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ABSTRACT
The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging 
techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-
cost alternative medical imaging technique with applications in various clinical scenarios. In this article, EIT is investigated as 
an alternative method to image and extract the centre of gravity of the modiolus in vivo. This information can be used to augment 
present postoperative medical imaging techniques to investigate the cochlea. The cochlear implant EIT system was simulated by 
modelling user-specific electrode array trajectories within a simple conductive medium containing an inhomogeneity represent-
ing the modiolus. The method included an adapted adjacent stimulation protocol for data collection. For the image reconstruc-
tion, NOSER and Tikhonov priors were considered. A parameter analysis was conducted to find the most robust combination of 
image priors and hyperparameters for this application. The cochlear implant EIT methodology was validated at different noise 
levels for four electrode array trajectories. Comparing the NOSER and Tikhonov priors, it was observed that the NOSER prior ex-
hibits superior centre of gravity localisation performance in cochlear implant EIT image reconstruction for different noise levels 
and user-dependent variability in electrode array trajectories. Image reconstruction, using a NOSER prior at a hyperparameter 
value of approximately 0.001, resulted in an average centre of gravity localisation error of less than 4% for all electrode array tra-
jectories using difference imaging and less than 5.5% using absolute imaging.

1   |   Introduction

The postoperative imaging of the cochlea after the insertion of a 
cochlear implant (CI) is advised to gain insight into the electrode 
placement within the cochlea and investigate potential complica-
tions [1]. These images also form the basis for three-dimensional 
(3D) computational modelling of the user-specific biophysics of 
the electrically stimulated cochlea and the consequent excitation 
behaviour of the auditory neurons. The predictive outcomes from 
these models are greatly influenced by unique cochlear morphol-
ogy. The level to which morphology can be incorporated into the 
models depends on the quality of the available cochlear scans 

from which the models are derived [2]. The in vivo investigation of 
user-specific cochlear morphology is challenging, as the available 
postoperative imaging techniques present limitations in terms of 
resolution and distinguishability. Typical postoperative imaging 
includes computed tomography (CT) techniques such as high-
resolution CT (HRCT) and cone-beam CT (CBCT). CBCT scans 
provide good spatial resolution, but variations in image quality 
among different scanners may affect the distinguishability of co-
chlear structures  [1]. Regardless of the quality of the image, the 
internal structures of the cochlea are typically obscured. The mo-
diolar region, including the modiolar wall of the cochlear canal, is 
rarely visible. As this is the region in which the nerve fibres exist, 
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an alternative to existing imaging techniques that may augment 
information on the user-specific internal structures of the cochlea 
will be beneficial in the context of computational modelling.

Electrical impedance tomography (EIT) is a safe, low-cost alter-
native to various medical imaging techniques, posing no known 
hazards to the user [3]. It functions by measuring the electrical 
impedance between electrodes placed around a cross-section of 
the imaged structure to generate a 2D contour map of the inter-
nal impedance distribution. The stimulation protocol is similar 
to that of a CT in that a perimetral array of probing and mea-
surement elements are systematically activated [4]. As tissue 
types have different impedances [5], the impedance distribution 
map can be used to estimate the areas occupied by each tissue 
type. EIT also has the capability for 3D approximations. This 
involves injecting sinusoidal impulses across a 2D cross-section 
and using a more complex reconstruction algorithm to estimate 
impedances further away from the measurement plane. The ac-
curacy of the generated image decreases with increased distance 
from this plane [6].

Unlike more established imaging methods, there is no stan-
dardised image reconstruction method for EIT. Various stim-
ulation protocols and reconstruction algorithms are available, 
each with situational drawbacks. This article explores potential 
solving strategies, meshing techniques and image-processing 
methods to propose a robust implementation basis for using a CI 
as an EIT device to image the cochlear modiolus.

On a high level, CI and EIT hardware consists of similar compo-
nents, as illustrated in Figure 1. The internal unit of the CI con-
sists of a receiver-stimulator (containing a current source and 
back telemetry unit) and an electrode array [7]. Traditionally, an 
EIT data acquisition unit consists of a current source, similar to 
the internal unit of the CI, and a boundary voltage measurement 
unit. Importantly, most commercial CI units allow for the imple-
mentation of unique stimulation and measurement patterns, as 
required for precise tuning of the device [8]. This means that an 
EIT measurement protocol can be implemented on implanted 
devices with an accessible back telemetry system.

Traditionally, EIT electrodes are placed around an irregular 
boundary of a large anatomical structure such as the thorax. 
However, there are existing EIT applications that have a simi-
lar scale and environment to that of a CI. Electrical impedance 
endotomography involves an internal probe placed in the centre 
of the region of interest (ROI) and has been applied in transrec-
tal EIT for prostate screening [9]. Internal electrode arrays are 
also commonly employed in neural EIT for functional imaging 
of the brain [10–14]. In a previous study, the feasibility of inter-
nal micro-electrode arrays implanted in a rat thalamus was in-
vestigated in simulation. The method could reliably reconstruct 
and localise visually evoked impedance changes in the visual 
subcortical bodies within 300 μm from the electrode array [10].

The key differences in the CI application compared to previ-
ous EIT studies relate to the positioning of the electrodes, the 

FIGURE 1    |    The system architecture of (A) CI devices [7] and (B) traditional EIT systems.



3 of 15

conductivity of the medium in contact with the electrodes and 
the stimulus waveform. In traditional EIT systems, care is taken 
to align the electrodes in a specific plane, which is not possible 
with CI electrode arrays due to the 3D spiralling nature of the 
cochlea. The electrodes are also not necessarily equally spaced, 
nor does the final electrode lie adjacent to the first. The CI elec-
trode also seldom touches the medial wall of the cochlear canal 
and is instead separated from the modiolus by a conductive layer 
of perilymph. This may distort the measured impedance matrix 
and reduce the accuracy of the imaging [15]. Lastly, traditional 
EIT uses sinusoidal stimulus waveforms, while CI systems are 
typically only able to deliver bipolar pulsatile waveforms.

To assess whether CI-EIT imaging is viable despite the differ-
ences relative to traditional EIT mentioned above, the accuracy 
of measuring the location of the modiolar axis is explored. The 
modiolar axis is a key parameter in reliably and unambiguously 
describing and referencing morphological parameters for clini-
cal and modelling applications. The modiolar axis is commonly 
defined as the line between the helicotrema and the centre of 
gravity (CoG) of the modiolus in the basal turn. However, inter-
observer variability can lead to misalignment and the subse-
quent inaccurate quantification of other landmarks [16]. The 
modiolar CoG is, accordingly, an important geometric property 
to be determined reliably and robustly. As the CI electrode array 
mostly occupies the basal turn of the cochlea, EIT may provide 
a reliable method to determine the CoG of the basal turn by 
eliminating inter-observer errors. It could also be used for co-
registration of different cochlear imaging modalities and serve 
as a reference to observe structural changes of cochlear anatomy 
post-implantation [17].

This article presents a simulation study that assesses the via-
bility of and serves as a foundation for the future implementa-
tion of a CI-EIT system in clinical applications. To this end, a 
robust stimulation protocol and image reconstruction technique 
was developed that uses an implantee's own uniquely placed CI 
electrode array as the EIT electrode system. The accuracy with 
which the CoG of the modiolus could be determined served as 
a measure to determine a suitable EIT strategy for implementa-
tion with a CI system.

2   |   Materials and Methods

The CI-EIT system is based on the same principles as traditional 
EIT by implementing a current source driven stimulation pat-
tern and measuring the associated voltage distribution within 
the cochlea to generate a reconstructed conductivity image [3]. 
A model representing the electrode placement, geometry of the 
structure of interest and the stimulation and measurement pro-
tocol is an integral part of the EIT image reconstruction process. 
For the simulation study, the measurement environment is re-
placed by a model to simulate data retrieved from the electrodes. 
Accordingly, two models involving the specific geometry and 
electrode locations are required. The first model is used for the 
forward solution to generate simulated data, while the second 
model is used for the image reconstruction process. The CI-EIT 
system implements a stimulation and measurement protocol 
adapted from standard techniques to generate simulated mea-
surements and integrate them into the reconstruction process. 

EIDORS v3.10, a versatile open-source software suite for EIT 
image reconstruction [18], was used in this study. The method-
ology is analysed and validated in terms of the CoG localisation 
errors.

2.1   |   CI Electrode Model Construction

The key consideration of this study is to investigate the viabil-
ity of translating the proposed CI-EIT system to clinical appli-
cation for assessing the characteristics of the modiolus and its 
surrounding structures. Cochlear Ltd. provides a platform for 
custom back telemetry implementations, which enables the CI 
device to be employed as the data acquisition unit of the pro-
posed CI-EIT system. To this end, it was decided to implement 
CI electrode array models conforming to the key features of the 
Cochlear Nucleus CI24RE. These models incorporate the 22 
half-banded electrode contacts of the Cochlear Nucleus CI24RE, 
typically manufactured using a biocompatible platinum-iridium 
alloy [7], but do not consider the tapering of the electrode array 
towards the apical end.

In traditional EIT systems, great care is taken to align the elec-
trodes in a specific plane, which is not possible with CI electrode 
arrays due to the 3D spiralling nature of the cochlea. The shape 
and degree to which the vertical displacement of the electrodes 
occurs vary among different CI users, as each cochlea exhibits 
unique shape and coiling characteristics [19]. The CI electrode 
array trajectories of four different CI users were sampled to gain 
a better understanding of the variables influencing CI-EIT re-
construction and localisation performance.

Person-specific electrode array trajectory coordinates were ob-
tained from landmark data extracted from user CT scans. These 
trajectories were used to construct models in the finite element 
analysis software COMSOL Multiphysics v5.5. The four elec-
trode array models will be referred to as Electrode 1, 2, 3 and 
4, respectively, shown in Figure 2. From Figure 2A, the differ-
ence in shape among the four electrodes can be observed, while 
Figure 2B illustrates the variability in the vertical distribution of 
the electrodes within the arrays.

All the electrodes were embedded in a cylindrical volume with 
an 8 mm height and radius. An inhomogeneity was added to 
the model to simulate the modiolus and auditory nerve. The 
modiolus was simulated by a cylinder with a radius of 1 mm 
and height of 8 mm, with the auditory nerve as a cylinder em-
bedded in the former, with a radius of 0.5 mm and height of 
8 mm. The complete model setup is shown in Figure 3. The size 
of the simulated modiolus relative to the electrode array was 
purposefully understated. This will allow for the placement 
of the inhomogeneity at various locations within the electrode 
array to verify the localisation accuracy and sensitivity of the 
CI-EIT system.

The various conductivity and electrode contact impedance 
values were set to represent values typically observed in the 
cochlear environment. The conductivities were set to values 
obtained from literature, as summarized in Table  1. The co-
chlear fluid was assigned the average conductivity value of the 
endolymph and perilymph as obtained from the literature [20]. 
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Although CI electrode contact impedance measurements are 
a standard procedure available on all major CI platforms, the 
true contact impedance is influenced by several factors, includ-
ing measurement approach (bipolar or monopolar stimulation), 
stimulation frequency and the person-specific electrode/electro-
lyte interface [22]. The contact impedance ranges from 10 kΩ at 
lower frequencies to less than 1 kΩ at higher frequencies [22, 23]. 
The minimum pulse repetition rate of Nucleus Freedom devices 
is 100 Hz [7], and the proposed CI-EIT system will operate below 
1 kHz, resulting in a contact impedance range of approximately 
2.5–4 kΩ [22]. The driving stimulus was chosen to be compati-
ble with a Nucleus Freedom processor. It consisted of a biphasic 
pulse with an amplitude of 106.5 μA, phase duration of 400 μs, 
interphase gap of 7 μs and a stimulus period of 1200 μs. To vali-
date the CI-EIT methodology, the electrode contact impedance 
was set to 4 kΩ for all electrodes.

EIDORS offers three image output resolutions, that is, 32 × 32, 
64 × 64 and 128 × 128 pixels. The default resolution of 64 × 64 
pixels was used to represent a 2D cross-section through the 3D 
model. This resulted in a pixel size of 0.25 mm. To investigate 
the localisation accuracy, the displacement of the inhomoge-
neity between iterations should at least be greater than the di-
mensions of a pixel. Further simulation constraints involved the 
inhomogeneity always to be encircled, but not intersected, by 
the electrode array. By displacing the inhomogeneity by 0.5 mm 
between iterations and adhering to the constraints, the test loca-
tion coordinates (in mm) for each of the four electrode trajecto-
ries were selected, as summarised in Table 2.

The selected test location coordinates are shown, along with the 
respective electrode trajectories, in Figure 4. Only the CoG of 
the inhomogeneity at the different locations are indicated.

2.2   |   CI-EIT Forward and Inverse Models

The forward solution and image reconstruction for the CI-EIT 
system were implemented in EIDORS v3.10 [18]. Two meshes 
were generated for each of the four electrode models and the as-
sociated inhomogeneity test locations as the same mesh may not 
be used for simulating data and reconstructing the image [24]. 
A custom element size was specified for both meshes to enable 
mesh refinement close to the electrodes. The mesh for the for-
ward solution was selected to be finer than the mesh generated 
for the image reconstruction. The minimum and maximum el-
ement sizes in the models for the forward solution were 0.1 and 
1.2 mm, respectively, with a maximum element growth rate of 
1.35. This resulted in a mesh with an average of approximately 
171,000 elements across the four electrodes and test locations. 
The minimum and maximum element sizes in the forward mod-
els for the inverse problem were 0.3 and 1.75 mm, respectively, 
with a maximum element growth rate of 1.45. This resulted in a 
mesh with an average of approximately 37,000 elements across 
the four electrodes and test locations.

The node coordinates and the corresponding element and 
boundary numbers of each mesh were exported from COMSOL 

FIGURE 2    |    The four person-specific electrode array models with unique trajectories as generated in COMSOL, from left to right: Electrode 1, 
Electrode 2, Electrode 3 and Electrode 4. (A) Top view of Electrode 1, 2, 3 and 4. (B) Side view of Electrodes 1, 2, 3 and 4.

FIGURE 3    |    Complete model setup for the CI-EIT validation study 
(Electrode 1, Test Location 1). A similar setup was used for the remain-
ing electrodes and test locations.
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to EIDORS to generate a forward model according to the 
EIDORS object structure definitions [18].

2.3   |   CI-EIT Measurement Strategy

Serialized EIT driving protocols usually consist of a single cur-
rent source and voltage measurement unit, which is then multi-
plexed between the electrodes in a predefined pattern. Common 
serialized driving patterns include adjacent, cross, polar oppo-
site and pseudo-polar patterns [25]. From these, the most com-
mon is the adjacent drive, although it has the poorest sensitivity 
to internal changes in resistivity. The subsequent patterns all 
aim to improve sensitivity [26]. The traditional adjacent protocol 
involves the stimulation between two adjacent electrodes while 
measurements are taken at the remaining electrode pairs. This 

corresponds to the bipolar stimulation protocol available in CI 
devices.

The proposed measurement strategy for the CI-EIT system is an 
adapted version of the traditional adjacent stimulation protocol. 
Traditionally, the number of adjacent measurements per cycle is 
given by N − 3, where N is the number of electrodes. Accordingly, 
a total of N(N − 3) measurements can be taken with this stimu-
lation protocol. Consider the diagrammatic visualisation of the 
CI electrode array in Figure  5, with electrodes E = 1, 2, … N, 
numbered from the basal end (where E = 1) to the most apical 
electrode, where the proposed CI electrode model has N = 22. 
Traditionally, electrodes E22 and E1 would have been the final 
stimulation or measurement pair in a specific measurement 
cycle. In the context of the CI electrode array, it was decided to 
discard this electrode pair, as the distance between them causes 

TABLE 1    |    Model conductivity values.

Model domain Cochlear structure Conductivity (S/m)

Cylindrical volume Cochlear fluid 1.5 [20]

Inhomogeneity (outer) Modiolar bone 0.085 [21]

Inhomogeneity (inner) Auditory nerve 0.333 [20]

TABLE 2    |    Inhomogeneity location coordinates (in mm).

Test location Electrode 1 Electrode 2 Electrode 3 Electrode 4

1 0,−1 −0.5,−1 −1.5,−1 −1,−1

2 0.5,−1 0,−0.5 −1,−1 −0.5,−1

3 1,−1 0.5,−0.5 −0.5,−1 0,−1

4 0,−0.5 0,0 0,−1 −2,−0.5

5 0.5,−0.5 0.5,0 0.5,−1 −0.5,−0.5

6 1,−0.5 1,0 −0.5,−0.5 0,−0.5

7 1.5,−0.5 0,0.5 0,−0.5 0.5,−0.5

8 1,0 0.5,0.5 0.5,−0.5 0,0

9 1.5,0 1,0.5 1,−0.5 0.5,0

10 — −0.5,1 0,0 —

11 — 0,1 — —

12 — 0.5,1 — —

FIGURE 4    |    The top view of the four electrode trajectories: (A) Electrode 1, (B) Electrode 2, (C) Electrode 3 and (D) Electrode 4, and corresponding 
test locations (in mm) from Table 2.
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large outliers in the simulated data and subsequent distortion of 
the reconstructed images. Accordingly, the adjacent stimulation 
protocol, as defined in EIDORS, could not be used as is, requir-
ing the implementation of an adapted version. The adapted ad-
jacent stimulation protocol operated like the traditional adjacent 
stimulation protocol, without the involvement of the measure-
ment pair E22 and E1 for any of the stimulation patterns. This 
stimulation protocol requires at least four electrodes.

The maximum total number of measurements for the CI-EIT 
system is given by:

resulting in 380 measurements for a 22-electrode configuration, 
as opposed to 418 measurements when using the traditional ad-
jacent drive.

In the design process of an EIT system, one of the objectives when 
choosing the stimulation current level is to maximize the sensi-
tivity while adhering to patient safety restrictions. Higher EIT 
current levels result in higher sensitivity to internal changes in 
conductivity [3]. However, in CI systems, there is a restriction on 
the maximum current level that can be delivered to a user before 
discomfort is experienced, which is referred to as the comfortable 
loudness level (C level) [7]. Accordingly, the upper limit for the 
stimulation current of the CI-EIT system is the user's C level.

Stimulating at or just below threshold would be the hypothetical 
worst-case scenario for which the methodology could be vali-
dated, and therefore, a current amplitude that is typically below 
the auditory threshold of CI users was chosen. A threshold level 
of 100 μA is assumed for this study [27], but the specific thresh-
old of a user can be obtained through a standard mapping proce-
dure and incorporated into the image reconstruction procedure 
to enhance person-specific results.

2.4   |   CI-EIT Simulated Measurements

The boundary data sets for the feasibility study are generated 
through the forward solution of the finer mesh, as discussed 
in Section 2. The simulated homogeneous (vr) and inhomoge-
neous (vi) data sets for all test locations in Table 2 were gen-
erated. The simulated data are noise-free, but actual CI-EIT 
measurements would be subjected to hardware-induced and 
physiological noise. Noise is added to the simulated measure-
ments, v, such that

where vn is the measurement set with noise, �P is proportional 
noise and �a is additive noise [28]. To simulate in  vivo condi-
tions, noise levels are set to �P = 0.01% and �a = 2�V  for low-
noise and �P = 0.02% and �a = 5�V  for high-noise situations 

(1)M = (N − 1)(N − 4) + 2,

(2)vn = v
(
1 + rand

(
�P
))

+ rand
(
�a
)
,

FIGURE 5    |    The adjusted adjacent stimulation protocol for CI-EIT. (A) The first measurement cycle is similar to the traditional adjacent protocol 
with electrode pair E1–E2 as the stimulating electrodes, and the remainder of the electrode pairs employed for measurements, V1–VM. (B) The second 
measurement cycle in the adapted adjacent protocol. As the electrode pair E22–E1 is discarded, electrode E1 is not used in this measurement cycle. 
A total of VM−1 measurements are taken. (C) The second to last measurement cycle is similar to the second measurement cycle as described in (B), 
with electrode E22 not used in the measurement cycle. Similarly, a total of VM−1 measurements are taken. (D) The final measurement cycle involves 
electrode pairs EN−1–EN and not EN–E1 as in the traditional protocol, essentially losing a measurement cycle.
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[29]. The noise parameters are drawn randomly from a Gaussian 
distribution with zero mean and variance �.

2.5   |   Image Reconstruction

The EIT problem is ill-conditioned and ill-posed. Regularisation 
techniques are commonly used to improve the ill-posed inverse 
problem by imposing additional constraints by introducing image 
priors. A prior carries assumptions or information about the con-
ductivity distribution that constrain the set of feasible impedance 
distributions. This is achieved by allowing the reconstruction pro-
cess to use pre-knowledge of the properties of the medium, such 
as the expected smoothness of the solution or known anatomical 
features, to improve the solution. The inclusion of priors leads to 
the introduction of another parameter, referred to as the hyper-
parameter (�), which controls the trade-off between image con-
formance to the data or the prior [30]. For the CI-EIT feasibility 
study, a difference imaging approach was used for initial verifica-
tion of the technique and for finding the most robust reconstruc-
tion parameters. Even though difference images of the cochlea 
could potentially be of clinical value over an extended period of 
time for evaluating changes within the cochlea, it would not nec-
essarily be possible to obtain a homogeneous data set for once-off 
calculation of the modiolar CoG. Accordingly, a static or absolute 
reconstruction was also considered. For the image reconstruction 
process, a measured boundary data vector defined as y = v − vr 
for difference imaging, and y = v for absolute imaging is required.

For the difference imaging, the one-step Gauss-Newton ap-
proach is followed [31]. The reconstructed image representing 
the conductivity distribution can be modelled by

where x̂ is the reconstructed conductivity distribution, J is the 
Jacobian matrix, R the regularization matrix, � the scalar hy-
perparameter and W a model of the measurement accuracy [32]. 
The choice of prior and � greatly influences the quality of the 
reconstructed image, but the optimal selections are not yet well 
established in the field of micro-electrode array EIT [10], and by 
extension for CI-EIT problems.

The absolute image reconstruction was implemented with an 
iterative Gauss-Newton solver using the parameters obtained 
from the difference imaging results.

2.6   |   Image Reconstruction Parameter Analysis

A previous study demonstrated the applicability of NOSER 
and Tikhonov priors for micro-electrode array EIT [10], and 
therefore, these priors were selected for the present study. The 
Tikhonov prior introduces smoothness by assuming that the 
underlying conductivity distribution changes gradually rather 
than abruptly. For this reason, it tends to blur boundaries where 
there are sharp conductivity changes or localised features. The 
NOSER prior, on the other hand, favours solutions where the 
conductivity remains homogeneous by scaling a baseline con-
ductivity. This emphasises localised contrasts better than the 
Tikonov prior. An objective measure to determine the most suit-
able combination of prior and � is required. To this end, the sen-
sitivity of modiolus CoG localisation error in response to prior 
and � changes is assessed.

To obtain the CoG from the reconstructed image, the 3D recon-
struction was sliced at the average height of the electrodes in the 
array to obtain a 2D 64 × 64 pixel image. As the ROI in the CI-
EIT problem will always be within the electrode array, a mask 
encircling the electrodes for each array was applied to the image. 
The electrode trajectories and mask boundaries are illustrated 
in Figure 6. All pixel values outside of the boundary of the mask 
are set to zero.

After applying the mask, a thresholded binary image, x̂t, was 
created. As the inhomogeneity is less conductive than the 
background, the pixels of interest in the difference images will 
have a negative value. Accordingly, for the difference images, 
the 1/4-minimum amplitude set of the image was determined 
such that:

where x̂i is the ith pixel of the reconstructed image. The thresh-
olding of absolute images posed a challenge as the inhomogene-
ity will not necessarily have a negative value; however, image 
artefacts with negative values might be present in some cases. 
In either case, using a 1/4-minimum amplitude set is unfavour-
able, as the pixels falling within the range are very few or none 
at all. Accordingly, an alternative approach to thresholding ab-
solute images was developed. The approach entailed finding the 

(3)x̂ =
(
JTWJ+�2R

)−1
JTWy = By,

(4)x̂t,i =

⎧
⎪⎨⎪⎩

1 if x̂i≤
1

4
min

�
x̂
�

0 otherwise

FIGURE 6    |    The top view of the four electrode trajectories: (A) Electrode 1, (B) Electrode 2, (C) Electrode 3 and (D) Electrode 4, and correspond-
ing masks.
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midpoint of the pixel data set, from which an appropriate thresh-
old variable could be heuristically determined. The thresholding 
of the absolute images is accordingly implemented such that:

where � is the threshold variable.

From the binary image, the area A was found as the largest 
cluster of connected pixels with a value of 1. The CoG of A was 
calculated as the centroid of the smallest rectangular bounding 
box encompassing the area. The localisation error was deter-
mined by

where rtrue is the true CoG coordinates as summarized in Table 2, 
rrec is the CoG of A and dx and dy are the model dimensions.

Figure 7 illustrates the image analysis procedure. The regions 
of interest in all of the models under investigation are the model 
boundary, mask boundary, inhomogeneity boundary and CoG 
(Figure 7A). Figure 7B is a simplified representation of a recon-
structed image with no artefacts, while Figure  7C shows the 
masked image. It can be observed that all of the pixels outside 
of the mask are set to zero. The masked image is then subjected 
to the threshold procedure, resulting in the binary image in 
Figure 7D. The largest cluster of connected pixels with a value 
of one is then determined from the binary image (in this simpli-
fied representation, there will only be one cluster of pixels). The 
smallest rectangle encompassing the cluster, or bounding box, 
is then found, as indicated in Figure 7E. The CoG of the pixel 
cluster is then found as the centroid of the bounding box.

The effect of � on the localisation ability of the EIT system is 
investigated for the difference image reconstruction through a 
heuristic approach [30], after which the optimal � is determined 
by the L-curve method [33]. The L-curve method is a graphical 
tool to determine the optimal regularisation parameter. It shows 
the trade-off between the norm of the regularised solution and 
the norm of the residuals (the difference between the observed 

and predicted data). It typically shows an L shape where the 
vertical part corresponds to the solution norm being large, that 
is, over-fitting to the noisy data, and the horizontal part corre-
sponds to the residual norm being large, that is, over-smoothing 
and loss of data features. The inflexion point indicates where the 
regularisation parameter provides an optimal balance between 
the two.

The heuristic approach entails the solution of the inverse prob-
lem at 10 � values ranging from 5 × 10−2 to 5 × 10−11, decreasing 
in multiples of 10−1, for all test locations and each of the four 
electrode trajectories. The simulation was repeated for the no- 
and low-noise data sets. The RMSE of the localisation errors was 
then calculated for each � and prior. The � with the lowest RMSE 
for each prior was identified as the most favourable value. The 
optimal � obtained through the L-curve method is used to ver-
ify the heuristic results. The image reconstruction process was 
repeated for the no-, low- and high-noise measurements at the 
optimal �.

From the results of the difference imaging analysis, the more 
robust prior and optimal � is used in the absolute image recon-
struction analysis. The optimal � is heuristically verified for ap-
plicability to the absolute scenario by following the RMSE of the 
localisation error approach. The absolute image reconstruction 
at the verified optimal � is conducted for the no-, low- and high-
noise measurements.

2.7   |   Statistical Analysis

Two important factors that must be accounted for in a CI-EIT 
system are noise and electrode trajectory variability. A statistical 
analysis was conducted to investigate the effect of these factors 
on the CoG localisation performance.

The sensitivity of the CoG localisation error to the presence of 
noise was assessed by comparing the localisation error among 
the no-, low- and high-noise data sets at the optimal �. A paired 
t-test was conducted to assess whether a significant variability 
in localisation error can be observed between the no- and low-
noise, and no and high noise data sets, respectively.

An ANOVA analysis was conducted on the localisation error re-
sults of the four unique electrode trajectories to verify whether 
the CI-EIT approach can be reliably applied to various electrode 
trajectories and noise scenarios.

(5)x̂t,i=

⎧
⎪⎨⎪⎩

1 if x̂i≤�×
1

2

�
max

�
x̂
�
−min

�
x̂
��

0 otherwise

(6)� =

√(
rx,rec−rx,true

)2
+
(
ry,rec−ry,true

)2
√
d2
x
+ d2

y

,

FIGURE 7    |    The CI-EIT image analysis procedure which involves defining the required (A) image regions, (B) slicing the reconstructed image, 
(C) masking the image, (D) obtaining a binary thresholded image and (E) obtaining the bounding box and CoG.
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The statistical analysis was conducted for the difference and abso-
lute image reconstruction results. Finally, a paired t-test was con-
ducted to verify whether the proposed methodology can be reliably 
applied to difference and absolute reconstruction scenarios.

3   |   Results

3.1   |   Difference Imaging

The difference image reconstruction parameter and statisti-
cal analysis results are presented and analysed as described in 
Section 2. The parameters for the absolute image reconstruction 
will be drawn from the conclusions of this analysis.

3.1.1   |   Image Reconstruction Parameter Analysis

The localisation errors of the various test scenarios were deter-
mined by Equation (6). The RMSE of the localisation errors for 
the respective test locations at each � value was calculated for 
the NOSER and Tikhonov priors under no-noise and low-noise 
conditions. The procedure was repeated for the four electrodes. 
The resultant RMSE of the localisation errors at each � is shown 
in Figure 8. From the RMSE plots, it can be observed that the � 
resulting in the lowest localisation errors for no- and low-noise 
is 5 × 10−4 and 5 × 10−7 when using the NOSER and Tikhonov 
priors respectively. The superior CoG localisation performance 
of NOSER relative to Tikhonov is demonstrated in the generally 
lower RMSE for all electrode trajectories.

The optimal � was obtained for each test location for both priors 
and all electrodes using the L-curve method. The average � for the 
two priors for all electrodes was calculated and is summarized in 
Table 3. The optimal � values for each prior corresponded closely 
among the electrode models. The average for the NOSER prior is 
�NOSER = 1.1212 × 10−3 with a standard deviation of 2.1094 × 10−4, 
and the average for the Tikhonov prior is �Tikhonov = 5.0909 × 10−7 
with a standard deviation of 2.6898 × 10−8. The optimal � val-
ues are also in the range of the values observed in the heuristic 

experiment. �Tikhonov corresponds closely to � = 5 × 10−7 as ob-
served in the heuristic experiment. �NOSER is in the same order of 
magnitude as the heuristically obtained value of � = 5 × 10−4.

The averaged optimal � values, as shown in Table 3, were used 
to reconstruct all of the test locations for the four electrodes at 
no-, low- and high-noise levels. The reconstructed images (be-
fore masking) for Test Location 1 at the averaged optimal � are 
shown in Figure  9. The reconstructed CoG for each location 
was obtained after masking the image. The true CoG of the in-
homogeneity is indicated by a “·” and the reconstructed CoG is 
indicated by an “x.” Figure 9 shows the influence of ringing ar-
tefacts, which are areas representing a conductivity of opposite 
sign to the targeted reconstruction [34]. The inhomogeneity is of 
a conductivity smaller than the background conductivity, there-
fore resulting in a negative reconstructed change in conductiv-
ity (Δ�). The ringing artefacts would, therefore, be positive Δ�. 
According to the image scale, the inhomogeneity is expected to 
be dark blue, whereas the ringing artefacts are the bright yellow 
regions. Even though ringing artefacts are unfavourable, they 
did not have a negative influence on the determination of the 
1/4-minimum amplitude set for the CoG localisation. Another 
artefact that can be observed in the reconstructed images is the 
presence of large regions of a similar conductivity to that of the 
reconstructed inhomogeneity. As opposed to the ringing arte-
facts, these artefacts distort the true shape of the inhomogeneity 
and may result in faulty detection of the CoG. However, using 

FIGURE 8    |    RMSE of the localisation errors at the respective hyperparameters for the four electrode models.

TABLE 3    |    The average λ for the NOSER and Tikhonov priors for all 
electrodes.

Electrode NOSER Tikhonov

1 9.5965 × 10−4 5.4083 × 10−7

2 1.4289 × 10−3 4.9006 × 10−7

3 1.0164 × 10−3 4.8375 × 10−7

4 1.0799 × 10−3 5.2170 × 10−7
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FIGURE 9    |    Reconstructed and zoomed to masked ROI images for Test Location 1 at the averaged optimal �, with (A) Electrode 1, (B) Electrode 2, 
(C) Electrode 3 and (D) Electrode 4 for NOSER and Tikhonov priors respectively in no-, low- and high-noise scenarios. All images show the original 
reconstructions before masking. The white “x” indicates the reconstructed CoG, and the yellow “·” indicates the true CoG. The red circles indicate 
the outlines of the model and the inhomogeneity, respectively. All images are scaled between the maximum Δ� (bright yellow) and minimum Δ� 
(dark blue).
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prior knowledge about the modiolus position relative to the elec-
trode array to mask the raw reconstructed image notably im-
proves the CoG localisation ability of the CI-EIT system.

The average localisation error for each of the electrodes using 
the respective priors is shown in Figure 10. The figure suggests 
that the NOSER prior is more robust to noise than the Tikhonov 
prior, with smaller variations in localisation error for different 
noise levels. The localisation errors for all electrode trajectories 
using the NOSER prior are also less than those of the Tikhonov 
prior. The NOSER prior also appears to be more robust against 
large variations in vertical electrode displacement, especially 
considering the results from Electrode 2 in Figure 10. The lo-
calisation error using the Tikhonov reconstruction, in this case, 
is considerably higher than with the NOSER prior. This can 
also be observed in Figure  9B, where the reconstructed CoG 
(indicated by the “x”) for the Tikhonov prior lies outside of the 
bounds of the inhomogeneity. This is not the case for any of the 
other reconstructed CoG locations.

Considering the electrode trajectories in Figure 2 and the locali-
sation results in Figure 10B, a parallel can be observed between 
greater vertical electrode misalignment and higher localisation 
errors using the Tikhonov prior, especially in the high-noise 
scenarios. The association is not as apparent in the localisation 
errors using the NOSER prior.

3.1.2   |   Statistical Analysis

From Figure 9, it can be observed that noise degrades the qual-
ity of the reconstructed image in terms of image artefacts and, 
to a lesser extent, inhomogeneity shape deformation. However, 
the influence on the localisation performance is not clear. 
Accordingly, a paired t-test was used to evaluate the noise sensi-
tivity of the four electrode models using the two different priors. 
A paired t-test was conducted between the no-noise localisation 
errors and the low- and high-noise localisation errors, respec-
tively. The results from the paired t-tests indicated no signifi-
cant difference between localisation errors from reconstructed 
images subjected to low- or high-noise, respectively, as opposed 
to no-noise scenarios at a 1% significance level. Even though 
the two priors appeared to have comparable performance under 
low-noise scenarios, NOSER has superior performance in high-
noise scenarios with pNOSER > pTik for all electrodes.

A one-way, unbalanced ANOVA was conducted on the locali-
sation errors of the four electrode models in a no-noise scenario 
for the NOSER and Tikhonov priors, respectively. No signifi-
cant difference was observed between localisation errors when 
using the NOSER prior (p = 0.0768). In contrast, the value of 
p = 3.3413 × 10−13 indicates a significant difference in recon-
structed CoG localisation when using the Tikhonov prior. From 
the results of the ANOVA tests, it was evident that the choice of 
prior has a significant influence on the reliability of the localisa-
tion error among electrode trajectories.

3.2   |   Absolute Imaging

From the difference imaging results in Section 3.1, it was found 
that a NOSER prior results in more reliable CoG localisation 
among electrode trajectories. Accordingly, it was decided to in-
vestigate the viability of CI-EIT absolute image reconstruction 
with the NOSER prior. The L-curve method resulted in an opti-
mal �NOSER = 1.1212 × 10−3. For the absolute reconstruction, the 
optimal � will be set to 0.001. This value was verified heuristi-
cally for the absolute case by finding the inverse solution at five 
values of � ranging from 1 × 10−1 to 1 × 10−5, decreasing in mul-
tiples of 10−1, for all test locations and each of the four electrode 
trajectories at no- and low-noise. Once the optimal � is verified, 
image reconstruction was conducted for the no-, low- and high-
noise cases.

3.2.1   |   Image Reconstruction Parameter Analysis

The localisation errors for the various test scenarios were deter-
mined by Equation  (6). The RMSE of the localisation errors for 
the respective test locations at the five � values was calculated 
for the NOSER prior under no-noise and low-noise conditions. 
The resultant RMSE of the localisation errors at each � for the 
four electrode trajectories are shown in Figure 11. In Figure 11 
the average localisation errors for the no- and low-noise scenar-
ios among the four electrode trajectories are also indicated. From 
the average RMSE plot, it can be observed that the � resulting in 
the lowest localisation errors for the no-noise case is 1 × 10−5, but 
poor performance can be observed in the low-noise scenario with 
the highest average RMSE. The average RMSE for a � of 1 × 10−2 
and 1 × 10−3 corresponds closely, with values of 1.0788 and 1.0961 
respectively. From this, the average RMSE for � = 1 × 10−3 is 1.6% 

FIGURE 10    |    The average localisation errors over the various test locations for each electrode model, using (A) NOSER and (B) Tikhonov priors 
and optimal hyperparameters.
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higher than for a � = 1 × 10−2. However, � = 1 × 10−3 results in the 
lower average RMSE localisation errors in the no-noise scenario. 
The above-mentioned observations lead to the decision to continue 
with � = 1 × 10−3 as the hyperparameter for the absolute image re-
construction, which corresponds to the optimal � obtained from 
the difference imaging parameter analysis.

The optimal � and the NOSER image prior were used to recon-
struct absolute images for all of the test locations for the four 
electrode trajectories at no-, low- and high-noise levels. From the 
reconstructed images, the threshold variable for Equation  (5) 
was heuristically determined and applied in the CoG localisa-
tion process throughout the test cases as � = 0.85. The recon-
structed images (before masking) for Test Location 1 of all four 
electrode trajectories are shown in Figure  12. Figure  12 also 
shows the reconstructions zoomed to the masked ROI. As with 
the difference imaging results in Figure 9, the effect of ringing 
artefacts can clearly be observed but does not have a detrimen-
tal influence on the CoG localisation. Masking of the image also 
reduced the effects of artefacts with similar conductivity to the 
inhomogeneity.

The average localisation error for each of the electrode trajecto-
ries subjected to different noise levels for absolute and difference 
imaging is shown in Figure 13. It can be observed that the abso-
lute reconstruction have a higher average localisation error than 
the difference imaging results, especially for Electrode 2 where 
the variability in vertical electrode displacement is the most ap-
parent. The higher error in absolute image reconstruction is to 
be expected as it is more susceptible to noise and modelling mis-
matches than difference imaging [35].

3.2.2   |   Statistical Analysis

To evaluate the noise sensitivity of the absolute reconstruction 
with a NOSER prior at the optimal �, a paired t-test was conducted 
between the no- and low-noise, and no and high noise localisa-
tion errors for each electrode. The results from the paired t-tests 
indicated no significant difference between localisation errors 
from reconstructed images subjected to no- and low-noise and no 

and high noise at a 1% significance level. A one-way unbalanced 
ANOVA was conducted for the no-noise scenario between the lo-
calisation errors for all four electrode trajectories to verify whether 
the absolute imaging technique could be reliably applied to differ-
ent electrode trajectories. No significant difference was observed 
between the localisation errors with p = 0.0119.

Finally, a paired t-test was conducted between the localisation 
errors of the absolute and difference imaging for each electrode 
and noise level. No significant difference was observed at a 1% 
significance level.

4   |   Discussion

The proposed CI-EIT system was modelled, analysed and val-
idated in simulation. The simulation study was designed to in-
vestigate the viability of translating the proposed CI-EIT system 
to clinical application for augmenting present cochlear imaging 
techniques. The four unique electrode trajectories and associ-
ated inhomogeneities, as well as the adapted adjacent stimu-
lation protocol, were successfully implemented in EIDORS. 
Typical cochlear tissue conductivity values, clinically feasible 
stimulation parameters and varying levels of noise were used in 
a simplified geometry to emulate the in vivo environment.

To implement a robust CI-EIT system, the sensitivity of the 
reconstructed CoG localisation to different image reconstruc-
tion priors and hyperparameters was investigated. For both the 
NOSER and Tikhonov priors, the desired � obtained through 
the heuristic approach corresponded closely to the optimal � 
obtained by using the L-curve method. The � for different elec-
trode configurations also corresponded closely, allowing for a 
generalised average value to be used in further simulations.

The CI-EIT reconstructed images using the optimal � in no-, 
low- and high-noise scenarios for both priors yielded distin-
guishable images of the simulated modiolus (cylindrical inho-
mogeneity). Image artefacts are pertinent in the reconstructed 
images, but the knowledge of the ROI allows for image masking 
to ensure improved localisation of the modiolus.

FIGURE 11    |    RMSE of the localisation errors for the absolute reconstructions at the respective hyperparameters for the four electrode models. The 
average RMSE localisation errors for the no- and low-noise scenarios are indicated in the overlaying bold lines.
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Using the difference imaging technique for each electrode model, 
no significant difference was observed between the CoG locali-
sation with and without the presence of noise. Accordingly, for 
a specific electrode configuration, both priors performed well 
at the optimal �, although the NOSER prior seemed to exhibit 
superior localisation performance. When analysing the locali-
sation performance among electrode trajectories, no significant 

differences were observed among NOSER reconstructions. 
However, a significant difference was observed among recon-
structions when using the Tikhonov prior. The results demon-
strate that NOSER exhibits more robust performance relative 
to the Tikhonov priors in CI-EIT image reconstruction for var-
ious noise scenarios and electrode trajectories. This outcome is 
consistent with the characteristics of the NOSER prior. First, 

FIGURE 12    |    Reconstructed images (before masking) for Test Location 1 at the averaged optimal �, with (A) Electrode 1, (B) Electrode 2, (C) 
Electrode 3 and (D) Electrode 4 for the NOSER prior respectively in no-, low- and high-noise scenarios. The white “x” indicates the reconstructed 
CoG, and the yellow “·” indicates the true CoG. The red circles indicate the outlines of the model and the inhomogeneity, respectively. All images are 
scaled between the maximum Δ� (bright yellow) and minimum Δ� (dark blue).

FIGURE 13    |    The average localisation errors over the various test locations for each electrode model, using a NOSER prior and optimal hyperpa-
rameters for (A) absolute and (B) difference imaging.
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it emphasises contrast over smoothness, which is appropriate 
for the present CI-EIT study, where the modiolus is a localised 
structure with a different conductivity from the rest of the do-
main. Second, the NOSER prior tends to perform well with cir-
cular structures, such as the simulated modiolus in this study, 
because of the radially symmetric mathematical principles that 
it uses [36].

The parameters for the absolute imaging were selected from the 
results of the difference imaging analysis. Due to the more ro-
bust nature of the NOSER prior in the modelled CI-EIT setting, 
this prior along with the optimal � was used throughout. No sig-
nificant difference was observed between the CoG localization 
with and without the presence of noise. There was also no sig-
nificant difference between the CoG localisation performance 
among electrode trajectories or between difference and absolute 
imaging, indicating that the CI-EIT could be robustly applied 
for different CI electrode array trajectories and reconstruction 
scenarios.

5   |   Conclusion

This study demonstrated the viability of CI-EIT as a method to 
obtain more information about the inner structure of the co-
chlea despite the multiplaner electrode distribution, conductive 
media layer in which the electrodes are located and pulsatile 
driving stimuli. The proposed CI-EIT methodology favours the 
use of the NOSER prior above the Tikhonov prior with a hyper-
parameter � = 0.001 to best estimate the CoG of the modiolus. 
This setup results in localisation errors of 5.5% for the absolute 
imaging method and 4% for the difference imaging method. The 
significance level for the difference between the two is less than 
1% suggesting that either may be used to determine the CoG of 
the modiolus. Thus, the clinical implementation of this system 
may provide valuable in vivo insights into the unique, person-
specific interior structures of the cochlea, with essentially no cost 
to the user.
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