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ABSTRACT
In oviparous vertebrates, maternal androgens can alter offspring immune function, particularly early in development, but the po-
tential for negative health effects of maternal androgens in mammals remains unclear. We investigated the relation between ma-
ternal androgens, particularly in late gestation, and offspring health in the meerkat (Suricata suricatta) by comparing offspring 
from (a) normative dominant and subordinate matrilines, whose dams naturally express high versus lower circulating androgen 
concentrations, respectively, and (b) normative dominant and antiandrogen-treated dominant matrilines, whose dams' androgen 
function was intact versus blocked owing to experimental antagonism of the latter's androgen receptors (using Flutamide). Foetal 
offspring thus experienced three different endocrine environments (‘high’, ‘lower’ and ‘blocked’ androgens) late in prenatal 
development. We assessed parasitism, immune function, sex steroid concentrations and survivorship in these three offspring 
groups, both during juvenility and early adulthood. The juvenile offspring of subordinate control and dominant treated dams 
generally had lower intensities of parasite infections and greater immune function than did their peers from dominant control 
dams—patterns not found in adult offspring, or in relation to the offspring's concurrent hormone concentrations. Survivorship 
to adulthood was greatest in the progeny of treated dams. Descendants of dominant female meerkats—those in the ‘high’ pre-
natal androgen category—suffered increased parasitism and decreased immunocompetence as juveniles, as well as reduced 
survivorship relative to antiandrogen-exposed peers, providing evidence in mammals that maternal androgens can negatively 
impact offspring health and survival. These intergenerational, androgen-mediated, health effects represent early costs imposed 
by female intrasexual competition and its associated selection pressures.
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1   |   Introduction

Maternal effects, whereby a mother's phenotype or internal 
environment shapes her developing offspring's phenotype, are 
ubiquitous, occurring via non-genetic mechanisms involving 
the transfer of nutrients, antibodies and hormones (Mousseau 
and Fox 1998). Health effects on offspring owing to the mater-
nal endocrine environment have been predominantly studied 
in birds and egg-laying reptiles, in which exposure to maternal 
yolk androgens can alter offspring susceptibility to parasites 
(Tschirren, Richner, and Schwabl  2004) and immune func-
tion (reviewed in Groothuis, Müller, et al. 2005). Owing to the 
more prolonged and intimate physiological associations within 
maternal-foetal units, maternal endocrine effects should be 
particularly pronounced in viviparous species. Indeed, stress-
induced increases in maternal glucocorticoids can impact 
offspring health and development (Welberg and Seckl  2001), 
producing stronger and potentially more damaging or even mal-
adaptive effects in viviparous than oviparous species (MacLeod, 
While, and Uller 2021). To our knowledge, however, the health 
costs of natural maternal androgens on the offspring of placen-
tal mammals have yet to be explored in situ. Here, we test for 
such costs in a wild population of meerkats (Suricata suricatta) 
(Figure 1). In this cooperatively breeding carnivoran, maternal 
androgen concentrations are exceptionally high both relative to 
male peers and to other female mammals but vary significantly 
by the dams' social status (Davies et al. 2016), differentially in-
fluencing offspring behavioural development (Drea et al. 2021). 
We thus examine intergenerational costs associated with nor-
mative or experimentally induced maternal hormone variation 
(i.e. differential maternal androgen exposure or blockade, re-
spectively) on parasitism, immune function and survivorship in 
juvenile and adult offspring.

In oviparous vertebrates, manipulation of yolk hormones reveals 
multiple downstream effects of maternally derived androgens 
on immune function (Groothuis, Müller, et  al.  2005): Relative 
to controls, hatchlings from androgen-treated eggs generally 
benefit from increased growth rates (Eising et  al.  2001; Uller 
and Olsson 2003; Groothuis, Müller, et al. 2005) at the cost of 
increased susceptibility to parasites (Uller and Olsson 2003; but 
see Navara, Hill, and Mendonça 2006; Cucco et al. 2008; Muriel 
et al. 2015) and reduced cell-mediated and humoral immunity 
(Groothuis, Müller, et  al.  2005; Müller, Groothius, Kasprzik, 
et  al.  2005; Sandell, Tobler, and Hasselquist  2009; Clairardin 
et al. 2011). Speculation that early effects of androgens on the im-
mune system may be long-lasting led some to view such effects 
as ‘organisational’ (Klein 2000; Tobler et al. 2010; Hasselquist, 
Tobler, and Nilsson 2012), a term traditionally reserved for per-
manent hormonal effects on sexual differentiation (Arnold and 
Breedlove 1985). There is currently no evidence, however, that 
health costs of embryonic androgen exposure persist in sexually 
mature birds (Cucco et  al.  2008; Tobler et  al.  2010; Bonisoli-
Alquati et  al.  2011; Ruuskanen et  al.  2013); reversible effects 
suggest the immature immune system can overcome initial 
deficiencies. We therefore should refer instead to ‘endocrine-
immune interactions’ when considering these sorts of develop-
mental trade-offs.

Our understanding of endocrine-parasite or endocrine-immune 
trade-offs in mammals derives primarily from studies examining 

the concurrent or activational hormonal status of adults and, 
outside of the rare inclusion of ‘androgenized’ females (Smyth 
and Drea  2016; Smyth et  al.  2016, 2018; Zohdy et  al.  2017), 
typically reflect the traditional male bias in androgen concen-
trations (e.g. Schalk and Forbes  1997, but see Morales-Montor 
et al. 2004; Klein 2000). We expect that trade-offs in offspring 
development and health mediated by prenatal androgen ex-
posure also operate in mammals. In several female-dominant 
species, including meerkats, exposure to maternal androgens, 
particularly androstenedione (A4) and testosterone (T), impacts 
offspring morphology, physiology, behaviour and reproduction 
(Conley et al. 2020; Drea et al. 1998, 2021; Dloniak, French, and 
Holekamp 2006; Grebe et al. 2019), but we know little about its 
effects on offspring health. Perhaps the benefits from enhanced 
exposure to maternal androgens, experienced as enhanced com-
petitive ability (Dloniak, French, and Holekamp  2006; Drea 
et al. 2021; Drea and Davies 2022) and early offspring growth 
(Hodge et al. 2008; Davies et al. 2024), are balanced by associ-
ated immunosuppressive effects.

We tested this proposition in the meerkat—a female-led, social 
mongoose that lives in established clans comprising a dominant 
pair and multiple subordinate helpers of both sexes. Relative to 
male conspecifics, all female meerkats have exceptionally high 
A4 and T concentrations, with the dominant female per clan (the 

FIGURE 1    |    Members of a meerkat (Suricata suricatta) clan in the 
Kurman River Reserve, South Africa. The pregnant, dominant female is 
shown wearing a radio collar. Photo courtesy of Lydia K. Greene.
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matriarch), whilst pregnant, having the greatest androgen con-
centrations of all (Davies et al. 2016). Androgen-mediated com-
petitiveness (Drea et al. 2021) enables her to largely monopolise 
reproduction (Griffin et  al.  2003; Clutton-Brock et  al.  2006). 
Although subordinate females are physically capable of breed-
ing and do so opportunistically (Clutton-Brock et  al.  2001; 
Dimac-Stohl et  al.  2018), their reproductive success is often 
thwarted behaviourally by inbreeding- avoidance tactics, in-
fanticide, female eviction or litter abandonment (Clutton-Brock 
et  al.  1998, 2006; Young et  al.  2006; Drea and Davies  2022). 
Despite gaining enormous reproductive success, the matriarch 
also incurs androgen-related costs, including increased gastro-
intestinal parasite burdens (Smyth et al. 2016) and reduced in-
nate immune function (Smyth et al. 2018). Given that androgens 
in adult female meerkats are immunosuppressive and reach 
developing foetuses during pregnancy (Drea et  al.  2021), the 
androgen-immunocompetence trade-off (collectively referring 
to parasitism and innate immune function) could extend to the 
matriarch's offspring. Accordingly, any advantage accrued to 
her pups might be offset by a health handicap.

Capitalising on natural, status-related variation in androgen 
concentrations in pregnant meerkats residing within the clan 
(Davies et al. 2016)—a differential pattern not observed in gluco-
corticoids (Dimac-Stohl et al. 2018)—we first looked for a poten-
tial relationship between varying prenatal androgen exposure 
and immunocompetence in the offspring of dominant control 
(DC) and subordinate control (SC) dams. Second, capitalising 
on an experimental manipulation involving the administration 
of flutamide (an androgen-receptor blocker) to dominant dams 
(Drea et al. 2021), we also examined offspring from these dom-
inant treated (DT) individuals. Treatment was administered 
during the third trimester of the meerkat's 70-day gestation be-
cause this period (1) coincides with a natural increase in gesta-
tional androgens, particularly in matriarchs (Drea et al. 2021), 
(2) is when the neural substrates underlying sexually differen-
tiated behaviour in developing offspring respond to masculin-
ising effects of androgens (reviewed in Wallen 2005) and (3) is 
when foetal bone marrow is established as the primary haema-
topoietic site (Dietert et al. 2000; Landreth 2002). Disrupting the 

development of the bone marrow microenvironment could alter 
the production of white blood cells.

Using three categories of offspring, from normative (DC and SC) 
and experimental (DT) dams, we tested the ‘trade-off’ hypothe-
sis that advantages of prenatal androgens are offset by suppres-
sive effects on immunocompetence. We predicted the following: 
(1) ‘DC’ offspring, naturally exposed to the greatest maternal an-
drogen concentrations prenatally, would experience increased 
parasitism and reduced immune function relative to ‘SC’ off-
spring; (2) blocking prenatal androgen action would prevent 
these costs, such that ‘DT’ offspring would harbour fewer para-
sites and show more robust immune responses relative to ‘DC’ 
offspring; (3) preventing these costs might improve offspring 
survival relative to control peers; and (4) based on the temporary 
immunosuppressive costs of yolk androgen exposure (Cucco 
et al. 2008; Bonisoli-Alquati et al. 2011; Ruuskanen et al. 2013), 
the effects of placental androgen exposure would be stronger in 
juveniles than in adults. In adult meerkats, concurrent or activa-
tional androgen concentrations vary widely between individuals 
and relate negatively to parasitism and immune function (Smyth 
et al. 2016, 2018); however, given the immature reproductive en-
docrine system of juveniles (Davies et al. 2024), we did not ex-
pect concurrent androgen concentrations to similarly relate to 
immune function.

2   |   Materials and Methods

2.1   |   Study Site and Subjects

This study (spanning January 2013–March 2015) involved a 
well-habituated, wild meerkat population in the Kuruman 
River Reserve (26°58′ S, 21°49′ E) in South Africa's Kalahari 
Desert (Figure 1). Individuals are microchipped and identifiable 
by unique dye marks; researchers can observe the animals at 
close range (< 1 m) and routinely collect life history and weight 
data. Details about the study site, habitat, climate and monitor-
ing procedures have been provided elsewhere (Clutton-Brock 
et al. 1999; Drea et al. 2021). All protocols were first approved 

TABLE 1    |    Scales of inference and numbers of replicates.

Scale of inference
Scale at which the factor 

of interest is applied Number of replicates at the appropriate scalea

Starting offspring 
population

Maternal androgen exposure: Litters/individuals (males, females):

Dominant Control 51/78 (36 M, 42 F)

Subordinate Control 20/37 (19 M, 18 F)

Dominant Treated 5/13 (7 M, 6 F)

Life stage Juvenility: Litters/individuals/biological samples:

Parasitismb 27/45/89

Immunityc 21/46/46

Adulthoodd:

Parasitismb 48/71/109

Immunityc 33/57/70

Note: aFor additional breakdown of replicate numbers, see Table 2. Biological samples are bfaeces or cserum. dAdulthood required an additional 67 subjects.
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locally by the Kalahari Research Trust, a not-for-profit organ-
isation registered in South Africa that promotes research on 
the biology and conservation of the fauna of the Kalahari, then 
internationally by the University of Pretoria ethics committee 
(Ethical Approval Numbers EC074-11 and EC080-14) and the 
Duke University Institutional Animal Care and Use Committee 
(Protocol Registry Numbers A171-09-06 and A143-12-05).

Our subjects, initially, were 128 meerkat offspring (62 male, 66 
female) from 24 clans, deriving from 51 DC, 20 SC and 5 DT 
litters (see maternal treatment procedures below). Respectively, 
they included 78 ‘DC’, 37 ‘SC’ and 13 ‘DT’ offspring in relatively 
equal sex ratios (Table 1). We studied these offspring at two life 
stages: juvenility (3–12 months) and adulthood (12–62 months) 
(Table 1; see Table 2 for mean ages and weights at sampling). 
Owing to the logistics of fieldwork, subjects differentially con-
tributed to the biological samples (faeces and blood, see below); 

owing to the natural mortality or dispersal of subjects, we could 
sample only 55% of our juveniles again as adults. We thus sup-
plemented our adult stage, as feasible, by sampling from among 
an additional 67 meerkats from the general population deriving 
from normative DC and SC dams. Our total subjects across both 
life stages thus represent 195 offspring (see Tables 1 and 2 for 
final sample sizes per age group or analysis).

In meerkat society, all offspring are subordinate, regardless 
of maternal status. Among adult subordinates, there is some 
status differentiation, largely based on age or size advantage 
(Thavarajah, Fenkes, and Clutton-Brock  2014), with the el-
dest/largest being most likely to emerge as dominant in in-
dividual contests that result in an overthrow (Clutton-Brock 
et  al.  2006; Hodge et  al.  2008). A few of our adult offspring 
became dominant: To avoid the possible confounding effects 
of social status on immunocompetence (Smyth and Drea 2016; 

TABLE 2    |    Summary of parasitism (parasite species richness, PSR; faecal egg counts, FEC) and immune function (bacteria killing ability, BKA 
scores; haemolytic complement activity, HCA scores) in juvenile and adult meerkat offspring, by maternal category; age and weight at time of 
sampling are also provided.

Offspring measure

Total numbersa and mean (SE) values by maternal category

Dominant control Subordinate control Dominant treated

Juvenile parasitism

Replicatesb 12/17/32 11/19/29 4/ 9/28

Age (months) 8.46 (0.49) 8.63 (0.53) 8.72 (0.43)

Weight (g) 529.63 (20.50) 451.47 (22.21) 512.54 (12.03)

PSR 2.84 (0.19) 2.76 (0.23) 1.79 (0.20)

FEC 334.93 (113.23) 112.94 (51.59) 43.89 (14.80)

Juvenile immunity

Replicatesc 7/16/16 12/23/23 2/7/7

Age (months) 3 3 3

Weight (g) 314.25 (16.42) 302.46 (15.73) 342.86 (15.80)

BKA (% killed) 57.79 (5.98) 45.30 (4.84) 83.70 (8.49)

HCA (CH50) 165.46 (17.87) 158.36 (8.02) —

Adult parasitism

Replicatesb 36/53/75 8/12/19 4/6/15

Age (months) 24.23 (1.27) 19.67 (630.03) 18.46 (1.25)

Weight (g) 618.08 (12.89) 630.03 (29.28) 582.80 (20.66)

PSR 2.43 (0.13) 2.11 (0.24) 1.87 (0.39)

FEC 183.31 (47.60) 55.57 (16.82) 109.00 (46.59)

Adult immunity

Replicatesc 20/34/40 8/13/17 5/10/13

Age (months) 25.15 (2.75) 20.52 (2.68) 20.84 (2.51)

Weight (g) 638.98 (13.02) 626.69 (21.24) 655.65 (25.53)

BKA (% killed) 52.57 (3.40) 47.65 (5.68) 51.80 (7.36)

HCA (CH50) 229.64 (6.02) 207.30 (12.13) 205.63 (12.06)

Note: aTotal replicate numbers represent litters/individual meerkats/biological samples. Biological samples are bfaeces or cserum.
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Smyth et al. 2016, 2018), we stopped sampling animals upon 
the onset of dominance disputes or acquisition of breeding 
status.

2.2   |   Experimental Treatment

The androgen-receptor antagonist Flutamide had been ex-
perimentally administered during 11 pregnancies in domi-
nant dams, five of which either bore offspring that survived 
to emergence from the natal den or continued to reside in the 
study population during key periods (Drea et al. 2021). Prior 
to the experimental manipulation, each dam's health, weight 
gain and abdominal size throughout pregnancy had been 
closely monitored (Dimac-Stohl et  al.  2018). The dams had 
been selected to match by age and clan size. Early in the third 
trimester, candidates identified for treatment had been sub-
cutaneously implanted with ~15 mg/kg/day flutamide (2 × 21-
day release, 150-mg pellets, Innovative Research of America, 
Sarasota, FL), targeting the last 21 days of the 70-day gesta-
tion period. The capture, anaesthesia, blood draw, surgical 
and post-procedural monitoring methods are published (Drea 
et al. 2021). For each DT dam, we followed both her treated 
litter and one of her control litters, implementing a within-
subject crossover design. To comply with a request by local 
stakeholders at the Kuruman River Reserve, we kept invasive 
procedures of these key dominant females to a minimum. A 
prior validation of our procedures was conducted on subor-
dinate males, indicating no difference between ‘handling’ 
controls (i.e. those captured, anaesthetised and sampled) and 
‘surgical’ controls (i.e. those additionally implanted with a 
placebo pellet) (delBarco-Trillo et al. 2016). Our study of dom-
inant females thus involved ‘handling’ controls only (Drea 
et al. 2021).

2.3   |   Sampling Procedures

To examine parasitism, we opportunistically collected fresh 
faeces from juvenile (3–11 months) and adult (12–51 months) 
offspring. Faecal collection, storage, transport and processing 
methods followed Smyth and Drea (2016).

To examine immune function, as well as the relationships be-
tween concurrent sex hormone concentrations and immune 
function, we collected serum from offspring as juveniles (at 
3 months) and adults (over a range spanning 12–62 months). We 
followed published procedures for animal capture, blood col-
lection and serum processing (Davies et al. 2016). Because the 
innate immune components in serum are unaffected by long-
term storage (up to 12 months) at −80°C (Smyth et al. 2018), we 
kept serum at this temperature throughout all phases of storage 
and transport, until analysis. Due to age-related constraints on 
serum volume, our sample sizes varied per immune measure 
(Table 2).

2.4   |   Measures of Parasitism

Our meerkat population is infected by six endoparasite taxa—
four nematodes (Strongylates, Toxocara suricattae, Spiurids 

and Oxynema suricattae), one cestode (Pseudandrya suricattae) 
and one apicomplexan (coccidia) (Leclaire and Faulkner 2014; 
Smyth and Drea 2016). From each faecal sample, we recovered 
endoparasite eggs from 4.5 g of material by water wash and 
centrifugal flotation in 11 mL Sheather's solution (Smyth and 
Drea 2016). We quantified the number of eggs or oocysts (here-
after ‘eggs’) per sample and used parasite species richness (PSR 
or the number of parasite taxa present) and faecal egg counts 
(FEC) as indices of infection. FEC represents an estimate of 
total infection intensity. Although egg output can vary consid-
erably between parasite taxa (Gillespie  2006), FEC has been 
shown to linearly relate to adult parasite burdens (Roberts and 
Swan 1981; Seivwright et al. 2004). We refer to PSR and FEC, 
collectively, as our measures of parasitism.

2.5   |   Measures of Innate Immune Function

We assessed constitutive, innate immune responses using a 
bacteria-killing assay (BKA) and haemolytic complement assay 
(HCA), following Smyth et  al.  (2018). The BKA and HCA are 
functional tests of the innate immune system's ability to con-
trol bacteria and lyse foreign antigens, respectively, and involve 
the action of two interrelated immune components—natural 
antibodies and complement. Because these measures have been 
linked to disease resistance and survival in free-ranging animals 
(Townsend et al. 2010; Wilcoxen, Boughton, and Schoech 2010; 
Savage et  al.  2016), researchers can use assay results to make 
health inferences.

We optimised the BKA and HCA for meerkats, as described 
previously (Smyth et  al.  2018), by modifying protocols de-
veloped by French and Neuman-Lee  (2012) and Sinclair and 
Lochmiller  (2000), respectively. We represent BKA scores as 
the percentage of bacteria killed relative to positive controls 
and HCA scores in CH50 units (i.e. the reciprocal of the di-
lution that causes 50% haemolysis) (Mayer  1948). We refer 
to BKA and HCA scores, collectively, as our measures of im-
mune function.

2.6   |   Hormone Assays

We assayed serum samples for A4, T and oestradiol (E2) using 
commercial, competitive enzyme immunoassay kits (ALPCO 
Diagnostics, Salem, NH, USA), previously validated in meerkats 
(Davies et al. 2016). We ran all samples in duplicate, and if the 
coefficient of variation (CV) exceeded 10%, we ran a subsequent 
assay. The A4 assay has a sensitivity of 0.04 ng/mL using a 25-
μL dose, with intra- and inter-assay CVs of 5.23% and 8.7%, re-
spectively. The T assay has a sensitivity of 0.02 ng/mL using a 
50-μL dose, with intra- and inter-assay CVs of 7.9% and 7.3%, 
respectively. The E2 assay has a sensitivity of 10 pg/mL using a 
50-μL dose, with intra- and inter-assay CVs of 7.7% and 8.7%, 
respectively.

2.7   |   Statistical Analyses

In juveniles, we tested for differences in parasitism (PSR and 
FEC) and immune function (BKA and HCA scores) using linear 
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models (LMs) and linear mixed models (LMMs). We included 
the following explanatory variables in all models: maternal cat-
egory (three levels: DC, S, and DT), weight (continuous variable 
in g) and their interaction. For individuals sampled over a range 
of ages, we controlled for age (continuous variable in mo) by 
including it as an explanatory factor. Because rainfall is nega-
tively associated with endoparasitism in meerkats (Smyth and 
Drea 2016), we also controlled for rainfall (continuous variable 
in mm, summed over 30 days pre sampling) by including it in our 
analyses of PSR and FEC. A small sample size for certain status-
by-sex combinations meant that we lacked the statistical power 
to include sex in the analyses of juveniles. We repeated the prior 
analyses in adult offspring, for which we could include sex (two 
levels: male, female) as an additional explanatory factor.

To test if immune function in juveniles is related to concur-
rent sex hormone concentrations, we examined relationships 
between our two immune responses (BKA and HCA scores) 
and three sex steroids (A4, T and E2, each as a continuous vari-
able in ng/ml) using LMs. We did not perform these analyses 
in adults because relationships between normative immune 
function and sex steroid concentrations have been reported for 
adults (Smyth et  al.  2018) and serum volumes from treated 
dams were limited.

For all models, we confirmed that the necessary assump-
tions had been met by visually inspecting quantile-quantile 
plots and plots of standardised residuals versus fitted values. 
We log-transformed adult BKA scores (residuals for juve-
nile BKA scores were normally distributed) and FECs (add-
ing 1 to each value prior to transformation). We centred and 
scaled all continuous variables by subtracting the mean and 
dividing by the standard deviation. To assess collinearity be-
tween all explanatory factors, we used variance inflation fac-
tors (VIFs); we retained all variables because all VIFs were 
under 2 (O'Brien 2007). We controlled for repeated sampling 
of individuals by including as random terms either individual 
identity or individual identity nested within clan identity. We 
determined the optimal random structure for each model by 
estimating variance components.

We evaluated the significance of fixed effects using F statistics 
(for LMs) and likelihood ratio tests (for LMMs); we present ef-
fect sizes (means and standard errors) for all fixed effects. If ma-
ternal category was a significant predictor (α < 0.05), we used 
least-squares means and Dunnett's multiple comparison tests to 
examine differences between DC and SC progeny (the norma-
tive comparison) and between DC and DT progeny (the experi-
mental comparison). Owing to age-related differences in serum 
volume, we were unable to perform experimental comparisons 
for HCA values in juveniles.

We used a Cox proportional hazards model to test for effects of 
maternal status or treatment condition on offspring survivor-
ship, used a likelihood ratio test to determine the significance of 
maternal status and verified that the proportional hazards were 
equal among individuals. We calculated pairwise comparisons 
among treatments using a Bonferroni correction for multiple 
comparisons. We performed all statistical analyses in Program 
R version 4.2.2 (R Core Team 2022). We used the nlme package 
(Pinheiro et  al.  2022) for fitting LMMs, the lsmeans package 

(Lenth  2016) for comparisons of least-squares means and the 
survival (Therneau 2022) and survminer (Kassambara, Kosinski, 
and Biecek 2021) packages for survival analyses.

3   |   Results

3.1   |   Offspring Parasitism by Maternal Category

Maternal effects on parasitism in juvenile offspring followed pre-
dicted patterns. First, the status-related variation in androgen con-
centrations of normative dams was positively related to parasitism 
in juvenile offspring: relative to ‘DC’ offspring, ‘SC’ offspring 
tended to have reduced PSR (p = 0.058, n.s.) and had significantly 
reduced intensities of parasite infections, as indicated by FECs 
(p = 0.031) (Table 2; Figure 2A,B; Table A1). Second, variation in 
androgen action owing to treatment of dominant dams also in-
fluenced offspring parasitism: relative to ‘DC’ offspring, ‘DT’ off-
spring had significantly reduced parasite burdens (PSR: p = 0.003; 
FEC: p = 0.004) (Table 2; Figure 2A,B; Table A1). Indeed, parasit-
ism in the juvenile progeny of DT dams was comparable to that in 
the juvenile progeny of SC dams (Table 2; Figure 2A,B).

Consistent with findings in other taxa, these maternal effects 
did not persist over time. Once the offspring of normative and 
treated dams reached sexual maturity, none of these maternal 
effects remained detectable (all ps > 0.05) (Table 2; Figure 3A,B; 
Table A2).

3.2   |   Offspring Immune Function by Maternal 
Category

Our findings relating to maternal effects on immune function in 
juvenile offspring showed both a null effect and an effect consistent 
with predictions. The normative status-related variation in mater-
nal androgen concentrations did not generate detectable differ-
ences in offspring immune function, as the progeny of DC and SC 
dams had comparable BKA and HCA scores (ps > 0.05) (Table 2; 
Figure 2C,D; Table A1). By contrast, experimentally blocking an-
drogen action in DT dams had anticipated consequences in that, 
relative to ‘DC’ juveniles, ‘DT’ juveniles had significantly improved 
immune responses (BKA scores: p = 0.020; HCA scores were un-
available for ‘DT’ juveniles) (Table 2; Figure 2C,D; Table A1).

As with parasitism, no androgen-related maternal effects on 
immune function (for either BKA or HCA scores) were appar-
ent in the adult offspring of DC, SC and DT dams (all ps > 0.05) 
(Table 2; Figure 3C,D; Table A2).

3.3   |   Other Predictors of Parasitism and Immune 
Function: Age, Weight, Reproductive Hormones 
and Sex

Juvenile age predicted PSR, independent of maternal category: 
older juveniles were infected with more species of endoparasites 
than were younger juveniles (Figure  4A; Table  A1). Juvenile 
body weight, which was unrelated to the maternal category in 
our study (p > 0.05) (Table A1; Figure A1), predicted both PSR 
and HCA scores: Relative to their lighter counterparts, heavier 
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juveniles were infected with fewer species of gastrointestinal 
parasites (p = 0.003), suggesting enhanced immunocompetence, 
but also had reduced HCA scores (p = 0.011), suggesting reduced 
immunocompetence (Figure  4B,C; Table  A1). Lastly, the con-
current concentrations of A4, T and E2 in 3-month-old juveniles 
were unrelated to maternal status or to BKA and HCA scores (all 
ps > 0.05) (Table A3; Figure A2).

As before, the age and weight relationships evident in juvenility 
were not detectable in adult offspring (Table A2). Instead, sex 
was the only factor that significantly related to immune func-
tion in older offspring, with females having greater BKA scores 
than males (p = 0.03) (Table A2).

3.4   |   Survivorship

Offspring survivorship varied with maternal category (χ2 = 9.51; 
df = 2; p = 0.008). We found no difference between ‘DC’ and ‘SC’ 
offspring (p = 1.000), whereas ‘DT’ offspring had significantly 
greater survival than either ‘DC’ (p = 0.030) or ‘SC’ (p = 0.024) 
offspring (Figure 5).

4   |   Discussion

The immunocompetence handicap hypothesis (ICHH) (Folstad 
and Karter  1992), originally positing an androgen-mediated 

trade-off between reproductive benefits and immunosuppres-
sion in adult males, was recently extended to adult female meer-
kats (Smyth et al. 2016, 2018). Here, for the first time in a wild 
mammal, we report that prenatal exposure to maternal andro-
gens also has immunosuppressive effects on juvenile offspring 
of both sexes: Relative to the progeny of DC dams exposed to 
the highest concentrations of maternal androgens in utero, the 
progeny of SC and DT dams experienced enhanced immuno-
competence (as revealed by any combination of PSR, FEC, BKA 
or HCA). The health benefits of blocking late-term, prenatal an-
drogen action in dominant dams significantly improved survi-
vorship of their progeny (i.e. DT offspring) relative to offspring 
that had prenatally experienced a range of normative maternal 
androgen concentrations, be they exceptionally or moderately 
raised (i.e. in DC or SC offspring, respectively). These findings 
validate an earlier report of a trend towards better survivorship 
in DT relative to DC offspring, based on smaller sample sizes 
of normative offspring examined only to 1 year of age (Davies 
et al. 2024). Thus, despite the reproductive benefits of hormonal 
masculinisation to dominant female meerkats (Drea et al. 2021), 
the intergenerational consequences of raised maternal andro-
gens on immune function and survivorship are naturally expe-
rienced by their juvenile offspring and appear to represent an 
early cost of sexual selection (see Clutton-Brock 2001) operating 
in fiercely competitive females.

We interpret these costs as owing to maternal androgens for 
several reasons. Firstly, that health effects across all offspring 

FIGURE 2    |    Predicted means ± SEM (from model statistics) of (A) endoparasite species richness, (B) endoparasite faecal egg count, (C) bacteria 
killing ability (BKA score) and (D) haemolytic complement activity (HCA score) in juvenile meerkat offspring by maternal category (dominant 
control (DC), black; subordinate control (SC), white; dominant treated (DT), grey). Shown are results from the a priori, ‘normative’ comparisons 
between juveniles from DC and SC dams and ‘experimental’ comparisons between juveniles from DC and DT dams. Because we made no a priori 
predictions for SC vs. DT females, there was no test of that comparison. Boxed numbers represent sample sizes. **p < 0.01, *p < 0.05, ψp < 0.10.
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were restricted to the juvenile period, encompassing animals 
at 3 months of age that have circulating hormone concentra-
tions lower than those in adulthood, implicate organisational 
rather than activational effects. Secondly, flutamide spe-
cifically blocks the androgen receptor, without modifying 

concentrations of androgens (delBarco-Trillo et  al.  2016; 
Drea et  al.  2021) or their downstream oestrogenic products. 
Whereas oestrogen concentrations in normative meerkat 
dams also vary by status (reviewed in Drea and Davies 2022), 
potentially contributing to the differences observed between 

FIGURE 3    |    Means ± SEM (from raw data) of (A) endoparasite species richness, (B) endoparasite faecal egg count, (C) bacteria killing ability 
(BKA score) and (D) haemolytic complement activity (HCA score) in adult meerkat offspring by maternal category (dominant control (DC), black; 
subordinate control (SC), white; dominant treated (DT), grey). None of the a priori ‘normative’ comparisons between adult offspring from DC and 
SC dams or ‘experimental’ comparisons between adult offspring from DC and DT dams were statistically significant. Boxed numbers represent  
sample sizes.

FIGURE 4    |    Demographic predictors that significantly explain variance in (A, B) endoparasite species richness and (C) haemolytic complement 
activity (HCA scores) in juvenile meerkat offspring (Table A1). Dots represent individual samples (dominant control (DC), red; subordinate control 
(SC), black; dominant treated (DT), blue). Lines represent the predicted fits of a linear mixed model (A, B) and a linear model (C) for each maternal 
category available. Shaded ribbons indicate standard error estimates.
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DC and SC progeny, androgen action more parsimoniously ex-
plains the full suite of findings. Notably, differences between 
DC and DT offspring can only be explained by maternal an-
drogen action. Thirdly, the breadth of effects observed in DT 
versus SC dams is consistent with expectations from blocking 
the mechanism of androgen action versus merely lowering ab-
solute concentrations. Lastly and more generally, our results 
are consistent with the literature on androgen manipulation 
in oviparous species.

Regarding immune function, offspring did not appear to suf-
fer the status-related trade-off experienced by their mothers. 
Perhaps a threshold of prenatal androgen exposure exists, above 
which further increases in androgens no longer affect prenatal 
programming of innate immune function. Because subordinate 
dams are also hormonally masculinised, albeit to a lesser extent 
than dominant dams, differences in innate immune function 
between their respective offspring could be minimal. Detecting 
these differences would require greater statistical power, es-
pecially if the immunomodulatory effects are influenced by 
offspring sex (Müller, Groothuis, Eising, et  al.  2005; Muriel 
et al. 2017) or litter sex ratios (via exposure to fraternal andro-
gens: Ryan and Vandenbergh 2002).

Several mechanisms may explain relationships between prena-
tal androgens and immune function or parasitism. Androgens 

could bind to receptors in developing immunocytes (Kovacs 
and Olsen  1987), directly modifying these immune cells and 
altering their functions or future responses to androgenic stim-
ulation. Androgens could also act on lymphoid organs during 
critical developmental periods, altering the micro-environments 
in which immune cells mature throughout life (Martin  2000). 
Organisational effects of maternal androgens on the foetal cen-
tral nervous system could, by enhancing offspring aggressive-
ness (Dloniak, French, and Holekamp  2006; Drea et  al.  2021), 
boldness (Partecke and Schwabl 2008) or exploratory behaviour 
(Holekamp et al. 1984), indirectly increase exposure to parasites. 
Similar effects on the foetal endocrine system could alter future 
hormone production (Drea et al. 1998) or receptor sensitivity and 
distribution pattern (Carere and Balthazart 2007), including in 
lymphoid organs (Groothuis and Schwabl 2008). Although im-
mune function was unrelated to concurrent concentrations of 
A4, T and E2 in 3-month-old juvenile meerkats, perhaps owing to 
endocrine-system quiescence or immature hormone expression, 
previous findings in adults are suggestive of concurrent andro-
genic effects on parasitism (Smyth et al. 2016) and immune func-
tion (Smyth et al. 2018).

Beyond the mechanisms detailed above, prenatal androgens 
could alter immunocompetence via trade-offs with other physi-
ological processes (Sheldon and Verhulst  1996; Lochmiller and 
Deerenberg  2000; Demas  2004), including growth (Uller and 
Olsson 2003; Andersson et al. 2004; Groothuis, Eising, et al. 2005; 
Müller et  al.  2010). Such trade-offs, which arise from allocat-
ing finite resources to energetically expensive activities, may be 
most evident during periods of intense competition or reduced 
food availability (Uller and Olsson 2003; Andersson et al. 2004). 
Indeed, the inverse relationship between body weight and hae-
molytic complement activity in juvenile meerkats is concordant 
with a trade-off between growth and immune function. That we 
observed increased parasitic infections in light-weight individuals 
– a pattern opposite the norm – does not negate this trade-off but 
could indicate nutritional deficiencies imposed by multiple con-
current infections (Sykes, Poppi, and Elliot  1988). Nevertheless, 
because meerkats are most vulnerable to predation and starvation 
during the first months of life (Clutton-Brock et al. 1999), body 
mass and rapid growth may be more important than immunity for 
ensuring immediate survival. Indeed, early body weight and com-
petitive growth are critical in meerkat society (English et al. 2013; 
Huchard et  al.  2016). By increasing survival during this period, 
raised gestational androgens might benefit offspring growth (Drea 
and Davies 2022; Davies et al. 2024), especially if the immunosup-
pressive costs of raised androgens are short-lived.

5   |   Conclusion

The trade-offs associated with hormone transfer from mother 
to offspring in avian systems (Groothuis and Schwabl  2008) 
may not have translated to placental mammals because of the 
marked developmental differences between oviparous and 
viviparous species. In birds, maternal hormone deposition 
occurs just once around the time of oviposition, whereas in 
mammals, hormone transfer is more dynamic and can occur 
at any time for varying durations throughout gestation, with 
time-sensitive consequences. In meerkats, maternal andro-
gens naturally transfer to developing pups during the last 

FIGURE 5    |    Survivorship of meerkat offspring in relation to 
maternal categories (dominant control (DC), black; subordinate control 
(SC), white; dominant treated (DT), grey). Shown at 12 months are 
comparisons between juveniles from DC and DT dams, and between 
juveniles from SC and DT dams, with offspring numbers (in boxes). 
*p < 0.05.
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third of gestation (Drea et  al.  2021); our findings show that 
these androgens exert similar negative effects on the early 
immunocompetence of offspring as those observed in ovipa-
rous species. In female-dominant mammals, such as the meer-
kat, there may be a conflict between the optimal endocrine 
environment for maximising the mother's competitiveness 
and, thus, lifetime reproductive success and the environment 
that best contributes to the early health of her developing off-
spring. Likewise, offspring may face their own developmen-
tal trade-off between investing in growth versus maximising 
their health. That raised androgens during pregnancy can 
have concurrent immunosuppressive effects for dams (Smyth 
et al. 2016; Smyth et al. 2018) and delayed immunosuppressive 
effects for offspring may introduce a new level of complexity 
to the ICHH, namely, an intergenerational consequence of 
androgen-mediated sexual selection operating in females.
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Rain 0.003 (1) 0.960 0.03 (0.21) —

BKA scoresb (44) SC 5.87 (2, 38) 0.006 −10.62 (7.92) 0.320

DT 34.43 (12.77) 0.020

Weight 2.98 (1, 38) 0.092 4.70 (6.56) —

SC: Weight 1.04 (2, 38) 0.362 0.15 (8.03) —

DT: Weight −23.08 (16.93) —

HCA scoresb (28) SC 0.001 (1, 24) 0.978 −13.39 (20.58) —

Weight 7.57 (1, 24) 0.011 −48.19 (15.34) —

SC: Weight 2.72 (1, 24) 0.112 38.77 (23.49) —
aχ2 = likelihood ratio test statistic (LMMs).
bResults of a LM.
cResults of a LMM with individual as a random factor.

Appendix A

 20457758, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70600 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/j.1365-2826.2001.00601.x
https://doi.org/10.1098/rsbl.2009.1078
https://doi.org/10.1098/rsbl.2009.1078
https://doi.org/10.1073/pnas.0510038103
https://doi.org/10.1016/j.anbehav.2017.08.002


14 of 15 Ecology and Evolution, 2024

TABLE A2    |    Factors associated with parasitism (parasite species richness, PSR; faecal egg counts, FEC) and innate immune function (bacteria 
killing ability, BKA scores; haemolytic complement activity, HCA scores) in adult meerkat offspring as determined by linear mixed models (LMMs). 
Comparisons for maternal category (dominant control (DC); subordinate control (SC); dominant treated (DT)) are made between the adult offspring 
of DC dams and those of SC or DT dams (under Predictor). Sex comparisons are made against females. Total sample sizes are indicated for each model 
(see Table 2 for sample size breakdowns by maternal category).

Response (n) Predictor χ2a (df) p Estimate (SE)

PSRb (109) SC 2.28 (2) 0.320 −0.70 (0.39)

DT −0.26 (0.46)

Sex 3.22 (1) 0.073 0.32 (0.27)

Weight 1.32 (1) 0.251 −0.17 (0.15)

Age 0.59 (1) 0.444 0.24 (0.26)

Rain 0.32 (1) 0.569 −0.03 (0.11)

FECb (44) SC 3.03 (2) 0.219 −1.38 (1.14)

DT −1.15 (1.22)

Sex 2.44 (1) 0.118 0.77 (0.85)

Weight 0.01 (1) 0.924 −0.22 (0.54)

Age 0.002 (1) 0.962 0.27 (0.86)

Rain 0.15 (1) 0.703 0.13 (0.28)

BKA scoreb (67) SC 0.32 (2) 0.853 0.01 (0.19)

DT −0.04 (0.20)

Sex 4.71 (1) 0.030 −0.24 (0.16)

Weight 0.31 (1) 0.577 −0.04 (0.08)

Age 1.37 (1) 0.241 0.08 (0.08)

HCA scoreb (65) SC 1.86 (2) 0.394 −0.06 (0.10)

DT −0.01 (0.08)

Sex 2.52 (1) 0.113 −0.03 (0.08)

Weight 0.21 (1) 0.648 0.01 (0.04)

Age 0.001 (1) 0.994 −0.02 (0.04)
aχ2 = likelihood ratio test statistic (LMMs).
bResults of a LMM with individual identity nested within group identity as a random factor.

TABLE A3    |    Relationships between innate immune function (bacteria killing ability, BKA scores; haemolytic complement activity, HCA scores) 
and sex hormone concentrations (androstenedione, A4; testosterone, T; oestradiol, E2) in the juvenile meerkat offspring from dominant control and 
subordinate control mothers, as determined by linear models.

Immune measure Hormone Estimate (SE) F (df) p

BKA score A4 −0.03 (0.08) 0.11 (1, 38) 0.738

T −0.03 (0.08) 0.12 (1, 35) 0.735

E2 0.09 (0.08) 1.28 (1, 32) 0.267

HCA score A4 −6.18 (10.28) 0.36 (1, 25) 0.553

T −15.36 (9.48) 2.63 (1, 24) 0.118

E2 6.73 (11.85) 0.32 (1, 21) 0.576
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FIGURE A2    |    Concurrent sex hormone (androstenedione, A4; testosterone, T; oestradiol, E2) concentrations are unrelated to innate immune 
function in juvenile meerkat offspring. Bacteria killing ability (BKA scores, row 1) and haemolytic complement activity (HCA scores, row 2) are 
plotted against A4 (column 1), T (column 2) and E2 (column 3). Statistics are provided in Table A3.

FIGURE A1    |    Violin plots showing mean (± 95% confidence intervals) body weight (g) of juvenile meerkats at 3 months of age by the status or 
treatment group of their mothers, including dominant control (DC), subordinate control (SC) and dominant treated (DT) dams that received an 
androgen-receptor blocker in late gestation. Weight did not differ among treatment groups (DT-DC t ratio = 0.927, p = 0.359; DT-SC t ratio = 1.37, 
p = 0.179). Violins represent the distribution of individuals; red lines represent the upper and lower 95% confidence intervals as determined by a 
linear model.
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