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Abstract: The classical Cox model is the most popular procedure for studying right-censored data
in survival analysis. However, it is based on the fundamental assumption of proportional hazards
(PH). Modified Cox models, stratified and extended, have been widely employed as solutions when
the PH assumption is violated. Nevertheless, prior comparisons of the modified Cox models did
not employ comprehensive Monte-Carlo simulations to carry out a comparative analysis between
the two models. In this paper, we conducted extensive Monte-Carlo simulation to compare the
performance of the stratified and extended Cox models under varying censoring rates, sample sizes,
and survival distributions. Our results suggest that the models’ performance at varying censoring
rates and sample sizes is robust to the distribution of survival times. Thus, their performance under
Weibull survival times was comparable to that of exponential survival times. Furthermore, we found
that the extended Cox model outperformed other models under every combination of censoring,
sample size and survival distribution.

Keywords: stratified; extended Cox; time-varying covariate; Weibull and exponential survival
distribution; Monte-Carlo simulations
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1. Introduction

The classical Cox model is the most commonly used approach for analysing right-
censored data [1,2]. It is used across multiple fields of study, such as engineering, education,
medicine, etc. [3,4]. Research and development to strengthen Cox model has been contin-
ued even since Zheng et al. [5]. However, it is based on the assumption of proportional
hazards (PH), which limits its use [6]. As a result, modified versions of the Cox model
need to be adapted to circumvent the violation of the PH assumption. Consequently, the
stratified and the extended Cox models are two of the most popular extensions of the Cox
procedure [7].

The stratified regression model modifies the PH approach by stratifying the explana-
tory variables, while the extended Cox technique incorporates one or more covariates that
vary over time into the Cox model [8]. Numerous studies have employed both approaches
as a solution for non-proportional risks. For example, Ata and Sozer [9] applied both mod-
els to study lung cancer. Subsequently, Maryma [10] used the two approaches to overcome
the violation of proportional hazards when analysing the breastfeeding span in Lampung
province. More recently, Purnami et al. [11] investigated factors contributing to improved
mental health using the time-dependent Cox model and the stratified procedure, while Seo
and Yuk [12] used both extensions of the Cox model to assess fracture risk and osteoporosis
in patients undergoing hysterectomy. Moreover, research by Phonskaningtyas [13] used
the adjusted Cox approaches to evaluate the impact of spiritual intervention on chronic
kidney failure patients. However, the literature suggests that prior studies merely applied
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the stratified and extended Cox regression approach, they did not assess the adequacy of
the models in handling PH violation through simulations [14].

Monte-Carlo simulation studies are a valuable tool in investigating the performance
of statistical models [15]. For instance, Mehrotra et al. [16] employed simulations to
illustrate the advantages of the two-step unstratified Cox model against the stratified Cox
approach. Subsequently, Olaniran and Abdullah [17] also used Monte-Carlo simulations
to investigate the efficiency of the newly developed Bayesian extended Cox model to
handle non-proportional data against the standard PH model and the extended Cox model.
Meanwhile, Adeleke et al. [7] studied only the extended Cox model at varying levels of
sample sizes and censoring rates. On the other hand, Ratnaningsih et al. [18] assessed the
performance of both modifications against that of the Cox model and the stratified-extended
Cox model through Monte-Carlo simulations. Nonetheless, most of the studies did not
evaluate the statistical properties of the stratified against the extended Cox procedures
under different survival distributions.

Using a singular survival distribution is problematic as several statisticians have
pointed out that more flexibility is required when selecting the distribution of survival times
such that the simulated data can reflect real data [15,19,20]. Furthermore, Bender et al. [21]
claimed that most Cox related simulation studies used the exponential or Weibull distribu-
tion for survival time. Hence, in this paper, in addition to assessing the effect of different
combinations and censoring and sample sizes on the models, simulations are used to
investigate the performance of the extended Cox model against the stratified approach
when survival times follow the Weibull distribution versus the exponential distribution.

2. Methods and Simulations Results
2.1. Methodology

The Cox proportional hazards model (in short, the Cox model) quantifies the re-
lationship between several covariates and the hazard rate of an event of interest [22].
Suppose T is a non-negative random variable denoting survival time; then, the Cox model
is expressed by

h(t|X) = h0(t) exp(βtX), (1)

where X = (x1, x2, . . . , xp) is a vector of time-independent covariates, h(t|X) is the hazard
function, h0(t) is the baseline hazard function, and β = (β1, β2, . . . , βp)t denotes a vector of
regression coefficients [23]. Suppose that for a sample size of n, data consists of

(
Ti, Xi, di

)
,

i = 1, 2, . . . , n, where Ti is the survival time of the i-th subject, Xi a vector of explanatory
variables, and di the censoring indicator defined by

di =

{
1 if Ti ≤ Ci not censored
0 if Ti > Ci censored,

while Ci are censoring times [24]. The sum of probabilities of the event of interest time ti
over all subjects at risk is indexed by l. Subsequently, R(ti) denotes a set of subjects who
are at risk at time ti. Therefore, unknown parameters in the Cox model are estimated by
maximizing the log partial likelihood function, defined by

LL(β) = log
[ n

∏
i=1

h0(ti)exp(βtX i)

∑lϵR(ti)
h0(ti) exp(βtX l)

]di

, (2)

where di = I(Ti ≤ Ci) [25].

2.2. Stratified Cox Model

Stratification entails controlling for predictors that do not meet the PH assumption
by dividing the data into strata with different baseline hazard functions [26]. Suppose the
covariate that does not satisfy the assumption PH has G levels. Thus, G is the total number
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of strata, g = 1, 2, . . . , G, while i = 1, 2, . . . , ng represents the number of subjects in the g-th
stratum [25]. The stratified Cox model is defined by

hg(t|X) = h0g(t) exp(βtX), (3)

where hg(t|X) is the risk function for a subject from the g-th stratum and h0g(t) is the
baseline hazard function for each stratum. Similarly to the Cox model, the partial likelihood
function enables inference for the stratified approach in which Lg(β) is the partial likelihood
function from stratum g, defined by

Lg(β) =
ng

∏
i=1

[ exp(βtX ig)

∑lϵR(tig)
exp(βtX(l))

]dig

(4)

where tgi denotes observed time for the i-th subject in stratum g, R(tgi) represents subjects
in the g-th stratum at risk at time tgi, and Xgi is a vector of explanatory variables [26].

2.3. Extended Cox Model

A Cox regression model that includes covariates that vary over time is called an
extended Cox model [27]. The model is given by

h(t|X(t)) = h0(t) exp(βtX + β(t)X(t)), (5)

where β is a vector of time fixed regression coefficients, β(t) a vector of time-varying coef-
ficients and, unlike the Cox regression model, the exponential component in the extended
model contains both the time constant X = (x1, x2, . . . ., xp1) and time-dependent covariates
X(t) = (x1(t), x2(t), . . . , xp2(t)) [8]. Inference for unknown regression coefficients in the
extended model is made in the same way as for the Cox model in (1), maximizing the
partial likelihood, or better still the log partial likelihood function, to obtain estimates [25].
The formula of the likelihood function is the same as for the PH model, except that the
value for time-dependent covariates is assessed for each risk set.

2.4. Simulation Studies

We conducted Monte-Carlo simulations to investigate the simultaneous effect of
censoring, sample size, and distribution of survival time on the performance of the Cox, as
well as stratified and extended models when the proportional hazards assumption is not
satisfied. We adapted the algorithms of [28] to generate right-censored non-proportional
data from an extended Cox model that includes one time-dependent predictor. Data were
simulated by the time-varying model:

h(t|X(t)) = h0(t) exp(βtX + β(t)z(t)). (6)

Steps to generate the non-proportional data are as follows:

1. Covariates: two time-independent covariates, x1 ∼ N(0, 1) and x2 ∼ Binom(0.5), and
a single dichotomous time-dependent variable, which is defined as

z(t) =

{
0, t < ts (unexposed/ untreated)
1, t ≥ ts (exposed/treated),

where ts is the time at which z(t) changes from untreated to treated.
2. Potential switching times: the probable exposure time for each subject in a study

such that all subjects are likely to switch from unexposed to exposed is generated by

ts = − log(µ)
λ exp(a0 + a1x1 + a2x2)

(7)
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where λ = 1 is the hazard function for an exponential distribution, and (a0, a1, a2) =
(1, 1, 1) are regression coefficients [29,30].

3. Weibull survival times: Weibull survival times are generated by

T =


( −log(u)

λexp(βt X)

)1/α if − log(u) < λexp(βtX)tα
s(−log(u)−λexp(βt X)ts+λexp(βt X+β(t))ts

λexp(βt X)

)1/α if − log(u) ≥ λexp(βtX)tα
s ,

(8)

where the shape parameter equals α = 0.5 for a decreasing hazard rate over time.
4. Exponential survival times: exponential event times are then generated by

T =


−log(u)

λexp(βt X)
if − log(u) < λexp(βtX)ts

−log(u)−λexp(βt X)ts+λexp(βt X+β(t))ts
λexp(βt X+β(t)) if − log(u) ≥ λexp(βtX)ts

(9)

where λ = 1, βtX = β1x1 + β2x2, where β1 = β2 = 1, and β(t) = −0.5.
5. Censoring times: censoring times are generated from the uniform distribution (0, θ),

where θ is selected to yield the desired censoring rate: 10%, 30%, and 45%.
6. Data frame: Steps 1 to 4 produces right-censored survival data that constitutes of the

observed time Zi = min(Ti, Ci) for the ith subject, censoring indicator di = I(Ti ≤ Ci),
invariant covariates Xi, and the time-variant variable z(t), the time where the time-
varying covariate z(t) switches from 0 to 1 t0 = min(Zi, ts). The final dataset consists
of (T∗

i , di, Xi, z(t)).

For both distributions, we simulated 10,000 datasets (m = 10,000) for each combination
of factors. Each dataset is analysed using the following statistical models: Cox PH, stratified
and extended Cox model. We report the bias, model-based standard errors (Est SE),
empirical standard errors (Emp SE), coverage probabilities (Cov 95%), and mean squared
errors (MSE) for each model.

The extended Cox model is the true model, since it was used to generate the data. We
first examine the simulation results where the event times were generated from the Weibull
distribution and then those for the exponential distribution.

2.4.1. Weibull Survival Times

Table 1 offers results at 10% censoring. As expected, the extended Cox model outper-
formed the other models by having minimal biases, coverage probabilities around 95% and
the lowest MSEs for all parameters. In contrast, the misspecified Cox model performed the
worst, with significantly higher biases, poor coverage, and the largest MSE values in each
sample. The three survival models produced comparable standard error estimates. With
regard to the effect of sample size, the biases, standard errors and MSEs of all statistical
models decreased with increasing sample size. However, coverage probabilities from
the Cox PH and Stratified decreased significantly when the sample size increased. This
phenomenon is expected when the decline in coverage results from bias [19]. Thus, the
confidence interval narrows in on an incorrect value as the sample size increases.

Table 2 summarizes the results of the three survival regression models when censoring
is at 30%. Similarly to the results observed at low censoring (Table 1), the Cox model
yielded the highest biases and mean squared errors at each sample size, while the extended
Cox model produced minimum bias and MSEs. In addition, the extended Cox model is
the only approach that provided coverage close to the nominal value of 95%. The results
presented in Table 2 showed a decrease in biases, standard errors, and MSEs for all models
with increasing sample size.

Table 3 presents the mean estimates when censoring is 45%. From the table, it can be
seen that the extended Cox model provided the best fit for the simulated data sets with the
lowest biases, standard errors (Est and Emp) and MSEs compared to PH and the stratified
model. Similarly, the model yielded consistent coverage probabilities approaching the
nominal 95% for all covariates.
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Table 1. Weibull survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 10% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.2826 0.2397 0.2564 0.8165 0.1456
β2 0.2806 0.3721 0.4033 0.8935 0.2413
βt −1.1843 0.4145 0.4677 0.1781 1.6212

Stratified β1 0.2650 0.2496 0.2627 0.8587 0.1392
β2 0.2572 0.3822 0.4055 0.9122 0.2305

Extended β1 0.0573 0.2391 0.2503 0.9495 0.0659
β2 0.0530 0.3651 0.3880 0.9427 0.1533
βt −0.0409 0.4171 0.4351 0.9442 0.1910

n = 1000

Cox PH β1 0.1963 0.0465 0.0485 0.0096 0.0409
β2 0.1978 0.0744 0.0775 0.2468 0.0451
βt −1.0278 0.0811 0.0878 0.0000 1.0641

Stratified β1 0.1915 0.0468 0.0485 0.0131 0.0390
β2 0.1901 0.0742 0.0763 0.2741 0.0419

Extended β1 0.0024 0.0479 0.0481 0.9486 0.0023
β2 0.0018 0.0749 0.0746 0.9508 0.0056
βt −0.0015 0.0864 0.0869 0.9498 0.0075

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

Table 2. Weibull survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 30% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.3090 0.2676 0.2887 0.8326 0.1788
β2 0.3075 0.4181 0.4547 0.8962 0.3013
βt −1.1695 0.4653 0.5134 0.2817 1.6312

Stratified β1 0.2885 0.2783 0.2970 0.8706 0.1714
β2 0.2788 0.4292 0.4568 0.9186 0.2864

Extended β1 0.0670 0.2646 0.2793 09474 0.0825
β2 0.0574 0.4081 0.4337 0.9464 0.1914
βt −0.0466 0.4646 0.4852 0.9471 0.2376

n = 1000

Cox PH β1 0.2122 0.0513 0.0536 0.0131 0.0479
β2 0.2156 0.0829 0.0859 0.2657 0.0539
βt −1.0158 0.0909 0.0960 0.0000 1.0409

Stratified β1 0.2059 0.0515 0.0536 0.0185 0.0453
β2 0.2037 0.0826 0.0845 0.3099 0.0486

Extended β1 0.0028 0.0527 0.0528 0.9511 0.0028
β2 0.0017 0.0833 0.0832 0.9493 0.0069
βt −0.0015 0.0959 0.0966 0.9507 0.0093

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

At a high censoring percentage (45%), Table 3 showed a downward trend in biases
for all models with larger sample sizes. The biases of the Cox and stratified regression de-
creased slightly, while the biases of the extended time-varying approach decreased sharply.

In assessing the influence of censoring level when the assumption of proportionality
does not hold and survival times follow the Weibull distribution, the results summarized
in Tables 1–3 indicate that an increase in censoring led to an appreciation in bias, a loss
in precision, and accuracy across all models. However, estimates from the extended
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exhibited robustness to the censoring rate by producing coverage probabilities very close
to 95%. Meanwhile, the Cox and stratified approaches consistently brought about coverage
probabilities well below 95% at every censoring level. Moreover, just as increasing the
sample size led to confidence intervals that targeted the wrong "true" value in misspecified
models, an increment in censoring had the same effect on 95% confidence intervals.

Table 3. Weibull survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 45% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.3388 0.3055 0.3334 0.8492 0.2259
β2 0.3358 0.4519 0.5277 0.9049 0.3911
βt −1.1566 0.05335 0.5852 0.4101 1.6802

Stratified β1 0.3145 0.3170 0.3410 0.8872 0.2152
β2 0.3029 1.4418 0.5640 0.9274 0.4099

Extended β1 0.0808 0.2988 0.3186 0.9457 0.1080
β2 0.0663 0.4681 0.4993 0.9470 0.2536
βt −0.0529 0.5282 0.5551 0.9471 0.3109

n = 1000

Cox PH β1 0.2258 0.0576 0.0601 0.0224 0.0546
β2 0.2325 0.0946 0.0979 0.3095 0.0637
βt −0.9986 0.1036 0.1069 0.0000 1.0086

Stratified β1 0.2186 0.0578 0.0599 0.0315 0.0514
β2 0.2174 0.0942 0.0962 0.3646 0.0565

Extended β1 0.0030 0.0587 0.0584 0.9510 0.0034
β2 0.0026 0.0947 0.0946 0.9520 0.0089
βt −0.0084 0.1083 0.1081 0.9511 0.0117

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

2.4.2. Exponential Survival Times

Table 4 contains the results of all models when the censoring level is 10%, and the
probability distribution of survival is exponential. Table 4 shows that estimators from
the PH and stratified regression approaches had significantly higher biases and MSEs at
different sizes of the generated sample than the extended model. The estimates of the time-
dependent extended technique produced confidence intervals that resulted in coverage
probabilities close to the nominal 95% level. In contrast, the other two models brought
coverage probabilities of less than 90%.

Examining the effect of increasing sample size on the three survival models when
censoring is low, we observed that the bias of the estimators tends to decrease; the standard
errors decreased, leading to estimates with greater precision. Regarding the Cov 95%, the
extended Cox regression model estimates induced steady coverage probability that did not
sway from the desired nominal value of 95%.

Table 5 gives simulation results when the censoring rate is set at 30% under expo-
nential survival times. Again, we observed that the extended model is exceedingly more
efficient about bias, standard errors, Cov 95%, and MSE estimates. Together with the
stratified model, the PH model gave rise to inadequate coverage probabilities that not only
consistently derailed from the nominal level of 95%, but confidence intervals from the
two models narrowed into the wrong value when the sample became larger. Hence, the
coverage probabilities decreased by more than 50% when the sample size increased from
50 to 1000. Moreover, the coverage probabilities obtained from the extended model do not
vary much (approximated to 95%) for all sample sizes.
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Table 4. Exponential survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 10% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.2666 0.2348 0.2554 0.8279 0.1363
β2 0.2586 0.3684 0.4072 0.8917 0.2326
βt −1.9392 1.1496 0.5756 0.0065 4.0916

Stratified β1 0.2364 0.2424 0.2615 0.8687 0.1243
β2 0.2244 0.3762 0.4066 0.9147 0.2157

Extended β1 0.0538 0.2338 0.2451 0.9444 0.0629
β2 0.0471 0.3602 0.3837 0.9423 0.1494
βt −0.0378 0.4781 0.4946 0.9456 0.2459

n = 1000

Cox PH β1 0.1706 0.0452 0.0467 0.0335 0.0313
β2 0.1705 0.0733 0.0768 0.3653 0.0349
βt −1.7911 0.0915 0.0988 0.0000 3.2179

Stratified β1 0.1519 0.0456 0.0471 0.0848 0.0253
β2 0.1499 0.0735 0.0757 0.4730 0.0282

Extended β1 0.0024 0.0472 0.0470 0.9502 0.0022
β2 0.0017 0.0744 0.0741 0.9532 0.0055
βt −0.0011 0.1008 0.0997 0.9533 0.0099

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

Table 5. Exponential survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 30% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.2807 0.2584 0.2795 0.8501 0.1569
β2 0.2718 0.4073 0.4465 0.9015 0.2732
βt −2.0481 0.5085 0.5775 0.0067 4.5281

Stratified β1 0.2552 0.2672 0.2859 0.8871 0.1469
β2 0.2416 0.4174 0.4466 0.9189 0.2578

Extended β1 0.0622 0.2544 0.2658 0.9477 0.0745
β2 0.0527 0.3949 0.4153 0.9472 0.1752
βt −0.0370 0.5051 0.5214 0.9503 0.2732

n = 1000

Cox PH β1 0.1828 0.0489 0.0509 0.0390 0.0360
β2 0.1827 0.0804 0.0843 0.3863 0.0405
βt −1.8189 0.0958 0.1035 0.0000 3.3194

Stratified β1 0.1631 0.0494 0.0514 0.0875 0.0292
β2 0.1602 0.0807 0.0829 0.4918 0.0326

Extended β1 0.0028 0.0511 0.0509 0.9505 0.0026
β2 0.0015 0.0816 0.0815 0.9515 0.0066
βt −0.0013 0.1061 0.1054 0.9540 0.0111

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

Table 6 provides results from the respective models when censoring is at 45%. It is
evident from the table that the estimates from the Cox model have the most considerable
bias and MSE, while the estimates from the extended model exhibited the most negligible
bias and mean squared error. In addition, the misspecified PH model incited the worst
coverage, followed by the stratified model.
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Table 6. Exponential survival times: simulation results comparing Cox PH, stratified and extended
models under non-proportional hazards at 45% censoring, β1 = β2 = 1 and β(t) = −0.5.

Model Parameter Bias Est SE Emp SE Cov 95% MSE

n = 50

Cox PH β1 0.3153 0.2926 0.3263 0.8561 0.2058
β2 0.3025 0.4678 0.5222 0.9034 0.3642
βt −2.1212 0.5574 0.6356 0.0123 4.9034

Stratified β1 0.2868 0.3031 0.3332 0.8936 0.1933
β2 0.2671 0.4806 0.5201 0.9286 0.3418

Extended β1 0.0750 0.2841 0.3034 0.9448 0.0977
β2 0.0581 0.4485 0.4741 0.9483 0.2281
βt −0.0428 0.5487 0.5691 0.9498 0.3257

n = 1000

Cox PH β1 0.1943 0.0542 0.0566 0.0497 0.0409
β2 0.1960 0.0909 0.0960 0.4300 0.0476
βt −1.8586 0.1029 0.1100 0.0000 3.4663

Stratified β1 0.1733 0.0547 0.0570 0.1113 0.0333
β2 0.1714 0.0912 0.0941 0.5381 0.0382

Extended β1 0.0028 0.0565 0.0562 0.9521 0.0032
β2 0.0022 0.0921 0.0923 0.9499 0.0085
βt −0.0012 0.1144 0.1136 0.9555 0.0129

Est SE = model based standard error, Emp SE = empirical standard error, Cov 95% = coverage probability for
95% confidence intervals, MSE = Mean Squared Error.

Assessing the impact of different censoring levels on the estimates from the respective
models when survival times follow the exponential distribution and the data were gen-
erated in violation of the Cox proportional hazard model assumption. Biases, standard
errors, and MSEs increased with increasing censoring levels. Thus, the estimates of the
three approaches showed a loss of precision and accuracy.

Generally, for all three models, the results from Tables 1–6 established whether du-
ration follows the Weibull or exponential distribution; the respective models produced
comparable results. Furthermore, the performance measures displayed similar trends re-
garding the censoring rate and sample size. All in all, when the assumption of proportional
hazards is violated, the Cox, stratified, and extended regression models revealed some
robustness to the distribution of survival time.

3. Discussion and Conclusions

Stratification and the inclusion of time-varying covariates are two of the most com-
mon modifications of the Cox regression model that aim to solve the problem of non-
proportionality. However, a review of the literature has shown that while the two exten-
sions have been widely compared using real data analyses, empirical comparison through
comprehensive Monte-Carlo simulations using a wide range of sample sizes and censoring
is still lacking. Therefore, we conducted extensive Monte-Carlo simulation studies to
evaluate the performance of the two models when the PH assumption is violated.

For non-proportional simulations with survival times following the Weibull distribu-
tion, we observed superior performance of the extended Cox model for all combinations
of different sample sizes and censoring rates. The finding agrees with the results of [31],
where the author found that the extended Cox approach performs satisfactorily at various
censoring levels and sample sizes when PH is violated. Meanwhile, the stratified approach
fitted similarly to the violated Cox model at all censoring percentages and sample sizes.

Similarly to the performance under Weibull survival times, the Cox extended model
showed the best performance with regard to biases, coverage probabilities, and mean
squared errors when event times followed the exponential distribution. However, the
model’s efficiency is comparable to the misspecified Cox and stratified PH models. Thus,
suggesting that the two modified models are inadequate in addressing the problem of non-
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proportionality [32]. Finally, the three models showed some robustness to the distribution of
survival times when the PH assumption is not met. In other words, the models’ estimates
obtained when the duration follows the Weibull distribution are comparable to those
obtained when the exponential distribution generates the duration. Such is to be expected
for semi-parametric models [8].

However, just like the stratified Cox model, the time-varying extended Cox model has
some limitations in dealing with non-proportionality. For instance, Dunkler et al. [33] claimed
that the model is only beneficial when most variables in a study are time-independent.
Subsequently, Olaniran and Abdullah [17] expressed concerns about using the partial
likelihood function in estimating the model, as this may lead to a loss of efficiency. Finally,
Ratnaningsih et al. [32] argued that using the stratified and extended Cox models separately
is inefficient when considering non-proportional hazards. They suggested combining the
two models; a stratified-extended Cox model is more appropriate for non-proportionality. A
thorough evaluation of the combined model is of interest for future research. Nevertheless,
this chapter provides a comprehensive examination of the advantages and disadvantages
of the two most common extensions of the Cox model when proportionality is not met.
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