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Supplementary Information I 

 

Table SI.I.1 Comparison of the extent of South African estuarine habitats and international estuarine ecosystem functional groups (EFGs) identified in the Inter-

national Union for Conservation of Nature’s (IUCN’s) global ecosystem types (Keith et al. 2022). Estuarine blue carbon ecosystems are listed under two realms, 

including (a) M1 = marine shelves; and (b) MFT = Marine–freshwater–terrestrial. Within these two realms, three blue carbon ecosystem types are recognised, 

including MFT1.2 and 1.3 and M1.1) 

Estuarine habitat (and compara-

ble EFG name) 

Description of Ecosystem Func-

tional Groups (Keith et al. 2022) 

Global extent Estuarine habitat (and comparable 

EFG name) 

Mangroves  

(MFT1.2 Inter-tidal forests and 

shrubland) 

“Intertidal mangrove-dominated 

systems, producing high amounts of 

organic matter that is both buried in 

situ and exported; sediments domi-

nated by detritivores and leaf shred-

ders, with birds, mammals, reptiles 

and terrestrial invertebrates occupy-

ing the canopy”. 

Distribution: “Tropical and warm 

temperate coastline with good 

2 851 

(South African extent, Bunting et al. 

[2022]) 

2 820 

(Raw et al. 2023) 
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sediment supply” (Keith et al. 

[2022]: Extended Table 4). 

Salt marshes  

(MFT1.3 Coastal saltmarshes and 

reedbeds) 

“Variable salinity tidal system dom-

inated by salt-tolerant plants, with 

invertebrates, small/juvenile fish and 

birds. 

Distribution: “Tropical and warm 

temperate coastline with good sedi-

ment supply” (Keith et al. [2022]: 

Extended Table 4). 

8 973.8 (Worthington et al. 2023)   

6 129.5 (McOwen et al., 2017) (no ex-

tent mapped in the Allen Coral Atlas 

[2020], only points) 

14 713 

(Raw et al. 2023) 

Sand and mud banks 

(not listed as an IUCN EFG) 

N.A. Mapped as part of South Afri-

can estuaries habitat. Important hab-

itat for benthic micro algae that is a 

key food source in estuaries. 

N.A. 6 108 

(sand & mudbanks, Adams et al. 

[2019]) 

Submerged macrophytes 

(M1.1 Seagrass meadows) 

N.A. (Broad polygon mapped for 

offshore environment around Kosi 

Bay by Short et al. [2007], indicating 

a region of possible occurrence, ra-

ther than true extent). 

41 000 as Seagrasses (Short et al. 

[2007]) 

1 755 as Seagrasses & sub-merged 

macrophytes (Raw et al. [2023]) 
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Supplementary Information II 

 

South Africa’s 332 estuarine systems occur across four original bioregions of the estuaries, ranging from the western 

coastline eastwards as cool temperate, warm temperate, subtropical and tropical (Van Niekerk et al. 2019). These bioregions 

were further subdivided for the purpose of reporting to which degree estuarine habitats were mapped for different parts of 

the coast. The cool temperate bioregions were divided into a cool temperate arid (northern) and Mediterranean (southern) 

coastal regions; the warm temperate bioregion was divided between those areas with and without mangroves, whereas the 

subtropical and tropical estuaries were reported together in the subtropical coastal regions. This resulted in five coastal 

regions of reporting used in Fig. 1 of the main text. The results showed that most estuarine habitats were manually mapped 

after the year 2004, with Swartvlei and the Touw/Wilderness estuaries being the only two mapped in 1998 (Table SI.II.1). 

Initially, during the first ten years (1998 and 2009), many studies focused on the Warm temperate coastal region where 

mangroves do not naturally occur, while an increase in representation across all five coastal regions took place after 2013. 

A marked increase in the number of estuarine systems with estuarine habitat maps are noted for 2019, and 2020, with >10 

estuaries with habitat maps now represented. This progress has enabled between 68-100% of the number of estuaries being 

mapped for the cool temperate arid, cool temperate Mediterranean and warm temperate coastal regions. The two coastal 

regions with mangroves, however, show a need for improved representation of the number of estuaries mapped, including 

the warm temperate with mangroves coastal region (only 34% of the number of estuarine systems have habitat maps) and 

the subtropical coastal region (only 23%) (Table SI.I.1). 

 
Fig. SI.II.1. Number of South Africa’s estuaries for which estuarine habitats were mapped across five coastal regions and years. 

 

Table SI.II.1. Number and percentage of estuaries (n=290) mapped across years and the five coastal regions. Micro-estuaries 
have not yet been mapped to date 
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Year Cool 
temperate 

arid 

Cool 
temperate 

Mediterranean

Warm 
temperate without 

mangroves

Warm 
temperate with 

mangroves 

Sub
-

tropical

Tota
l 

number

Total number of estuaries 
per Earth Observation 
subregion 

10 22 81 44 133 290 

1998   2   2 
2004   1   1 
2005 1  5   6 
2006   4   4 
2007   4   4 
2008   2  3 5 
2009   2   2 
2012     3 3 
2013  1 1  2 4 
2014 1 1   4 6 
2015 1  2  5 8 
2016 5 10 13 3 3 34 
2017   5 3 8 16 
2018 4 8 11  3 26 
2019   1   1 
2020 1 2 2 2 1 8 
2021 3 2 24 11 16 56 

Total number of estuaries 
mapped (percentage of total) 

10 
(100%) 

16 
(73%) 

55 
(68%) 

15 
(34%) 

30 
(23
%) 

126 
(43
%) 
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Supplementary Information III:  
Extended description of the steps taken to generating Regions of Interest (ROIs) for remote sensing classification of 

estuarine ecosystem functional groups. This phase consisted of four subphases as per Fig. 2, with a description of the relevant 

steps undertaken under each phase as follows: 

 

(a1) Automated extraction of points from the Nelson Mandela University (NMU) habitat types 

Initially a set of sample points was generated from the existing NMU National Botanical database polygon layer (Adams 

et al. 2016, 2019) for use in the remote sensing classification. The coastal regions were divided among the team members to 

facilitate the validation in Google Earth Pro images (GEP 1985-2022) across multiple years. The steps taken included: 

 The estuarine polygons were extracted from the National Wetland Map Version 5 (NWM5; Van Deventer et al. 2020), 

the inland section of the estuarine system was kept while the shore regions (Harris et al. 2019) were removed, and the 

inland section buffered with 50 m; 

 The polygons were unioned with the habitat types of 2021/11/25 from NMU in ArcGIS 10.7 (ESRI 1999–2018);  

 The extent of each estuarine system was divided by 20x20 m (400 m²) and representative sample points generated for 

areas where the Macrophyte class of NMU dataset covers such extents, and the EFG type could be extracted and used 

in remote sensing classification;  

 Sample points were generated based on the extent “Hab_ext_m2” field and a minimum distance of 100 m between 

points, resulting in the field “Nr_samples”, that shows the maximum number of sample points possible for that polygon;  

 The estuarine boundaries and habitats were converted to lines and all sample points generated that were located within 

20 m of these lines, were removed to avoid inclusion of spectra on transitional edges of classes;  

 The habitat classes were then extracted for the remaining points, translated to the EFG classes, converted to kml format, 

for validation and added to in Google Earth Pro; and 

 An Excel spreadsheet with the unique numbers of the sample points was shared between the team for defining the EFGs 

per year, and a note field to indicate confidence and other issues.  
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(a2) Validation of sample points using Google Earth Pro images 

During the validation process, the following criteria was taken into consideration: 

(i) A pixel that was selected for an ROI should be homogenous for the full pixel size, and ideally also all adjacent pixels 

around this selected one. Therefore, if using Sentinel–2 at a 10 m spatial resolution, a centre pixel could be identified 

as an ROI, if it is at the centre of an area of at least 30 x 30 m of homogenous cover. 

(ii) Where a single pixel was selected as an ROI, at least >80% of the extent of the pixel should have been related to a 

single class.  

(iii) ROIs selected for vegetation classes, should not have had background influence from water, sand, mud or other back-

grounds, otherwise this would have resulted in high spectral confusion between different classes, and low overall and 

user accuracy values (used to evaluate and approve results). 

(iv) Mixed vegetation classes, such as “Mixed reeds, sedges and mangroves”, were avoided, and ideally split into either 

“Mangroves” and “Reeds and Sedges”. The latter two were envisaged as classes with clear dominance of these canopies 

for >80% of the extent of a 10x10 m pixel. 

(v) ROIs should not be near ecotonal changes or other classes. Such ROIs should have been moved >20 m away from 

ecotonal changes from one class to another, and rather select or position it where there was a high confidence in a class. 

 

 (a3) Capturing of additional samples points in Google Earth Pro for selected classes 

A number of classes were identified as estuarine EFG subtypes where subdivision of the main EFGs and additional ROIs 

were added to the extracted points. These included: 

 Intertidal salt marsh (Spartina maritima) 

 Intertidal salt marsh (Succulent) 

 Submerged macrophytes (intertidal Zostera) 

 Submerged macrophytes (subtidal Zostera) 

 Supratidal salt marsh (Juncus kraussii) 

 Supratidal salt marsh (Other) 

 Supratidal salt marsh (Saline grasses) 

These classes are generally narrow in extent and in some instances also ephemeral, especially Zostera capensis, where 

changes in estuarine hydrological dynamics may result in changes in the extent and location of these systems. These sub-

merged macrophytes also may be very dynamic over hydrological and tidal regimes, sensitive to changes in mouth state and 
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may vary geographically as a result of natural and other pressures. Some of these classes also consist of a mosaic of mixed 

vegetation and do not have homogenous, dense canopies.  

 

(a4) Spatial integration and translation of sample point classes from all datasets to a single file per year with consistent 

class names 

Based on the initial outputs, a review was done of the existing points and further sample points were captured for the estu-
arine system. 
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Supplementary Information IV: 
 

SI.IV.1. Selection and pre-processing of satellite images 

Google Earth Engine (GEE; Gorelick et al. 2017) was chosen as the platform to process the outputs, considering the capa-

bilities of this cloud-computing platform in managing extensive areas and number of images, compared to individual desktop 

machines. The pre-processing of the Landsat series of images, and the Sentinel–1 and –2 datasets, were done as follows: 

(i) Pre-processing of Landsat optical images in GEE 

GEE has a Landsat Surface Reflectance collection that has undergone the required pre-processing of the optical 

images for classification. This includes atmospheric correction, georeferencing, orthorectification and 

resampling to the 30-m spatial resolution of the visible bands. Bands included in the remote sensing classifi-

cation were the optical (2, 3, 4), the near-infrared (NIR; 5), the two Shortwave Infrared (SWIR; 6 & 7) and 

Thermal Infrared (TIR) bands; 

(ii) Pre-processing of Sentinel-1 radar images in GEE 

Images from the twin-sensors Sentinel-1A and Sentinel-1B in interferometric wide-swath mode (IW) were consid-

ered for the remote sensing classification. The GEE collection includes both the Vertical-Vertical (VV) and 

Vertical Horizontal (VH) Ground Range Detected (GRD) images (Gorelick et al. 2017). Pre-processing was 

done according to the recommended steps of Mullissa et al. (2021), including border noise correction, speckle 

filtering and radiometric terrain normalisation (Apleni in prep); and 

(iii) Pre-processing of Sentinel-2 optical images in GEE 

This sensor also has a twin constellation, Sentinel-2A and -2B, providing four 10-m spatial resolution spectral bands 

in the visible region, six 20-m spatial resolution bands in the red-edge, NIR and SWIR regions, and three 60-

m spatial resolution bands that is used for atmospheric correction. The image collection in GEE for Sentinel-

2 includes atmospheric correction, georeferencing, orthorectification and resampling to a 10-m spatial resolu-

tion. In addition, clouds and cloud shadows were masked with the use of the Quality Assurance band 60 (QA60 

band).  

 

GEE was used to generate composites of images for the main EO regions (those with mangroves or without), to enable the 

compilation of composite subsets for each of these tiles, and then generate a single composite of all the images for each EO 
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region. The tiled composites of the S1+S2 images were used for the classification of the years 2018 and 2020 and reported 

here. 

 

SI.IV.2 Inclusion of indices and topographic data to optimise the classification accuracies 

To optimise the classification accuracies of the EFGs, additional spectral indices and ratios and topographic data, together 

with ancillary data were combined with the image composites for the classification. These have been previously proven 

through several studies globally to enhance classification accuracies of wetland vegetation (e.g., Van Deventer et al. 2022). 

Eleven spectral indices were derived from the Landsat and Sentinel optical sensors, whereas the Sentinel-1 ratio was derived 

from the VV and VH backscatter information of this radar satellite (Table SI.IV.1). Elevation of the estuaries was included 

in the classification using  the 30 m spatial resolution National Aeronautics and Space Administration  (NASA) 

Digital Elevation Model (DEM) data (Buckley et al. 2020). The NASA DEM combines data from the Shuttle Radar 

Topography Mission (SRTM), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 

Global Digital Elevation Model  (GDEM),  Ice, Cloud, and Land Elevation Satellite  (ICESat), Geoscience Laser 

Altimeter System (GLAS), and Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) to ensure 

no gaps and improve the spatial accuracy (Farr et al. 2007; Buckley et al. 2020).  In addition, topographic data were 

derived from the NASADEM, including degrees of slope and aspect, which were also included in the stacked, with the 

indices and band composites for the classification. 
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Table SI.IV.1. Vegetation and water indices included in the classification of the estuarine Ecosystem Functional 

Groups (EFGs) to enhance the separability of the remote sensing classes. NIR = near infrared; SWIR = Shortwave 

infrared 

Spectral index Equation Wetland prop-

erty enhanced 

Difference Vegetation Index (DVI) 

(Tucker 1979) 

𝐷𝑉𝐼 ൌ NIR െ Red Soil Moisture 

Enhanced Vegetation Index (EVI) 

(Huete et al. 2002) 

𝐸𝑉𝐼 ൌ 2.5 ൈ
ሺNIR െ Redሻ

ሺNIR  ሺ6 ൈ Red െ 7.5 ൈ Blueሻ  1
 

Chlorophyll 

Green Difference Vegetation Index 

(GDVI) (Tucker 1979) 

𝐺𝐷𝑉𝐼 ൌ NIR െ Green Chlorophyll and ni-

trogen 

Green Normalized Difference Vege-

tation Index (gNDVI) (Gitelson et 

al. 1996) 

𝑔𝑁𝐷𝑉𝐼 ൌ
ሺNIR െ Greenሻ
ሺNIR  Greenሻ

 
Chlorophyll 

Green Soil Adjusted Vegetation In-

dex (GSAVI) (Mahdianpari et al. 

2020; Sripada 2005) 

𝑔𝑆𝐴𝑉𝐼 ൌ
ሺNIR െ Greenሻ

ሺNIR  Greenሻ  0.5
ൈ 1.5 

Chlorophyll 

Modified Normalized Difference 

Water Index (MNDWI) (Xu 2006) 

𝑀𝑁𝐷𝑊𝐼 ൌ
ሺ𝐺𝑟𝑒𝑒𝑛 െ SWIRሻ
ሺ𝐺𝑟𝑒𝑒𝑛  SWIRሻ

 
Leaf water content 

Modified Soil Adjusted Vegetation 

Index (MSAVI) (Qi et al. 1994) 

𝑀𝑆𝐴𝑉𝐼

ൌ
2NIR  1 െ ඥሺ2NIR  1ሻଶ െ 8ሺ𝑁𝐼𝑅 െ 𝑅𝑒𝑑ሻ

2
 

Chlorophyll 

Normalized Difference Vegetation 

Index (NDVI) (Rouse et al. 1973; 

Tucker 1979) 

𝑁𝐷𝑉𝐼 ൌ
ሺNIR െ Redሻ
ሺNIR  Redሻ

 
Chlorophyll 

Normalized Difference Water Index 

(NDWI) (Gao 1996) 

𝑁𝐷𝑊𝐼 ൌ
ሺ𝑅NIR െ 𝑅SWIRሻ
ሺ𝑅NIR  𝑅SWIRሻ

 
Leaf & water con-

tent 

Optimized Soil Adjusted Vegetation 

Index (OSAVI) (Rondeaux et al. 

1996) 

𝑂𝑆𝐴𝑉𝐼 ൌ
ሺNIR െ Greenሻ

ሺNIR  Redሻ  0.16
 

Chlorophyll and 

leaf area  

Index 
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Red Edge Normalized Difference 

Vegetation Index (NDVIre); (Gitel-

son and Merzlyak 1994) 

𝑁𝐷𝑉𝐼𝑟𝑒 ൌ
ሺNIR െ Red Edgeሻ
ሺNIR  Red Edgeሻ

 
Chlorophyll, leaf 

area/  

biomass and nitro-

gen 

Sentinel-1 ratio (Greifeneder et al. 

2018) 

𝑆𝑟𝑎𝑡𝑖𝑜 ൌ
VV
VH

 
Vegetation struc-

ture 
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