1

(
yi − µi
1 + γµi

)
xij= 0 j = 1, 2, . . . , p∗. (5)

This system of equations is nonlinear and, as mentioned, does not have a closed-form
solution. We employ numerical methods to find the parameter estimates. Specifically,
we use iterative reweighted least squares (IRLS) to solve the nonlinear system. At each
iteration r, the estimate βr+1 is as follows:

β̂r+1 = β̂r +
(

I
(

β̂r))−1 S
(

β̂r), (6)

where S
(

β̂r) is the score function evaluated at the r-th iteration. I(βr) = E
(

∂2ℓ(β, γ)

∂β ∂ β′

)
=

X′WrX is a p∗ × p∗ Fisher information matrix and it is evaluated at βr and Wr is a n × n
diagonal matrix; the iterations will end when the difference

∣∣∣∣β̂r − β̂r+1
∣∣∣∣< ϵ , ϵ is a certain

small value that usually equals 10−6. Thus, the maximum likelihood estimates (NBMLE)
are obtained iteratively as follows:

β̂r+1 =
(

X′ŴrX
)−1

X′Ŵrzr, (7)

where zr is n × 1 vector of adjusted response variable such that zr
i = log

(
µ̂r

i
)
+

yi − µ̂r
i

µ̂r
i

,

and the weight Ŵr = diag
(

µ̂r
i

1 + θµ̂r
i

)
. The final equation at convergence is

β̂NBMLE =
(

X′ŴX
)−1

X′Ŵz∗, (8)

where z∗ is the final adjusted response vector such that zr
i = log(µ̂i) +

yi − µ̂i
µ̂i

and

Ŵ = diag
(

µ̂i
1 + θµ̂i

)
. The var-covariance matrix can be obtained as follows:

Cov
(

β̂NBMLE
)
=

(
X′ŴX

)−1
. (9)
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2.2. Shrinkage Estimators

Biased estimators, such as the ridge regression estimator developed by Hoerl and Ken-
nard [15], the Liu and Liu-type estimators [16,17], and the Kibria–Lukman estimator [18],
are among those introduced to address the multicollinearity problem in linear regression.
These estimators are also used in generalized linear models to account for multicollinear-
ity in binary logistic regression [19,20], zero-inflated Poisson regression [21–23], Poisson
regression [24–27], NBR [4,5,8,28,29] and Conway–Maxwell–Poisson [30], among others.

Månsson [4] introduced the ridge regression estimator (NBRRE) for the NBR as follows:

β̂NBRRE =
(

X′ŴX + kI
)−1

X′ŴX β̂NBMLE, k > 0. (10)

where k is the ridge parameter, defined in this study as: k =
1

max
(

β̂2
NBMLE

) .

The asymptotic covariance matrix is calculated as follows:

Cov
(

β̂NBRRE
)
=

(
X′ŴX + kI

)−1
X′ŴX

(
X′ŴX + kI

)−1
. (11)

Following the works of [15,16], Kibria and Lukman [18] developed the Kibria–Lukman
estimator (KLE), a single-parameter biased estimator designed to address multicollinearity
in linear regression models. They demonstrated that this estimator outperforms both the
Ridge and Liu estimators in terms of estimation accuracy and stability. Thus, the KLE for
the NBRM is given by:

β̂NBKLE =
(

X′ŴX + kI
)−1(

X′ŴX − kI
)

β̂NBMLE, k > 0. (12)

The asymptotic covariance matrix is calculated as follows:

Cov
(

β̂NBKLE
)
=

(
X′ŴX + kI

)−1(
X′ŴX − kI

)(
X′ŴX

)−1(
X′ŴX − kI

)(
X′ŴX + kI

)−1
. (13)

Under certain conditions of their simulation study, they proved that the KL estimator
outperforms both the ridge regression and Liu estimators.

2.3. Shrinkage-Robust Estimators

The occurrence of outliers is a prevalent issue in regression analysis. Outliers are
observations that stand out from the rest of the data [31]. Outliers were divided into vertical
outliers and good and bad leverage points [32,33]. Vertical outliers are those observations
that are not outlying in the space of explanatory variables (the x-dimension) but have
outlying values for the related error term (on the y-direction). Outlying observations in
the explanatory variables’ space located near the regression line are good leverage points.
Bad leverage points are observations that are both off-center in the explanatory variable
space and distant from the actual regression line. Outliers exist in both ways (x-direction of
the explanatory variables and y-direction of the response variable). Outliers can produce
biased regression estimates and misleading regression inferences as well as overestimate
the standard errors. As a result, while doing power analyses, overestimate the required
sample size [1,34].

The most popular robust regression technique is M-estimation [35], which is almost
as effective as the least squares estimator. The M-estimator minimizes the function of
the standardized residual to minimize the sum of squared residuals as the goal. This
approach performs better than the conventional least squares estimator because it assigns
fewer weights to atypical observations. The letter M denotes that the estimation is of
the maximum likelihood kind. This method allows for removing certain data, which is
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sometimes not the best course of action, especially if the material being removed is crucial.
The M-estimator is obtained by minimizing the residual function as follows:

β̂M = Minβ ∑n
i=1 ρ

( yi − β jxij

s

)
, (14)

where s is an estimate of scale from a linear combination of the residuals and the function ρ
assigns the contribution of each residual to the objective function. A system of normal equa-
tions is obtained by taking the first partial derivatives with respect to β j , j = 1, 2, . . . , p∗

and setting them equal to zero.
Aeberhard et al. [1] introduced robust estimators for the parameters of the NB distri-

bution using the M-estimator. They achieved robustness in the y-direction by bounding
the Person residuals ri = (yi − µi)Var1/2(yi|µi, τi) in the response that appears in the
score function and on the design by introducing weights w(xi). Thus, the Mallows quasi-
likelihood estimator is obtained as follows:

∑n
i=1 S(β)riVar1/2(yi|µi, τi)

∂µi
∂φ

w(xi)xi − Ei(β) = 0, (15)

where S(.)ri is a continuous and bounded function that depends on few tuning constants,
w(xi) is a weight controlling the impact of possible leverage points, and Ei(β) = E[S(β)]ri

Var1/2(yi|µi, τi)
∂µi
∂φ

w(xi)xi is an adjustment term guaranteeing Fisher consistency at

the model. The choice of the S(.)ri function that bounds the Pearson residual is crucial
because the resulting estimator has a bounded effect function thanks to the S(.)ri function’s
boundedness criterion. In this study, we consider Tukey’s bi-weight function that has the
advantage of being tuned by a single constant. The Tukey weight is a weight function
that can be used in robust regression methods, including M-estimators based on Pearson
residuals, to down-weight influential observations. The Tukey weight function is given
as follows:

STukey(ri, c) =


(( ri

c

)2
− 1

)2
ri

0 |ri| > c
|ri| ≤ c

, i = 1, 2, . . . , n, (16)

where ri is the Pearson residual for the ith observation, i = 1, 2, . . . , n, c is a tuning parameter
that determines the cut-off point for the weight function, and STukey(ri, c) is the weight
assigned to ith observation, i = 1, 2, . . . , n. The Huber weight function and the Tukey
weight function are comparable; however, the Tukey weight function provides a more
seamless change from high weights to low weights for observations with significant Pearson
residuals. The Tukey weight function gives observations with Pearson residuals less than
or equal to a c weight of 1, and it gradually reduces that weight as the Pearson residuals
rise over c. A weight of 0 is applied to observations with Pearson residuals higher than c.

Researchers have proposed robust-biased estimators as viable alternatives when deal-
ing with a regression model that encounters both multicollinearity and outliers in linear
and Poisson regression models. These estimators combined biased estimators with robust
estimators such as M-estimators. For more in-depth information, refer to the following
works [11,12,36–41].

Silvapulle [36] proposed a robust ridge regression estimator for a linear regression
model as follows:

β̂M−RRE =
(
X′X + kI

)−1X′X β̂M−OLS, k > 0. (17)

Majid et al. [41] proposed a robust Kibria–Lukman estimator for a linear regression
model as follows:

β̂M−KLE =
(
X′X + kI

)−1(X′X − kI
)

β̂M−OLS, k > 0. (18)
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Following the work of Silvapulle [36], Majid et al. [41], Lukman et al. [11], and Arum
et al. [40], we extended the robust ridge regression estimator and the robust KL estimator
to the NBRM; the new estimators were found by combining the ridge regression estimator
and the KL estimator with the M-estimator instead of the maximum likelihood estimators
as follows:

β̂M−NBRRE =
(

X′ŴX + kI
)−1

X′ŴX β̂M−MLE k > 0. (19)

β̂M−NBKLE =
(

X′ŴX + kI
)−1(

X′ŴX − kI
)

β̂M−MLE k > 0. (20)

The asymptotic covariance matrices are calculated as follows:

Cov
(

β̂M−NBRRE
)
=

(
X′ŴX + kI

)−1
(X′ŴX)Var

(
β̂M−MLE

)
(X′ŴX)

(
X′ŴX + kI

)−1
. (21)

Cov
(

β̂M−NBKLE
)
=

(
X′ŴX + kI

)−1(
X′ŴX − kI

)
Var

(
β̂M−MLE

)(
X′ŴX − kI

)(
X′ŴX + kI

)−1
(22)

2.4. Theoretical Comparisons between Estimators

For convenience, we use the spectral decomposition of the estimated weighted in-
formation matrix (X′ŴX); assume that there exists a matrix G such that G

(
X′ŴX

)
G′ =

Λ = diag
{

λj
}

, j = 1, 2, . . . , p∗,where λ1 ≥ λ2 ≥ ∆ ≥ λp∗ are the ordered eigenvalues
of X′ŴX and G orthogonal Matrix of order (p∗ × p∗), its columns are the corresponding
eigenvectors for λ1, λ2, ∆, λp∗ . Assume that H = XG, ∴ G′X′ŴXG = H′H = Λ , then
α̂NBMLE = G′ β̂NBMLE. Thus, Equations (8), (10), (12), (19) and (20) can be written in
canonical form as follows:

α̂NBMLE = Λ−1H Ŵz∗. (23)

α̂NBRRE = (Λ + kI)−1Λ α̂NBMLE. (24)

α̂NBKLE = (Λ + kI)−1(Λ − kI) α̂NBMLE. (25)

α̂M−NBRRE = (Λ + kI)−1Λ α̂M−MLE. (26)

α̂M−NBKLE = (Λ + kI)−1(Λ − kI) α̂M−MLE. (27)

Specifically, we replace α̂NBMLE, which is not robust, with the robust version proposed
by Aeberhard et al. [1]. We have defined this robust version in our study as α̂M−MLE.

The performance of the ξ̃ of the regression parameter ξ is evaluated using the scalar
mean squared error (SMSE), which is defined as follows:

SMSE
(

ξ̃
)
= tr

[
Cov

(
ξ̃
)]

+ bias
(

ξ̃
)′

bias
(

ξ̃
)

. (28)

where Cov
(

ξ̃
)

represents the covariance matrix of ξ̃ and bias
(

ξ̃
)
= E

(
ξ̃
)
− ξ.

The SMSE of the mentioned estimators above are obtained as follows:

SMSE(α̂NBMLE ) = ∑p∗
j=1

1
λj

(29)

SMSE(α̂NBRRE) = ∑p∗
j=1

λj(
λj + k

)2 + ∑p∗
j=1

α2
j k2(

λj + k
)2 . (30)

SMSE(α̂NBKLE) = ∑p∗
j=1

(
λj − k

)2(
λj + k

)2
λj

+ 4 ∑p∗
j=1

α2
j k2(

λj + k
)2 . (31)

SMSE(α̂M−NBRRE) = ∑p∗
j=1

λ2
j(

λj + k
)2 ψjj + ∑p∗

j=1

α2
j k2(

λj + k
)2 . (32)
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SMSE(α̂M−NBKLE) =
p∗

∑
j=1

(
λj − k

)2(
λj + k

)2 ψjj + 4
p∗

∑
j=1

α2
j k2(

λj + k
)2 , (33)

where α̂M−MLE = Ψ, and SMSE(α̂M−MLE ) = ∑
p∗
j=1 ψjj. We assume the following condi-

tions are satisfied:

(I) Ψ is finite.
(II) ψjj is skew-symmetric and nondecreasing.
(III) The errors have a zero mean and finite variance.

Theorem 1. The estimator α̂M−NBKLE is superior to the estimator α̂MLE in the sense of SMSE
criterion, i.e., SMSE(α̂M−NBKLE)− SMSE(α̂MLE) < 0 if ψjj <

(
λj + k

)2 − 4α2
j k2/

(
λj − k

)2.

Proof. The difference between SMSE(α̂M−NBKLE) and SMSE(α̂MLE) is as follows:

SMSE(α̂M−NBKLE)− SMSE(α̂MLE) =
p∗

∑
j=1

(
λj − k

)2(
λj + k

)2 ψjj + 4
p∗

∑
j=1

α2
j k2(

λj + k
)2 −

p∗

∑
j=1

1
λj

.

p∗

∑
j=1

(
λj − k

)2
λjψjj + 4α2

j k2λj − λj
(
λj + k

)2

λj
(
λj + k

)2 (34)

The difference between SMSE(α̂M−NBKLE) and SMSE(α̂MLE) in Equation (34) will be
less than zero if ψjj <

(
λj + k

)2 − 4α2
j k2/

(
λj − k

)2; thus, it means that α̂M−NBKLE is better
than α̂MLE since it has smaller scalar mean squared errors. □

Theorem 2. The estimator α̂M−NBKLE is superior to the estimator α̂NBRRE in the sense of SMSE
criterion, i.e., SMSE(α̂M−NBKLE)− SMSE(α̂NBRRE) < 0 if ψjj < λj − 3α2

j k2/
(
λj − k

)2.

Proof. The difference between SMSE(α̂M−NBKLE) and SMSE(α̂NBRRE) is as follows:

SMSE(α̂M−NBKLE)− SMSE(α̂NBRRE) =
p∗

∑
j=1

(
λj − k

)2(
λj + k

)2 ψjj + 4
p∗

∑
j=1

α2
j k2(

λj + k
)2 −

p∗

∑
j=1

λj(
λj + k

)2 −
p∗

∑
j=1

α2
j k2(

λj + k
)2

p∗

∑
j=1

(
λj − k

)2
ψjj + 4α2

j k2 − α2
j k2 − λj(

λj + k
)2 (35)

The difference between SMSE(α̂M−NBKLE) and SMSE(α̂NBRRE) in Equation (35) will
be less than zero if ψjj < λj − 3α2

j k2/
(
λj − k

)2; thus, it means that α̂M−NBKLE is better than
α̂NBRRE since it has smaller scalar mean squared errors. □

Theorem 3. The estimator α̂M−NBKLE is superior to the estimator α̂M−NBRRE in the sense of
SMSE criterion, i.e., SMSE(α̂M−NBKLE)− SMSE(α̂M−NBRRE) < 0 if ψjj < 3α2

j k2/2λjk − k2.

Proof. The difference between SMSE(α̂M−NBKLE) and SMSE(α̂M−NBRRE) is as follows:

SMSE(α̂M−NBKLE)− SMSE(α̂M−NBRRE) =
p∗

∑
j=1

(
λj − k

)2(
λj + k

)2 ψjj + 4
p∗

∑
j=1

α2
j k2(

λj + k
)2 −

p∗

∑
j=1

λ2
j(

λj + k
)2 ψjj −

p∗

∑
j=1

α2
j k2(

λj + k
)2

p∗

∑
j=1

(
λj − k

)2
ψjj + 4α2

j k2 − λ2
j ψjj − α2

j k2(
λj + k

)2 (36)
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The difference between SMSE(α̂M−NBKLE) and SMSE(α̂M−NBRRE) in Equation (36)
will be less than zero if ψjj < 3α2

j k2/2λjk − k2; thus, it means that α̂M−NBKLE is better than
α̂M−NBRRE since it has smaller scalar mean squared errors. □

Theorem 4. The estimator α̂M−NBKLE is superior to the estimator α̂NBKLE in the sense of SMSE
criterion, i.e., SMSE(α̂M−NBKLE)− SMSE(α̂NBKLE) < 0 if ψjj < 1/λj.

Proof. The difference between SMSE(α̂M−NBKLE) and SMSE(α̂NBKLE) is as follows:

SMSE(α̂M−NBKLE)− SMSE(α̂NBKLE) =
p∗

∑
j=1

(
λj − k

)2(
λj + k

)2 ψjj + 4
p∗

∑
j=1

α2
j k2(

λj + k
)2 −

p∗

∑
j=1

(
λj − k

)2

λj
(
λj + k

)2 − 4
p∗

∑
j=1

α2
j k2(

λj + k
)2

p∗

∑
j=1

(
λj − k

)2
ψjjλj −

(
λj − k

)2

λj
(
λj + k

)2 (37)

The difference between SMSE(α̂M−NBKLE) and SMSE(α̂NBKLE) in Equation (37) will
be less than zero if ψjj < 1/λj; thus, it means that α̂M−NBKLE is better than α̂NBKLE since it
has smaller scalar mean squared errors. □

3. Simulation Study

To ensure a robust evaluation, we meticulously designed the simulation study, care-
fully specifying the variables to influence the characteristics of the proposed estimator. We
selected a suitable metric, drawing inspiration from well-established references to evaluate
the outcomes [11,12,41–44]. To generate the regressors, we followed the equation:

xij = (1 − ρ2)
1/2mij + ρmi,p∗+1, i = 1, 2, . . . , n, j = 1, 2, 3, . . . , p∗ (38)

Here, mij represents independent standard normal pseudo-random numbers. We
considered various scenarios by varying the number of regressors (p∗ = 3 and 5) and
the level of multicollinearity (ρ = 0.8, 0.9, 0.99, 0.999). The response variable y was
generated using the “rnbinom” function, which simulates NB random variables. The
mean of y was computed based on the exponential of the linear combination of predictors
(µi = exp

(
xT

i , β
)
) where the over-dispersion parameter (σ) is set to 5. The length of y was

varied among n = 30, 50, 100, and 200, ensuring that the regression parameters β were
chosen such that β′β = 1 [42–44].

The line y [sample (n, n*0.08)] = 50 was used to introduce outliers in the response
variable. The sample function randomly selects a subset of n*b indices, where n*b represents
b% of the total number of observations in the response variable. The percentage of outliers
(b) was chosen arbitrarily as 1 and 8, respectively. The selected indices corresponded to the
positions of the outliers, and their values were then assigned to a predefined outlier value
of 50. Consequently, 1% or 8% of the observations in the response variable were replaced
with the outlier value of 50.

The model is estimated using the various methods discussed in this study. The
“robNB” package is useful when dealing with count data with outliers, where the number
of occurrences of an event is non-negative and discrete. It produced robust standard errors
and other robust inferential procedures.

To ensure the reliability of our results, we conducted 2000 replications of the experi-
ment. To evaluate the performance of the estimators, we calculated the estimated mean
squared error (MSE) using the following formula:

MSE =
1

2000 ∑2000
i=1 ∑p∗

j=1

(
β̂ij − β j

)2
(39)
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Here, β̂ij represents the estimated value of the jth parameter in the ith replication, and
β j denotes the corresponding true parameter value. The estimated MSE values for the
proposed estimator, with other estimators, can be found in Tables 1 and 2.

Table 1. Estimated MSE values for p* = 3 with 1% and 8% outliers.

n 1% Outliers 8%

30 50 100 200 30 50 100 200

ρ = 0.8 ρ = 0.8

α̂MLE 0.2433 0.1759 0.1407 0.1371 1.7302 1.7117 1.3297 1.2726

α̂NBRRE 0.2226 0.1489 0.1322 0.1312 1.5284 1.5106 1.2843 1.2561

α̂M−NBRRE 0.1543 0.1480 0.1320 0.0274 0.4017 0.3218 0.1868 0.0971

α̂NBKLE 0.2054 0.1338 0.1301 0.1299 1.3438 1.2856 1.2401 1.2397

α̂M−NBKLE 0.1323 0.1258 0.1227 0.0255 0.3364 0.3178 0.1623 0.0933

ρ = 0.9 ρ = 0.9

α̂MLE 2.2999 0.5132 0.3606 0.1671 4.3435 2.4649 1.4263 1.3409

α̂NBRRE 2.1946 0.4154 0.2872 0.1494 3.6460 2.2617 1.3372 1.3218

α̂M−NBRRE 1.3213 0.3346 0.2128 0.0439 2.0874 1.4598 0.4295 0.2087

α̂NBKLE 2.1408 0.3481 0.2285 0.1341 3.0200 2.0920 1.2539 1.2630

α̂M−NBKLE 1.2524 0.2508 0.1895 0.0404 1.5043 1.3688 0.3516 0.1169

ρ = 0.99 ρ = 0.99

α̂MLE 4.2888 2.0952 2.0325 1.2622 13.6250 9.1668 2.8536 2.0822

α̂NBRRE 3.4781 1.2561 1.3010 0.8275 9.6663 5.4477 1.9129 1.7719

α̂M−NBRRE 2.7175 1.1227 0.5659 0.3005 5.9970 5.0101 1.4041 0.3160

α̂NBKLE 3.4430 0.6316 0.5857 0.5342 6.9971 3.1266 1.6077 1.5263

α̂M−NBKLE 2.3795 0.5089 0.4302 0.1149 3.7144 3.0711 0.8117 0.1274

ρ = 0.999 ρ = 0.999

α̂MLE 13.6544 14.3600 7.7466 6.7521 149.2937 70.4487 33.4742 11.6880

α̂NBRRE 5.6521 7.4897 2.4514 1.5667 104.4286 46.4188 23.5842 7.8009

α̂M−NBRRE 3.8032 5.1630 1.7471 1.3126 67.5508 24.1480 2.1384 1.6055

α̂NBKLE 5.0185 3.9674 1.2086 1.1580 71.7484 32.0596 17.3464 5.9552

α̂M−NBKLE 3.1395 2.6155 1.1361 0.4985 32.8514 7.9232 1.4756 0.5311

Table 2. Estimated MSE values for p* = 5 with 1% and 8% outliers.

n 1% Outliers 8%

30 50 100 200 30 50 100 200

ρ = 0.8 ρ = 0.8

α̂MLE 0.3745 0.3413 0.3336 0.3259 2.3125 2.0120 1.6164 1.5833

α̂NBRRE 0.2878 0.2794 0.2485 0.1849 2.2610 1.7329 1.3588 1.2773

α̂M−NBRRE 0.2791 0.2633 0.2046 0.0458 1.0064 0.8254 0.3955 0.1100

α̂NBKLE 0.2506 0.2460 0.2387 0.1468 2.2164 1.6370 1.2932 1.2714

α̂M−NBKLE 0.2088 0.2001 0.1958 0.0400 1.0028 0.7087 0.3395 0.1082
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Table 2. Cont.

n 1% Outliers 8%

30 50 100 200 30 50 100 200

ρ = 0.9 ρ = 0.9

α̂MLE 3.7542 0.6788 0.6353 0.5962 5.5100 2.8125 1.6546 3.3937

α̂NBRRE 3.5119 0.4856 0.4647 0.4254 4.3696 2.4532 1.5253 3.3180

α̂M−NBRRE 2.5476 0.4323 0.4217 0.0565 3.0110 2.0634 0.5418 0.2955

α̂NBKLE 3.3406 0.5366 0.5246 0.4618 4.2623 2.3850 1.4056 3.2442

α̂M−NBKLE 2.3775 0.5032 0.2481 0.0462 3.0106 2.0042 0.4404 0.2774

ρ = 0.99 ρ = 0.99

α̂MLE 6.8841 5.1915 4.6733 3.8550 14.3885 11.5578 7.9738 9.2243

α̂NBRRE 4.1880 3.2344 3.1333 2.7374 12.8431 7.7036 6.2574 7.5123

α̂M−NBRRE 3.8932 3.4318 1.6121 1.4313 6.0214 5.5507 2.1496 0.3618

α̂NBKLE 3.5452 2.0011 1.8565 1.8070 10.6653 7.0699 4.8587 4.1347

α̂M−NBKLE 3.1188 2.1364 1.4639 0.2391 5.0450 4.4454 2.0490 0.3477

ρ = 0.999 ρ = 0.999

α̂MLE 71.1404 45.7179 38.5937 32.2868 245.5499 100.2213 87.3481 26.0989

α̂NBRRE 43.6115 29.3162 12.7618 10.2636 128.8131 62.3445 50.5375 15.0965

α̂M−NBRRE 39.3370 28.9090 2.8173 2.6831 71.0531 45.0481 4.4200 3.1227

α̂NBKLE 26.5437 19.3226 10.4217 7.7887 86.0936 59.1129 47.7824 12.0998

α̂M−NBKLE 23.4875 18.5239 2.3113 1.0858 70.7459 43.2366 3.6519 2.7898

Tables 1 and 2 present the estimated mean squared error (MSE) values for the proposed
estimator and other estimators considered in this study. Based on the results obtained from
the simulation, several important conclusions have been drawn:

i. Impact of Multicollinearity: To investigate the effect of multicollinearity on the
estimates of regression parameters, we examined the correlation coefficients ρ = 0.8, 0.9,
0.99, and 0.999. It was observed that as the correlation between explanatory variables
increases, the MSE of both classical estimators and robust hybrid estimators also increases
(Figure 1). The MSE values for robust hybrid estimators, denoted with α̂M−NBRRE and
α̂M−NBKLE, show a reduction in magnitude compared to their non-hybrid counterparts.

ii. Influence of Sample Size: Comparing the performance of estimators for different
sample sizes (n = 30, 50, 100, and 200), it becomes evident that the MSE decreases as the
sample size increases. Detailed graphical representations can be found in Figure 2. For
instance, with ρ = 0.8, the MSE decreases from n = 30 to n = 200 for all estimators. Similarly,
for other correlation coefficients, there is a consistent pattern of decreasing MSE values as
the sample size grows.

iii. Impact of Explanatory Variables: The total number of explanatory variables has a
considerable influence on the MSE values of estimators. The MSE values tend to be higher
for all estimators when there are more explanatory variables.

iv. Impact of Outliers: The percentage of outliers in the model increased the estimated
MSE values. In Tables 1 and 2 (p∗ = 3 and p∗ = 5), we observe that as the percentage of
outliers increases from 1% to 8%, the MSE values for all estimators also increase significantly.
The presence of outliers introduces more variability and influences the accuracy of the
estimators, leading to higher MSE values. Overall, the MLE and NBRRE estimators typically
exhibit higher MSE values compared to the robust hybrid estimators (M-NBRRE and M-
NBKLE) across different sample sizes and correlation coefficients. Among the robust hybrid
estimators, M-NBKLE generally outperforms M-NBRRE in terms of lower MSE values.
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4. Application

In this application, we conducted a comprehensive analysis of the nuts dataset, as
documented in Hilbe [45] and recently adopted by Algamal [46]. The dataset is available
in the library COUNT. The dataset comprises fifty-two (52) observations and seven (7) ex-
planatory variables, focusing on the behavior of squirrels and various forest characteristics
across different plots within Scotland’s Abernathy Forest. Specifically, the response variable
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represents the number of cones stripped by squirrels. The explanatory variables include
the number of trees per plot (x1), number of DBH (diameter at breast height) per plot (x2),
mean tree height per plot (x3), canopy closure (as a percentage) (x4), standardized number
of trees per plot (x5), standardized mean tree height per plot (x6), and standardized canopy
closure (as a percentage) (x7).

Due to challenges encountered during the modeling process, we excluded variable
x7 from the analysis. We proceeded to fit Poisson and NBR models to identify the most
appropriate model for the dataset. See Table 3 for the outcome. Notably, the Akaike
Information Criterion (AIC) and residual variance from Table 3 unequivocally indicate that
the NBRM provides an excellent fit to the data. Moreover, the dispersion test revealed the
presence of overdispersion in the model, rendering the Poisson regression model unsuitable
for this dataset.

Table 3. Model adequacy check.

Metrics Poisson Negative Binomial

Residual Variance 661.2 661.2

AIC 873.1 397.9

Additionally, the estimated variance inflation factors are 4.474, 16.332, 39.61, and 40.89,
indicating a clear presence of correlated regressors in the model. Consequently, the model
suffers from both multicollinearity and overdispersion. In our further examination, we
conducted outlier diagnostics. The residual plots revealed the existence of outliers in the
model. Specifically, the standardized Pearson residual plot against the leverage identified
cases 2, 11, and 25 as outliers (See Figure 3). To tackle these challenges, we proceeded
with model fitting using both non-robust estimators (MLE, NBRRE, and NBKLE) and
robust estimators (M-NBRRE and M-NBKLE). See Table 4 for the results, which will aid in
understanding the impact of these estimators on our model and its interpretations.
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Table 4. Estimated regression coefficients for the squirrel dataset.

Coef.
Estimators

^
αMLE

^
αNBRRE

^
αM−NBRRE

^
αNBKLE

^
αM−NBKLE

x1
0.0267

(0.0128)
0.0235

(0.0120)
−2.7247
(0.0122)

0.0203
(0.0115)

−2.7247
(0.0119)

x2
1.9640

(1.8877)
1.0210

(1.3625)
0.0043

(1.5516)
0.0780

(0.9834)
0.0065

(1.2754)

x3
0.0228

(0.0456)
0.0339

(0.0429)
0.0267

(0.0438)
0.0451

(0.0413)
0.0267

(0.0425)

x4
0.0139

(0.0101)
0.0152

(0.0100)
−0.0350
(0.0100)

0.0165
(0.0100)

−0.0350
(0.0100)

x5
0.4493

(0.1659)
0.4350

(0.1646)
0.0490

(0.1651)
0.4207

(0.1637)
0.0488

(0.1645)

SMSE 3.5934 1.8855 1.6560 3.5927 0.4692

Table 4 presents the estimated regression coefficients obtained from different estima-
tors considered in this study. The estimators used comprise non-robust estimators (MLE,
NBRRE, and NBKLE) and robust estimators (M-NBRRE and M-NBKLE). The values in
parentheses next to each coefficient represent the standard errors of the estimates, provid-
ing insight into the precision of the coefficient estimates. Smaller standard errors indicate
greater confidence in the estimate’s accuracy, while larger standard errors suggest more
variability in the regression estimate.

Upon examination, we observe intriguing differences in the coefficient signs for x1 and
x4 between the non-robust and robust estimators. This contrast highlights the sensitivity
of non-robust estimators to outliers, potentially leading to biased coefficient estimates. In
contrast, robust estimators, designed to withstand the impact of influential observations,
demonstrate more consistent and reliable coefficient estimates.

To gauge the performance of these estimators, we rely on the SMSE. The results
in Table 4 revealed that the SMSE values for the robust estimators, M-NBRRE and M-
NBKLE, are substantially lower than those for the non-robust estimators (MLE, NBRRE,
and NBKLE). This substantial difference suggests that the robust estimators exhibit superior
predictive accuracy and resilience to the influence of outliers, making them more suitable
for this dataset.

Particularly noteworthy is the robust hybrid KL estimator (M-NBKLE), which emerges
as the most promising method among all the estimators. Not only does it provide accurate
coefficient estimates, but it also achieves the lowest SMSE and has relatively small standard
errors, indicating that its estimates are both reliable and precise. With its integration of
robustness and superior predictive power, the M-NBKLE estimator dominates other ap-
proaches, providing researchers with a reliable tool to obtain accurate and stable coefficient
estimates even in the presence of extreme observations.

5. Conclusions

NBR is widely used for modeling non-negative integer data, particularly when overdis-
persion is present. However, interpreting the model becomes more challenging when
assumptions, such as the absence of multicollinearity among predictors, are violated. In
practice, meeting these assumptions can be difficult, and multicollinearity can significantly
reduce the efficiency of maximum likelihood estimators. Ridge and Kibria–Lukman estima-
tors have been applied to address multicollinearity, but their performance often deteriorates
in the presence of outliers. Robust estimation techniques have been proposed to handle
the impact of outliers in NBR. Recent studies have shown that the combined effects of
outliers and multicollinearity can significantly degrade model performance, a problem
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well-documented in linear and Poisson regression models. This insight has motivated us to
propose a new method to address these issues, specifically, in NBR.

This study addresses the challenges of multicollinearity and outliers in NBR by in-
tegrating Ridge and Kibria–Lukman estimators with robust estimators, resulting in new
hybrid estimators termed M-NBRRE and M-NBKLE. We evaluated their performance
theoretically and through simulations, with the results confirming the robustness and effec-
tiveness of the hybrid estimators. Notably, M-NBKLE demonstrated superior performance,
particularly by achieving a lower estimated mean squared error. A real-world application
was also conducted, focusing on squirrel behavior and forest characteristics across plots in
Scotland’s Abernathy Forest, further supporting the dominance of M-NBKLE.

Our findings contribute to the growing body of research on count regression models
and offer valuable tools for researchers needing robust data analysis techniques across
various fields. This work represents a significant step toward enhancing the accuracy and
reliability of NBR, ensuring robust inferences, and enabling sound decision-making in
practical data analysis. In future research, we plan to incorporate additional evaluation
metrics, such as the Pearson chi-square statistic, which could provide further insights into
model fit and performance, especially for count data. We also aim to refine these estimators
by incorporating techniques like principal component regression or partial least squares to
enhance estimator performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
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real-life application to facilitate replication of our results.
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9. Tüzen, F.; Erbaş, S.; Olmuş, H. A simulation study for count data models under varying degrees of outliers and zeros. Commun.

Stat.-Simul. Comput. 2020, 49, 1078–1088. [CrossRef]

https://www.mdpi.com/article/10.3390/math12182929/s1
https://www.mdpi.com/article/10.3390/math12182929/s1
https://doi.org/10.1111/biom.12212
https://doi.org/10.1016/j.sciaf.2023.e01543
https://doi.org/10.1016/j.econmod.2011.09.009
https://doi.org/10.1080/00949655.2012.673127
https://doi.org/10.1080/03610918.2018.1498886


Mathematics 2024, 12, 2929 15 of 16

10. Medina, M.A.; Ronchetti, E. Robust statistics: A selective overview and new directions. WIREs Comput. Stat. 2015, 7, 372–393.
[CrossRef]

11. Lukman, A.F.; Arashi, M.; Prokaj, V. Robust biased estimators for Poisson regression model: Simulation and applications. Concurr.
Comput. Pract. Exp. 2023, 35, e7594. [CrossRef]

12. Lukman, A.F.; Farghali, R.A.; Kibria, B.M.G.; Oluyemi, O.A. Robust-stein estimator for overcoming outliers and multicollinearity.
Sci. Rep. 2023, 13, 9066. [CrossRef] [PubMed]

13. Roozbeh, M.; Babaie-Kafaki, S.; Aminifard, Z. Two penalized mixed–integer nonlinear programming approaches to tackle
multicollinearity and outliers effects in linear regression models. J. Ind. Manag. Optim. 2021, 17, 3475–3491. [CrossRef]

14. Roozbeh, M.; Babaie-Kafaki, S.; Maanavi, M. A heuristic algorithm to combat outliers and multicollinearity in regression model
analysis. Iran. J. Numer. Anal. Optim. 2022, 12, 173–186.

15. Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67.
[CrossRef]

16. Liu, K. A new class of biased estimate in linear regression. Commun. Stat. 1993, 22, 393–402.
17. Liu, K. Using Liu-type estimator to combat collinearity. Commun. Stat.-Theory Methods 2003, 32, 1009–2003. [CrossRef]
18. Kibria, B.M.G.; Lukman, A.F. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications.

Scientifica 2020, 2020, 9758378. [CrossRef]
19. Asar, Y.; Genc, A. New shrinkage parameters for the liu-type logistic estimators. Commun. Stat.-Simul. Comput. 2016, 45,

1094–1103. [CrossRef]
20. Asar, Y.; Genç, A. Two-parameter ridge estimator in the binary logistic regression. Commun. Stat.-Simul. Comput. 2017, 46,

7088–7099. [CrossRef]
21. Kibria, B.G.; Månsson, K.; Shukur, G. Some ridge regression estimators for the zero-inflated Poisson model. J. Appl. Stat. 2013, 40,

721–735. [CrossRef]
22. Kibria, B.G.; Månsson, K.; Shukur, G. A Ridge Regression Estimator for the Zero-Inflated Poisson Model; Royal Institute of Technology,

CESIS-Centre of Excellence for Science and Innovation Studies: Stockholm, Sweden, 2011.
23. Al-Taweel, Y.; Algamal, Z. Almost unbiased ridge estimator in the zero-inflated Poisson regression model. TWMS J. Appl. Eng.

Math. 2022, 12, 235–246.
24. Månsson, K.; Shukur, G. A Poisson ridge regression estimator. Econ. Model. 2011, 28, 1475–1481. [CrossRef]
25. Asar, Y.; Genç, A. A new two-parameter estimator for the Poisson regression model. Iran. J. Sci. Technol. Trans. Sci. 2018, 42,

793–803. [CrossRef]
26. Lukman, A.F.; Aladeitan, B.; Ayinde, K.; Abonazel, M.R. Modified ridge-type for the Poisson Regression Model: Simulation and

Application. J. Appl. Stat. 2021, 49, 2124–2136. [CrossRef]
27. Lukman, A.F.; Adewuyi, E.; Månsson, K.; Kibria, B.M.G. A new estimator for the multicollinear poisson regression model:

Simulation and application. Sci. Rep. 2021, 11, 3732. [CrossRef]
28. Huang, J.; Yang, H. A two-parameter estimator in the negative binomial regression model. J. Stat. Comput. Simul. 2014, 84,

124–134. [CrossRef]
29. Çetinkaya, M.K.; Kaçıranlar, S. Improved two-parameter estimators for the negative binomial and Poisson regression models. J.

Stat. Comput. Simul. 2019, 89, 2645–2660. [CrossRef]
30. Abonazel, M.R.; Saber, A.A.; Awwad, F.A. Kibria–Lukman estimator for the Conway–Maxwell Poisson regression model:

Simulation and applications. Sci. Afr. 2023, 19, e01553. [CrossRef]
31. Barnett, V.; Lewis, T. Outliers in Statistical Data; Wiley: New York, NY, USA, 1994.
32. Chatterjee, S.; Hadi, A.S. Influential observations, high leverage points, and outliers in linear regression. Stat. Sci. 1986, 1, 379–416.
33. Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; Series in Applied Probability and Statistics; Wiley Interscience:

New York, NY, USA, 1987; 329p. [CrossRef]
34. Wasim, D.; Suhail, M.; Albalawi, O.; Shabbir, M. Weighted penalized m-estimators in robust ridge regression: An application to

gasoline consumption data. J. Stat. Comput. Simul. 2024, 1–30. [CrossRef]
35. Huber, P.J. Robust Regression: Asymptotics, Conjectures and Monte Carlo. Ann. Stat. 1973, 1, 799–821. [CrossRef]
36. Silvapulle, M. Robust ridge regression based on an M-estimator. Aust. J. Stat. 1991, 33, 319–333. [CrossRef]
37. Ertas, H. A modified ridge M-estimator for linear regression model with multicollinearity and outliers. Commun. Stat.-Simul.

Comput. 2018, 47, 1240–1250. [CrossRef]
38. Dawoud, I.; Abonazel, M. Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression

model. J. Stat. Comput. Simul. 2021, 91, 3678–3692. [CrossRef]
39. Abonazel, M.; Dawoud, I. Developing robust ridge estimators for Poisson regression model. Concurr. Comput. Pract. Exp. 2022, 34,

e6979. [CrossRef]
40. Arum, K.; Ugwuowo, F.; Oranye, H.; Alakija, T.; Ugah, T.; Asogwa, O. Combating outliers and multicollinearity in linear

regression model using robust Kibria-Lukman mixed with principal component estimator, simulation and computation. Sci. Afr.
2023, 19, e01566. [CrossRef]

41. Majid, A.; Ahmed, S.; Aslam, M.; Kashif, M. A robust Kibria–Lukman estimator for linear regression model to combat multi-
collinearity and outliers. Concurr. Comput. Pract. Exp. 2023, 35, e7533. [CrossRef]

42. Kibria, B.M.G. Performance of some new ridge regression estimators. Commun. Stat.-Simul. Comput. 2003, 32, 419–435. [CrossRef]

https://doi.org/10.1002/wics.1363
https://doi.org/10.1002/cpe.7594
https://doi.org/10.1038/s41598-023-36053-z
https://www.ncbi.nlm.nih.gov/pubmed/37277421
https://doi.org/10.3934/jimo.2020128
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1081/STA-120019959
https://doi.org/10.1155/2020/9758378
https://doi.org/10.1080/03610918.2014.995815
https://doi.org/10.1080/03610918.2016.1224348
https://doi.org/10.1080/02664763.2012.752448
https://doi.org/10.1016/j.econmod.2011.02.030
https://doi.org/10.1007/s40995-017-0174-4
https://doi.org/10.1080/02664763.2021.1889998
https://doi.org/10.1038/s41598-021-82582-w
https://doi.org/10.1080/00949655.2012.696648
https://doi.org/10.1080/00949655.2019.1628235
https://doi.org/10.1016/j.sciaf.2023.e01553
https://doi.org/10.1002/0471725382
https://doi.org/10.1080/00949655.2024.2386391
https://doi.org/10.1214/aos/1176342503
https://doi.org/10.1111/j.1467-842X.1991.tb00438.x
https://doi.org/10.1080/03610918.2017.1310231
https://doi.org/10.1080/00949655.2021.1945063
https://doi.org/10.1002/cpe.6979
https://doi.org/10.1016/j.sciaf.2023.e01566
https://doi.org/10.1002/cpe.7533
https://doi.org/10.1081/SAC-120017499


Mathematics 2024, 12, 2929 16 of 16

43. Dawoud, I.; Lukman, A.F.; Haadi, A. A new biased regression estimator: Theory, simulation and application. Sci. Afr. 2022, 15,
e01100. [CrossRef]

44. Kibria, B.M.G. More than hundred (100) estimators for estimating the shrinkage parameter in a linear and generalized linear
ridge regression models. J. Econom. Stat. 2022, 2, 233–252.

45. Hilbe, J.M. Negative Binomial Regression, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2011.
46. Algamal, Z. Variable Selection in Count Data Regression Model based on Firefly Algorithm. Stat. Optim. Inf. Comput. 2019, 7,

520–529. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.sciaf.2022.e01100
https://doi.org/10.19139/soic.v7i2.566

	Introduction 
	Methodology 
	Negative Binomial Regression Model 
	Shrinkage Estimators 
	Shrinkage-Robust Estimators 
	Theoretical Comparisons between Estimators 

	Simulation Study 
	Application 
	Conclusions 
	References

