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A B S T R A C T

Businesses, security agencies, institutions, and individuals depend on wireless communication to
run their day-to-day activities successfully. The ever-increasing demand for wireless communi-
cation services, coupled with the scarcity of available radio frequency spectrum, necessitates
innovative approaches to spectrum management. Cognitive Radio (CR) technology has emerged
as a pivotal solution, enabling dynamic spectrum sharing among secondary users while respecting
the rights of primary users. However, the basic setup of CR technology is insufficient to manage
spectrum congestion, as it lacks the ability to predict future spectrum holes, leading to in-
terferences. With predictive intelligence and Dynamic Spectrum Access (DSA), a CR can antici-
pate when and where other users will be using the radio frequency spectrum, allowing it to
overcome this limitation. Reinforcement Learning (RL) in CRs helps predict spectral changes and
identify optimal transmission frequencies. This work presents the development of Deep RL (DRL)
models for enhanced DSA in TV Whitespace (TVWS) cognitive radio networks using Deep Q-
Networks (DQN) and Quantile-Regression (QR-DQN) algorithms. The implementation was done
in the Radio Frequency Reinforcement Learning (RFRL) Gym, a training environment of the RF
spectrum designed to provide comprehensive functionality. Evaluations show that the DQN
model achieves a 96.34 % interference avoidance rate compared to 95.97 % of QRDQN. Average
latency was estimated at 1 millisecond and 3.33 milliseconds per packet, respectively. Therefore
DRL proves to be a more flexible, scalable, and adaptive approach to dynamic spectrum access,
making it particularly effective in the complex and constantly evolving wireless spectrum
environment.
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Introduction

Access to radio frequencies is crucial for many vital industries and military sectors, such as television and radio transmission,
mobile communications, transportation, satellites and IoT (Internet of Things) [1]. As the global number of wireless devices and
services continues to increase, demand for wireless resources is growing exponentially. With this exponential increase of both internet
users and connected devices, spectrum saturation has necessitated more efficient spectrummanagement strategies such as utilising TV
white spaces (TVWS), which are the underutilised bands within the TV broadcast spectrum [2,3]. Cognitive Radio Networks (CRNs)
aim to dynamically access these TVWS without interfering with incumbent users [4], but traditional methods often fall short in
managing the dynamic and diverse requirements of TVWS [5].

Reinforcement Learning (RL) offers predictive capabilities that enable signals to preemptively adapt to the movements of other
signals in the spectrum and changing channel conditions, thereby identifying the optimal transmission frequency [6]. Extensive
research has been dedicated to exploring RL-based protocols for spectrum assignment and enhancing wireless communication. These
efforts have demonstrated that RL can significantly reduce congestion in the spectrum, as seen in works done by [7,8] and [9].

In today’s increasingly complex network environments, optimising network performance has become a real challenge [10]. A
combination of deep learning and reinforcement learning, known as deep reinforcement learning, shows great promise for improving
the intelligence of wireless communication systems and meeting this challenge [11,12].

Deep reinforcement learning represents a cutting-edge machine learning paradigm, particularly well-suited for addressing the
challenges posed by Dynamic Spectrum Access (DSA) [13]. DeepRL distinguishes itself by harnessing the power of deep neural net-
works to approximate intricate functions, a capability that proves instrumental in navigating the complexities associated with
high-dimensional state spaces inherent to DSA scenarios [14,15].

In the context of DSA, where the allocation and utilization of radio frequency spectrum dynamically evolves, DeepRL excels by
automatically learning hierarchical features directly from raw input data [16]. This stands in stark contrast to traditional approaches
that necessitate manual feature engineering. The ability of DeepRL to autonomously identify and extract relevant features from raw
observations streamlines the modeling process [17], allowing for more adaptive and efficient decision-making in response to the
dynamic nature of spectrum access scenarios [18].

Given the large state space and partially observed nature of spectral management among wireless connected devices [19],
incorporating DeepRL methods into the design of dynamic spectrum access algorithms holds significant potential for delivering
effective solutions to the complex spectrum access challenges in the TV whitespace radio frequency band [20]. This potential serves as
the primary motivation for this research. This work involves simulating a cognitive radio network to evaluate reinforcement learning
algorithms within the wireless communication Radio Frequency spectrum environment. Two models are developed using Deep
Reinforcement Learning techniques—DQN and QRDQN—for Dynamic Spectrum Access in Cognitive Radio Networks. A comparative
analysis of these two advanced algorithms is conducted to offer insights into their real-time performance in dynamic spectrum access
scenarios, enhancing our understanding of their operational efficiency and reliability in real-world applications.

Review of related works

Various Machine Learning (ML) paradigms have been applied to solve problems in dynamic spectrum access; however, each
learning paradigm comes with its strengths and accompanying weaknesses. Supervised and unsupervised learning face notable
challenges in addressing the dynamic and real-time nature of DSA. Supervised learning relies on labeled datasets, which are difficult to
maintain in rapidly changing spectrum environments, leading to outdated models and reduced adaptability. Unsupervised learning,
while independent of labeled data, struggles with accurately capturing the complex and evolving patterns of spectrum usage due to the
dynamic presence of primary and secondary users, interference considerations, and varying demands. These limitations highlight the
need for more adaptable approaches, such as reinforcement learning and deep reinforcement learning, which are better equipped to
handle the intricate and dynamic characteristics of DSA scenarios [21].

In [11], Luong et al. presented a comprehensive survey and tutorial on the practical uses of deep reinforcement learning in
communications and networking. They identified and categorized important applications of DeepRL in areas such as network access,
adaptive data rate regulation, wireless caching, data offloading, network security, connection preservation, traffic routing, and data
gathering. The survey covered various DeepRL approaches like Asynchronous Advantage Actor-Critic (A3C), Deep Q-Network (DQN),
Double DQN (DDQN), Deep Recurrent Q-Learning (DRQN), and Dynamic Adaptive Streaming over HTTP (DASH), highlighting
DeepRL’s potential to solve complex networking problems. They also provided insights into the distribution of research efforts in this
field and discussed significant obstacles, unresolved issues, and future research directions.

Naparstek & Cohen proposed a deep multi-user reinforcement learning method for distributed dynamic spectrum access in
multichannel wireless networks [15]. Their goal was to optimize channel access without requiring real-time coordination or
communication between users. The proposed technique enabled decentralized learning through the analysis of acknowledgment
(ACK) signals, which led to increased channel throughput by reducing idle time slots and collisions. Comprehensive numerical tests
demonstrated the adaptability and efficiency of the method, achieving a channel throughput twice as high as the slotted-Aloha with
optimal transmission probability.

A novel approach using a Deep Q-Network (DQN) to learn an optimal policy for multichannel access in a partially observable
environment was introduced by Wang et al. in [22]. They formulated the dynamic multichannel access problem as a partially
observable Markov decision process (POMDP) to account for partial observations and potential channel correlations. The authors
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compared the DQN framework with Myopic and Whittle Index-based heuristics, demonstrating that the DQN approach achieved
near-optimal performance in complex scenarios. The effectiveness of the DQN framework was validated using both synthetic and
testbed-based datasets.

In [23], Liu et al. introduced a Deep Reinforcement Learning-Based Dynamic Channel Allocation (DRL-DCA) technique for mul-
tibeam satellite systems. The algorithm aimed to optimally assign channels to user terminals (UTs) to maximize system throughput and
minimize co-channel interference. The DRL-DCA algorithm combined deep learning with reinforcement learning, employing a deep
convolutional neural network (CNN) to extract valuable features from the system state. Simulation results showed that the DRL-DCA
algorithm outperformed traditional methods like Fixed Channel Assignment (FCA) and Interference Mitigation Dynamic Channel
Allocation (IM-DCA), enhancing carried traffic by 24.4 % to 41.7 % and spectrum efficiency by 21.7 %.

Yu et al. in [24] proposed the Deep-reinforcement Learning Multiple Access (DLMA) protocol for heterogeneous wireless networks.
The DLMA protocol utilized deep reinforcement learning to optimize channel access methods in a diverse networking environment
with multiple MAC protocols. The authors developed a multi-dimensional reinforcement learning framework to maximize global
α-fairness in DLMA. Simulations demonstrated that the DLMA protocol achieved near-optimal total data transfer rates and fairness,
showing resilience to suboptimal parameter configurations and quicker convergence compared to standard reinforcement learning
methods. The DLMA protocol effectively optimized channel access strategies and achieved defined global objectives in diverse wireless
network environments.

This work differentiates itself from existing approaches in the domain by integrating advanced Deep Reinforcement Learning (DRL)
algorithms, specifically DQN and QRDQN, to optimize channel selection for secondary users in a cognitive radio network environment.
Unlike traditional methods, this approach focuses on dynamic, data-driven decision-making with a more nuanced exploration-
exploitation tradeoff, resulting in enhanced spectrum efficiency and adaptability. Additionally, the integration of a geolocation
database for spectrum sensing combined with a structured performance evaluation framework provides a more robust and scalable
solution compared to previous works.

Methodology

System model

Fig. 1 presents the system architecture, which comprises four primary components. The first component represents the cognitive
radio network environment. The second component is the spectrum sensing block, which incorporates a geolocation database. The
third block represents the DeepRL agents, while the final block is dedicated to performance evaluation. Detailed explanations of each
component are provided in the following sections to offer a comprehensive understanding of the proposed framework.

Design and simulation of cognitive radio network environment
For the design and simulation of a cognitive radio network environment, Radio Frequency Reinforcement Learning (RFRL) Gym, a

Reinforcement Learning Testbed specifically tailored for Cognitive Radio Applications [25], based on OpenAI Gym is employed. This
testbed provides a versatile platform for creating and evaluating various scenarios in cognitive radio networks. It allows for the
definition of network topologies, mobility patterns, and communication protocols, facilitating the emulation of dynamic spectrum
environments. As shown in Fig. 2, a network scenario is designed with 2 primary users, 20 secondary users and 10 available channels.
The 20 secondary users aim to operate concurrently within the coverage area of the primary users. This concurrent operation can result
in interference, potentially degrading the quality of service for the primary users.

This network configuration is representative of a typical real-world network environment and can be effectively simulated using
the computational resources available and used in this work (Table I).

Spectrum holes
To implement the spectrum sensing method, the project utilizes geolocation database. Specifically, the Reference Geolocation

Spectrum Database from Independent Communications Authority of South Africa is used [26]. This database contains information
about the occupancy of frequency bands in specific geographic locations. Information from this database is downloaded into the RFRL
Gym to determine available channels. By leveraging this database, the cognitive radio nodes identify spectrum holes in the TV band,
enabling efficient access to available frequencies.

Fig. 1. Overview of system architecture. Illustrates the four primary components: the cognitive radio network environment, spectrum sensing with
a geolocation database, DeepRL agents, and the performance evaluation block.
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Model development
Stable-Baselines3 - a Reliable Reinforcement Learning framework for Implementations of Reinforcement Learning algorithms is

employed. Two models are trained using the Deep Q Network (DQN) and Quantile Regression DQN (QR-DQN) algorithms.

i) DQN algorithm

DQN is a model-free, off-policy reinforcement learning algorithm that combines Q-learning with deep neural networks. The goal is
to learn the action-value function Q(s,a), which estimates the expected return (sum of future rewards) of taking action a in state s and
following the optimal policy thereafter [27].

Q(s,a) = (1 − α)Q(s,a)+ + α
(
r+ γmaxaʹQ(ś ,aʹ)

)
(1)

In (1), the Q Function Q(s, a) is being referred to twice. Firstly, (1 - α)Q(s, a) to retrieve the present state-action value so as to update
its value, and secondly, to get the “target” value for the subsequent Q value for the next state-action (i.e., Q as in: r + γ maxa′ Q(s′, a′) .
Instead of learning from consecutive samples, DQN uses a replay buffer to store experiences (s,a,r,s′) and samples mini-batches uni-
formly to break correlations between consecutive samples and improve stability. This is generally referred to as ‘experience replay.’ To
stabilize training, DQN uses the separate target network Qθ′ with parameters θ′ that are copied from the main network Qθ every few
steps. The Q-learning update rule is given by (2) below:

y = r+ γmax
aʹ
Qθʹ(ś , aʹ) (2)

where r is the reward, γ is the discount factor, and s′ is the next state. Eq. (3) shows the loss function for updating the parameters θ of the
Q-network.

Fig. 2. Cognitive Radio Network scenario. Depicts a network scenario with 2 primary users, 20 secondary users, and 10 available channels. Sec-
ondary users operate concurrently within the primary users’ coverage area, potentially causing interference and degrading the primary users’
quality of service.

Table I
Virtual machine hardware specification.

Component Specification

Form Factor 2 U Rack
Processors Intel Xeon Scalable processors
Memory 2 TB (24 DIMM slots)
Storage Up to 16 × 2.5″ or 8 × 3.5″ drives (HDD/SSD)
RAID Controller PERC H730P, H740P, HBA330
Network Interface 4 × 1GbE LOM; optional 10GbE or 25GbE network cards
Expansion Slots 8 x PCIe Gen3 slots
Power Supply 2 × 1100 W, 1600 W, or 2000 W hot-plug redundant PSU
Management iDRAC9 with Lifecycle Controller
GPU Support Up to 3 × 300 W or 6 × 150 W GPUs
Dimensions Height: 8.68 cm (3.41 in)
 Width: 48.24 cm (18.99 in)
 Depth: 71.09 cm (27.99 in)
Weight Maximum: 28.3 kg (62.5 lbs)
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L(θ) = E(s,a,r,ś ) ∼ D
[
(y − Qθ(s, a))2

]
(3)

where D is the replay buffer from which experiences are sampled.

ii) Quantile Regression Deep Q-Network (QR-DQN)

QR-DQN extends DQN by learning the distribution of returns instead of just the expected return. It does this by approximating the
quantiles of the return distribution, which allows for better risk-sensitive decision making. Instead of estimating a single Q-value, QR-
DQN estimates multiple quantiles of the return distribution for each state-action pair. This algorithm also employs the Quantile Huber
loss function which combines the Huber loss with the quantile regression loss, providing robustness to outliers while focusing on
specific quantiles of the return distribution.

QR-DQN estimates the quantile function θi for i= 1,…,N where N is the number of quantiles. The target for quantile i is captured in
(4) below:

y = r+ γθʹ
i(ś , a

ʹ) (4)

where θ’i are the quantiles of the target network. The quantile Huber loss for updating the network parameters is:

L(θ) = E(s,a,r,sʹ) ∼ D

[
1
N

∑i=1

N

∑j=1

N
ρk

(
yi − θj(s, a)

)
]

(5)

where ρk is the Huber loss defined as:
⎧
⎪⎪⎨

⎪⎪⎩

1
2
u2 if |u| ≤ k

k
(

|u| −
1
2
k
)

otherwise
(6)

The variable k represents the residuals, which are the differences between the values actually obtained and predicted values. The
function exhibits quadratic behaviour for small values of u and linear behaviour for big values, with the same values and slopes when |
u|=k.

Both algorithms represent significant advancements in the field of deep reinforcement learning. The DeepRLmodels are designed to
make intelligent decisions for Dynamic Spectrum Access based on the information obtained from spectrum sensing. Scenario data
including information on channel quality, interference, and available spectrum, are used for training to ensure the models learn
effective spectrum-sharing policies. The results of both models are evaluated to compare the performance of both algorithms.

iii) Model Training Parameters

Table II outlines the training parameters used in training the DQN and QR-DQN agents. This includes 1000 epochs, 100 episodes per
epoch, 10 communication channels, 2 primary (constant) users, and 20 secondary users. These parameters define the structure and
dynamics of the training environment, specifying the number of iterations, interactions, and resource allocations involved in the
simulation. The reward currently implemented in the RFRL Gym environment for the RL agent is the DSA reward. DSA mode can be
used to simulate a situation where an RL agent wants to avoid interference, either by avoiding a channel with bad channel conditions
or a channel with other users and/or adversaries. The DSA reward values are shown in (7).

DSA reward =

{
1, no collision
− 1, collision (7)

The discount factor is applied to modify the reward based on the agent’s action of staying in the same channel or switching
channels. Specifically:

• If the agent remains on the same channel, the reward is increased by 0.5, incentivizing stable behavior.
• If the agent switches to a different channel, the reward is reduced by 0.5, discouraging unnecessary movement.

Table II
Model training parameters.

Parameter Value

No. of epochs 1000
No. of episodes 100
No. of channels 10
No. of primary (constant users) 2
No. of secondary users 20
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This adjustment acts as a form of regularization, ensuring that the agent is able to prioritize stability in channel selection unless a
move is necessary.

Results and discussion

Performance evaluation

The evaluation of the DeepRL model’s performance was conducted using multiple key performance indicators (KPIs):

i) Mean Episode Reward: This is the average reward obtained by the agent per episode over a specified number of episodes. It
gives a direct measure of the agent’s performance. Higher mean episode rewards typically indicate better performance in
achieving the desired task. If we denote Ri as the total reward received in the i th episode, and we have N episodes, the Mean
Episode Reward Ṝ is calculated as shown in (8):

R =
1
N
∑ N

i = 1
Ri (8)

Where N is the total number of episodes, and Ri is the total reward for the i th episode
ii) ii) Exploration Rate (ϵ): This is the probability of choosing a random action (exploration) rather than the action suggested by

the current policy (exploitation). It balances exploration of new actions and exploitation of known rewarding actions. A high
exploration rate means the agent is trying out more new actions, while a low rate means the agent is relying more on the learned
policy. To ensure effective exploration, ϵ is typically annealed over time, starting with a high value and gradually decreasing it
as the agent learns more about the environment. The approach used in this work is linear decay which aims to linearly decay ϵ
from an initial value ϵstart to a minimum value ϵend over a specified number of steps N. Eq. (9) shows the exploration rate for each
time step t.

ϵt = max
(

ϵend , ϵstart
ϵstart − ϵend

N
.t
)

(9)

where ϵt is the exploration rate at step t. ϵstart is the initial exploration rate (typically 1.0).
ϵend is the minimum exploration rate (e.g., 0.1). N is the total number of steps over which ϵ is decayed. t is the current step.

iii) Training FPS (Frames Per Second): This measures the number of frames (or timesteps) processed per second during training. It
indicates the efficiency of the training process. Higher FPS values mean the agent is able to learn faster, which is especially
important for environments with a large number of frames. If F is the total number of frames processed and T is the total training
time in seconds, the Training FPS is calculated as seen in Eq. (10) below:

FPS =
F
T

(10)

where F is the total number of frames, and T is the total training time in seconds.
iv) Training Learning Rate: This is the step size used during the optimization process to update the weights of the neural network.

It affects the speed and stability of learning. A learning rate that is too high can cause the training process to become unstable,
while a learning rate that is too low can make the training process very slow.

v) Training Loss: This is the value of the loss function, which measures the difference between the predicted output and the actual
target. It indicates how well the neural network is learning. Lower training loss generally means that the model is making more
accurate predictions. In the context of reinforcement learning, this often involves minimising the difference between predicted
Q-values and target Q-values or minimising the policy gradient loss.

The framework comprises a set of linked modules that collaborate to simulate RF spectrum situations. The RFRL Gym modules
adhere to the Open AI Gym API, ensuring compatibility with third-party gym-compatible RL software. They include specified functions
and methods that facilitate communication between a Reinforcement Learning agent and the environment. Consequently, the RFRL
Gym utilises the "RL Cycle" training protocol to its advantage. This protocol involves the exchange of information between the Gym and
RL agent in a cyclical manner. The exchange occurs across a specific number of training episodes, with each episode consisting of
several time steps. The cycle begins at the start of each time step as the RL agent does an action within the custom-designed RF
environment. This action might involve either occupying a channel or refraining from transmitting in the subsequent time step. At this
juncture, Non-RL Entities will likewise choose an action. The acts of the Non-RL Entities are used to assess and award a reward to the
action taken by the RL Agent. The RL Agent is provided with access to both this incentive and the newly expanded observation space
for training purposes. This technique is repeated for each individual timestep.

The environment comprises 10 wireless channels and learning episodes that each consist of 100 time steps. The training process
consists of 100 episodes and is run over 1000 epochs. Other training parameters are captured in Table II. A Q- learning agent is utilised,
which balances exploration and exploitation using an epsilon-greedy strategy.

Fig. 3 shows a visualisation of this cognitive Radio network. Columns 0 to 9 represent the number of channels, and the rows refer to
the number of timesteps during learning. When the agent makes an optimal channel choice, it shows green if there is no collision with
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other entities, and the red signal signifies collision with other entities in the environment.

• Scenario: Single Entity DSA

The environment in which the agent learns is defined by a set of parameters, known as a scenario. This particular scenario is
designed to be straightforward, allowing for the validation of the RFRL Gym’s performance and the accuracy of its results. It comprises
two (2) constant entities which represent the primary users and twenty (20) fixed hopping entities which represents secondary users.

This simple scenario is designed to test the performance and accuracy of the RFRL Gym environment. The fixed hopping entity
moves through all channels non-sequentially, while the two constant entities occupy channels 0 and 9. This setup demonstrates the
multi-entity capability of the environment. As shown in Fig. 3, the Q-Learning agent can successfully navigate and avoid multiple
entities, achieving an optimal policy. The RFRL Gym’s gamified rendering functionality allows for easy visualization of the agent’s
optimal policy. The absence of collisions after convergence, as opposed to before (see Fig. 4), is clearly evident in Fig. 5. A key finding is
that a Q-Learning agent in DSA mode can achieve an optimal policy when entities exhibit a stationary distribution, meaning the
probability of channel selection remains constant.

i) Model Training and Evaluation

Two models are trained using the Deep Q-Networks (DQN) and Quantile Regression (QR-DQN) algorithms. The performance of
both models are evaluated in subsequent sections. As expected, Q-Learning agents were able to converge to an optimal policy quickly
within the 100 episodes. Figs. 4 and 6 show the agent’s performance before training using the DQN and QR-DQN algorithms,
respectively. Figs. 5 and 7 visualise the render results after learning. Both the DQN and QR-DQN agents avoid collision with other
entities within the environment successfully.

ii) Training Results

Tables III and IV provides a summary of the performance of the DQN and QR-DQN algorithms respectively. The summary covers
their performance after training, starting from 10,000 steps and increasing incrementally by 10,000 steps until reaching the final step
of 100,000. The results are then evaluated in three phases: the initial phase (10,000 – 30,000 steps), the middle phase (40,000 – 70,000
steps) and the final phase (80,000 – 100,000 steps).

DQN - initial phase (10,000 - 30,000 steps)
The mean episode reward starts at 22.11 at 10,000 steps and increases steadily to 39.50 by 30,000 steps, exploration rate decreases

from 0.8996 to 0.6988 (a high initial exploration rate is typical, allowing the agent to explore the environment and gather sufficient
information) and train loss decreases from 0.0888 to 0.0429 indicating that the model is effectively minimizing the error between
predicted and actual rewards. The learning rate remains constant at 1.00E-04 throughout the training process.

DQN - middle phase (40,000 - 70,000 steps)
The reward continues to increase, reaching 71.88 by 70,000 steps. The improvement in rewards suggests that the DQN model is

consistently learning the optimal policy. The exploration rate continues to decrease, reaching 0.2972, pointing to the fact that the
model is gradually shifting from exploration to exploitation, relying more on learned policies to select channels. The train loss fluc-
tuates, with a slight increase at 50,000 steps (0.1277) and 60,000 steps (0.1867), followed by a rise at 70,000 steps (0.2181). The

Fig. 3. Cognitive Radio Network Visualization. Illustrates the cognitive radio network with channels (columns 0–9) and timesteps (rows) during
learning. Green indicates optimal channel selection with no collision, while red signifies collisions with other entities in the environment.
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Fig. 4. Agent Performance Before Training Using the DQN Algorithm. Displays the agent’s initial performance prior to training with the DQN
algorithm, highlighting baseline behaviour in the cognitive radio network environment.

Fig. 5. Render Results After Learning. Visualizes the render results post-learning, showing how the DQN agent successfully avoid collisions with
other entities in the environment.

Fig. 6. Agent Performance Before Training Using the DQN Algorithm. Displays the agent’s initial performance prior to training with the QR-DQN
algorithm, highlighting baseline behaviour in the cognitive radio network environment.
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fluctuations in train loss suggest that the model might be encountering more complex decision scenarios, leading to temporary in-
creases in loss.

DQN - final phase (80,000 - 100,000 steps)
The reward reaches its peak at 96.34 by 100,000 steps, indicating that the model has likely converged to a near-optimal policy. The

exploration rate drops to near zero (0.0010) by 100,000 steps. At this stage, the model is primarily exploiting the learned policy, which
suggests it has sufficient knowledge of the environment to make confident decisions. The train loss continues to fluctuate, with a
notable low at 90,000 steps (0.0145) before rising to 0.2843 by 100,000 steps. The increase in loss towards the end indicates over-
fitting or difficulty in fine-tuning the final policy. However, the low loss at 90,000 steps also suggests the model had moments of very
accurate learning.

Fig. 7. Render Results After Learning. Visualizes the render results post-learning, showing how the QR-DQN agent successfully avoid collisions with
other entities in the environment.

Table III
DQN performance.

Step Mean Episode Reward Explorati-on
Rate

Time fps Train Loss

10,000 22.11 0.8996 455 0.0888
20,000 29.80 0.7992 417 0.0725
30,000 39.50 0.6988 389 0.0429
40,000 47.07 0.5984 411 0.0388
50,000 55.14 0.4980 426 0.1277
60,000 62.84 0.3976 436 0.1867
70,000 71.88 0.2972 427 0.2181
80,000 79.52 0.1968 419 0.2648
90,000 88.60 0.0964 414 0.0145
100,000 96.34 0.0010 408 0.2843

Table IV
QR-DQN performance.

Step Mean
Episode Reward

Exploration Rate Time fps Train Loss

10,000 19.18 0.8996 308 3.8899
20,000 24.20 0.7992 299 7.2957
30,000 39.34 0.6988 302 6.6512
40,000 46.77 0.5984 300 5.7857
50,000 53.83 0.4980 307 5.1813
60,000 64.41 0.3976 314 4.8185
70,000 71.86 0.2972 299 2.9729
80,000 79.96 0.1968 295 3.5596
90,000 88.83 0.0964 295 4.1140
100,000 95.97 0.0010 293 3.4120
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QR-DQN - initial phase (10,000 - 30,000 steps)
The mean episode reward begins at 19.18 at 10,000 steps and increases to 39.34 by 30,000 steps, exploration rate starts at 0.8996

and decreases to 0.6988. The train loss is initially high at 3.8899 and increases significantly to 7.2957 by 20,000 steps before slightly
decreasing to 6.6512 by 30,000 steps. This high train loss early on shows that the model is struggling with the learning process,
possibly due to the complexity of the environment.

QR-DQN - middle phase (40,000 - 70,000 steps)
The reward continues to grow, reaching 71.86 by 70,000 steps, suggesting the model is successfully refining its policy and

achieving higher rewards as it progresses. The exploration rate also continues to decrease, reaching 0.2972. The train loss decreases
progressively, reaching 2.9729. The decreasing trend in train loss indicates that the model gradually improves its predictions, reducing
the error over time.

QR-DQN - final phase (80,000 - 100,000 steps)
The reward peaks at 95.97 by 100,000 steps, indicating that the model has likely converged to a near-optimal policy. The pattern is

similar to the DQN model, showing that the QR-DQN also effectively learns to optimize channel selection. Similarly, the exploration
rate drops to near zero (0.0010). The train loss fluctuates slightly, with a low of 3.4120. While the fluctuations in train loss suggest that
the model encounters varying levels of difficulty in learning, the overall trend indicates improvement, with lower losses compared to
the early phase.

Interpretation and analysis

Mean episode reward
Fig. 8 captures the mean episode reward of the trained models. Both models achieve similar mean episode rewards, with DQN

slightly outperforming QRDQN by a marginal difference, especially at the early stages of training. Both agents have similar results from
60,000 steps. This indicates that both algorithms are capable of learning and making decisions that result in high rewards in the
environment.

Exploration rate
As seen in Fig. 9, both models start with a high exploration rate of 0.90 and gradually decrease it over time as they learn. A

decreasing exploration rate implies that the agents are transitioning from exploration (trying out different actions) to exploitation
(leveraging learned knowledge to maximize rewards).

Training FPS (frames per second)
Fig. 10 shows that DQN consistently achieves a higher training FPS (around 400) compared to QRDQN (around 300). Higher FPS

indicates faster training, suggesting that the DQN algorithm converges faster or require fewer training iterations to achieve similar
performance compared to QRDQN.

Training learning rate
Both models utilize a small learning rate throughout training (1.00E-04 for DQN and 5.00E-05 for QRDQN). This ensures that the

models update their parameters gradually, preventing drastic changes that may disrupt learning stability.
A learning rate of 0.0001 is relatively small, which helps ensure that the model learns at a stable pace. Since DQN relies on Q-value

updates through backpropagation in a deep neural network, a high learning rate can cause the model to overshoot optimal values,
resulting in instability or divergence in learning. A smaller learning rate like 0.0001, as used for this training, provides smoother
updates to the Q-values, leading to more stable training. QR-DQN uses quantile regression to approximate the distribution of Q-values,
and this requires more precise adjustments to the quantile estimates compared to standard Q-value estimates in DQN. Using a smaller

Fig. 8. Mean Episode Reward of Trained Models Shows the mean episode reward for the trained models, with DQN slightly outperforming QRDQN.
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learning rate like 0.00005 helps prevent large fluctuations in quantile estimates, ensuring the model learns the distribution more
accurately (Fig. 11).

Training loss
DQN exhibits a lower training loss overall, fluctuating between 0.01 and 0.28. QRDQN shows a higher training loss, fluctuating

between 2.97 and 7.30. Lower training loss typically indicates that the model is converging well and effectively minimizing the
discrepancy between predicted and actual values (Fig. 12).

Performance benchmarking
To quantitatively assess the performance of the DQN and QR-DQN models in terms of throughput, latency, and interference

avoidance in an environment with 10 channels, 2 primary users, and 20 secondary users, the provided metrics and general knowledge
of QR-DQN performance in cognitive radio networks are employed.

i) Throughput

Throughput is the rate at which successful data transmissions occur over the network, typically measured in bits per second (bps) or
packets per second (pps). Since both models achieve similar mean rewards, we can expect them to exhibit comparable throughput.
Each reward point corresponds to a successful packet transmission [28]. Both models at 0.9634 and 0.9597 packets per time-step
perform better than the GFMA approach in [29].

Mean Episode Reward: DQN - 96.34 QRDQN - 95.97
Time-Steps per Episode: 100
Throughput can be calculated as:

DQN =
96.34 packets
100 timesteps

= 0.9634 packetsper time − step (11)

QRDQN =
95.97 packets
100 timesteps

= 0.9597 packetspertime − step (12)

Fig. 9. Exploration rate. Illustrates the exploration rate progression for both models during training.

Fig. 10. Training Frames per second. Shows FPS differences between both models.
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ii) Latency

Latency is the time delay experienced in the system, often measured as the time taken for a packet to travel from the source to the
destination [30]. Each time-step corresponds to one frame, and one frame represents a fixed transmission period.

Exploration Rate: Decreasing from 0.90 to 0.001
Training FPS(frames per second): DQN – 400 QRDQN - 300
Average latency per packet can be approximated by the duration of each frame.

DQN =
1 second
400 frames

= 2.5 millisecondsperpacket (13)

QRDQN =
1 second
300 frames

= 3.33 millisecondsperpacket (14)

iii) Interference Avoidance

Interference avoidance refers to the system’s ability for optimal channel selection, minimize collisions and interference from other
users, leading to more successful transmissions [31]. The environment has high interference potential due to the presence of 2 primary
users and 20 secondary users. Interference avoidance can be quantified by the successful transmission rate and the reduction in
collision rate: The DQNmodel successfully avoids interference 96.34% of the time compared to 95.97% of QRDQN, this implies a high
level of interference avoidance efficiency.

Interference avoidance rate:

DQN =
96.34 successfultransmissions

100 totaltransmissions
∗ 100 = 96.34% (15)

QRDQN =
95.97 successfultransmissions

100 totaltransmissions
∗ 100 = 95.97% (16)

These results demonstrate the effectiveness of these deep reinforcement learning algorithms in managing spectrum access and
avoiding interference with licensed users. This ensures reliable communication and optimal use of available spectrum resources, which
is crucial for maintaining quality of service in dynamic and crowded spectral environments. The low average latency values of 1

Fig. 11. Training Learning Rate. Shows the learning rates used by both models (0.0001 for DQN) and (0.00005 for QRDQN).

Fig. 12. Training Loss. Shows training loss values as models are trained.
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millisecond for DQN and 3.33 milliseconds for QR-DQN per packet indicate that these models can operate efficiently in real-time
scenarios, supporting applications that require prompt and reliable data transmission. This is particularly important for time-
sensitive applications such as emergency communications, live broadcasting, and critical infrastructure monitoring.

Both DQN and QRDQN models demonstrate promising performance based on the evaluation metrics. The similar mean episode
rewards suggest that both models are effective in learning optimal strategies for channel optimization in a cognitive radio network
environment. However, DQN shows slightly better training efficiency with higher FPS and lower training loss.

Despite QR-DQN’s theoretical advantages, such as capturing reward distributions and better handling uncertainty, DQN often
achieves superior performance due to its simplicity, robustness, and stability. DQN’s focus on optimizing expected rewards makes it
well-suited for tasks like channel optimization in cognitive radio networks, where mean rewards are sufficient for decision-making. In
contrast, QR-DQN’s additional computational complexity, sensitivity to hyperparameters, and potential instability during training can
hinder its performance. Moreover, QR-DQN’s higher training loss in some phases may indicate difficulties in fitting reward distri-
butions or overfitting to noise.

In a real environment, the choice between DQN and QRDQN would depend on factors such as computational resources, training
time, and specific characteristics of the problem domain. If faster training and lower computational resources are priorities, DQN is
preferred. If the problem requires more sophisticated action-value estimation and the computational cost is not a concern, QRDQN is a
better choice.

Conclusion

This research work was carried out with the aim of contributing to the ongoing efforts to optimize spectrum utilization in the face of
increasing wireless communication demands. The integration of Deep Reinforcement Learning into cognitive radio networks for DSA
promises to enhance the efficiency, adaptability, and intelligence of spectrum sharing, enabling innovation in wireless communication
technologies. We have compared the performance of two different agents using DQN and QR-DQN algorithms. Simulations have shown
that the DQN can achieve a near-optimal decision accuracy in this system scenario even without the prior knowledge of the system
dynamics Additionally, DQN has lower computational complexity, however, if the problem requires more sophisticated action-value
estimation and the computational cost is not a concern, QRDQN is a better choice. For a more realistic simulation, the hardware
functionality can be developed such that signals experience realistic channel conditions in which fading and multi-path propagation
exist. Hybrid models that combine the strengths of DQN, QR-DQN and/or other RL algorithms can be explored. For example DQN can
be used for initial fast training and QR-DQN can be used for fine-tuning and stability.
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