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Supplementary Note 1
Soil isotopic ratios and taxonomic diversity

Carbon stable isotope ratios (8'°C range; -23.5 to -31.3%o) were consistent with carbon fixation through
the Calvin-Benson-Bassham (CBB) cycle. Nitrogen stable isotope ratios indicated a predominance of in
situ soil nitrate assimilation processes (3'°N range, 2.7 to -11.8%o ') with evidence of nitrogen fixation at
only two sites. Moreover, major cations are important cofactors for many basal cellular processes, such
as iron in photosynthesis, and limitations on their abundance may affect soil bacterial communities in
this region. For example, available soil K* is directly linked to soil moisture through its role in the

movement of water and nutrients in the cell 2.

Cyanobacteria were rare across all sites, except for samples collected from Pegtop Mountain (PT) and
CIliff Nunatak (CN). The high levels of cyanobacterial sequence data from site PT-2 facilitated the
reconstruction of an Aliterella genome (Cyanobacteria; Chroococcidiopsidales). The Aliterella genome
represents the first description of this cyanobacterial genus in continental Antarctica (Pegtop Mountain;
PT-2_8), with A. antarctica having been recently described in a sample of green turf algae from King
George Island, South Shetland Islands 3. A. vladivostokensis was also isolated from a marine sample in
Vladivostok, Russia . The Aliterella PT-2_8 genome encodes a phosphoribulokinase (prk) and likely
assimilates CO2 to produce glucose via the Calvin-Benson-Bassham cycle (rbcLS). The release of
photosynthate may in turn support heterotrophs at that location. The genome also encodes for siderophore
production which is critical to sequester iron - a key co-factor in photosynthesis. Consistently, site PT-2
had the highest soil respiration rate across the region as well as the highest relative abundance of

Cyanobacteria .

Both Verrucomicrobiota MAGs were G+C rich (mean G+C = 60.6%) and belonged to the order
Chthoniobacterales. Members of this phylum remain poorly described despite their prevalence in soil,
freshwater and deep terrestrial subsurface environments ®. These genomes were rich in stress response
genes such as multidrug resistance proteins (MmdtC), ultraviolet repair mechanisms (UuvrABC) and
superoxide dismutases, and encoded the higBA toxin-antitoxin module thought to be involved in

antibiotic resistance .



Supplementary Note 2
Uncultivated Viral Genomes in Antarctic soils

In a survey of the assembled metagenomes for uncultivated viral genomes (UViGs), we found 101
contigs across all assemblies that were of putative viral origin (all > 10 kb) and identified 16 additional
prophages. The longest UViG was 37,919 bp and showed sequence similarity to an uncultured
Caudovirales genome, while the longest prophage genome was 24,114 bp. The soil samples with the
most UViGs were Flatiron (n=18 UViGs), Mount Seuss 7 (n=18) and Mackay Glacier 3 (n=16) which is
broadly similar to the viral diversity reported from enriched viromes in the same region $. Other samples
exhibited only a single UViG. The quality of the viral contigs was assessed using CheckV, which
indicated that most contigs were medium- to low-quality. Low-quality contigs are probably genome
fragments rather than complete viral genomes, although we identified six high-quality UViGs, including

one complete UViG.

We placed our UViGs within the known diversity of bacteriophages by comparing the protein contents
of known viral genomes in RefSeq with our UViGs using vContACT2 °. The identified UViGs likely
represent novel bacteriophages as all sequences clustered separately from known viral genomes (Figure
2). Low levels of protein sequence clustering are common in studies exploring novel phage diversity,
and particularly in soils, where up to 97% of viral OTUS (vOTUs) can form separate clusters from known

10, We clustered our viral contigs in vOTUs based on sequence similarity along the

viral sequences
majority of the contigs. A dominant vOTU was detected at nine of the 18 sites (comprising 24 unique
UViGs), suggesting the presence of a common bacteriophage across the region. A sequence alignment
map showed high sequence similarity levels among these sequences across the nine sampling sites
(Supplementary Figure 2). It is tempting to speculate that aerosol transport of local Antarctic dust
particles may contribute to the occurrence of a common vOTU in half of the sites as the most distal sites
are ~58 km apart. Microorganisms are relocated by Antarctic wind currents in the Dry Valley region of

Eastern Antarctica '! and Antarctic aerosols have longer average residence times in the atmosphere than

elsewhere 2.

Analyses of the UViG gene content showed the presence of putative auxiliary metabolic genes (AMGs)
in some contigs. AMGs are acquired from their cognate bacterial hosts and may have important metabolic
functions for phages. For example, cyanophages modulate photosynthesis in the surface ocean via core

photosystem II genes acquired from cyanobacteria . Putative AMGs found in our viral contigs included
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a glycoside hydrolase 18 (GH18) and a glycosyl transferase 2 (GT2). The GT2 gene was flanked by a
transposase supporting the concept that it was acquired by a horizontal gene transfer event. Family GH18
members are chitinases capable of degrading N-acetyl-B-D-glucosamine polysaccharides found in
cellular matrices, a process which may assist viral entry into the cell '*. We found GH18 genes in four
Bacteroidetes MAGs (MS4-1 1, MS5-1 6, MS5-1 7 and MS7-5_7) and the Cyanobacteria MAG (PT-
2 8), all of which showed sequence homology to the viral GH18. Both MS5-1 7 and MS4-1 1 have
CRISPR-Cas arrays in their genomes, offering a link between past infections and the transfer of genetic
material from the cognate host. It is possible that phages use these genes for the breakdown of

lipopolysaccharides of cell membranes which implicate phages in the carbon cycle in this polar desert.

Using VIBRANT '° we discovered four AMGs, namely a chitinase, a ribonuclease H (rhnA), a heme
synthase (ahbD) and a 2-polyprenyl-6-hydroxyphenyl methylase (ubiG).

We also characterized prophages in our Antarctic genomes. We found one prophage, in the
Verrucomicrobiota MS5-1 8 genome, as well as two prophages, in a Bacteroidota genome (TG5-1_3).
Coincidently, these two taxa were predicted to be the slowest growing. This finding provides direct
evidence linking prophages to both Verrucomicrobiota and Bacteroidota in this region. The prophage
found in the Verrucomicrobiota genome was 4,483 bp in length and was similar to known Microviridae
phages (BLASTn: 31% query coverage and 69.74% identity). The prophages identified in the
Bacteroidota genome were 5,477 bp and 7,214 bp in length, although these had low sequence similarity
to known phages. While several studies have investigated the importance of prophages on the evolution
of bacterial pathogens ¢, knowledge regarding their role in soil taxa remains limited and the lack of a
comprehensive database of soil-dwelling viruses contributes to this knowledge gap !”. Previous studies

18

suggest that lysogenic conversion may confer new traits to bacteria '°, which typically have novel

metabolic functions through auxiliary metabolic genes (AMGs) '°. For example, phages associated with

20 In

Verrucomicrobiota encoded genes have previously been implicated in nitrogen fixation
oligotrophic soils, the benefits to the hosts may be vital for ecosystem services, facilitating access to
alternative energy sources or stress avoidance mechanisms. Elucidating innate mechanisms may provide

insights regarding host-virus interactions and reveal the extent of functional diversity in these soils.



Relative Abundance (%)

Supplementary Figure 1. Taxonomic composition and structure of Antarctic soil samples. A)

Relative abundances of prokaryotic and eukaryotic groups across 18 samples from the Mackay Glacier

region based on the rplB gene. “Other groups” include taxa present as <1% of the total community. B)

Redundancy analysis overlaid on an nMDS ordination plot with significant soil features overlaid (blue

arrows). Soil respiration and major cations (K", Na* and Ca") were significant explanatory variables of

community composition. (C) Estimates of sequencing depth based on read redundancy as estimated by
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Supplementary Figure 2. Example of clustering of uncultivated viral genomes (UViGs) into viral
OTUs. The most pervasive vOTU comprises 24 unique viral genomes that spans 11 different sites in this

region.
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Supplementary Figure 3. Evidence of G+C skew across prophages.
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