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Abstract: Accurate estimation of crop water use, which is expressed as evapotranspiration
(ET) is an important task for effective irrigation and agricultural water management. Al-
though direct field measurement of actual evapotranspiration (ETa) is the most reliable
method, practical and economic limitations often make it difficult to acquire, especially
in developing countries. Consequently, crop evapotranspiration (ETc) is calculated using
reference evapotranspiration (ETo) and crop-specific coefficients (Kc) to support irriga-
tion water management practices. Several ETo models have been developed to address
varying environmental conditions; however, their transferability to new environments
often leads to under or over estimation of ETo, which has an impact on ETc estimation.
This study evaluated the accuracy of 30 ETo micrometeorological models to estimate ETc
under different seasonal and micro-climatic conditions using ETa data directly measured
using a smart field weighing lysimeter as a benchmark. Local Kc values were derived from
field-based measurements, while statistical metrics were applied for the evaluation process.
A cumulative ranking approach was used to assess the accuracy and consistency of the
models across four cropping seasons. Results demonstrated the Penman–Monteith model
to be the most consistent model in estimating ETc, which outperformed other models across
all cropping seasons. The performance of alternative models differed significantly with
seasonal conditions, indicating their susceptibility to seasonality. The findings demon-
strated the Penman–Monteith model as the most reliable approach for estimating ETc,
which justifies its application role as a benchmark for validating other ETo models in
data-limited areas. The study emphasizes the importance of site-specific validation and
calibration of ETo models to improve their accuracy, applicability, and reliability in diverse
environmental conditions.

Keywords: reference evapotranspiration; water scarcity; actual evapotranspiration; crop
coefficient; arid regions; crop water use

1. Introduction
Reference evapotranspiration (ETo) is a crucial component of irrigated agriculture

and represents the rate at which water is transferred from cropped land and plant sur-
faces to the atmosphere under specific climatic conditions [1]. This component serves
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as a benchmark for determining crop water needs for several crops, thereby assisting in
the efficient management of irrigation practices [2]. In arid regions, water resources are
scarce and evaporative demands are high, which makes agricultural production face acute
challenges with limited water supplies [3]. Arid regions suffer more water scarcity; as a
result, declines in precipitation amounts have led to the supplementation of crops with
irrigation water from different water surfaces and groundwater sources [4]. A critical chal-
lenge is how this precious resource can be conserved effectively. What happens to the water
after each irrigation event can be the answer to this question concern. To maintain water
use efficiency, accurate quantification of evapotranspiration (ET) is required to determine
a precise supply of water as required by crops and not based on the irrigator or farmer
perceptions. To maintain a balance, accurate determination of ET is critical. Therefore, the
significance of ETo cannot be overstated; this component plays a critical role in simulating
crop evapotranspiration (ETc) when ET cannot be measured directly. High accuracy when
determining this component is important; this component directly influences irrigation
scheduling, water resource planning, and the sustainability of agricultural systems [5].

Efficient water use conserves available water resources while also mitigating the
adverse effects of over-irrigation such as increased soil salinization, degradation, and
groundwater depletion [6]. In the process of determining irrigation water requirements
for a specific crop when there are no direct measuring devices, ETo is multiplied by a
crop coefficient (Kc) value of a specific crop to be irrigated during its current growth
stage to determine ETa; the latter is equivalent to the actual evapotranspiration (ETa). In
this process, Allen et al. [1] described the term ETo as resembling atmospheric water or
evaporative demand, whereas the Kc values resemble a broader integration of crop-based
factors that distinguishes the crop from other crops or the reference grass based on the
energy balance. The Kc values for many crops that are grown globally to feed nations
have been determined and published by the Food and Agriculture Organization (FAO) on
their drainage and irrigation [1]. This was done over two and a half decades ago using
crops that were suitable for climatic and environmental conditions. However, climate
variability and changes in rainfall patterns with South Africa’s rainfall being erratic in
most regions has been reported [7]. With such natural changes and intensified aridity in
many regions, agricultural practitioners and stakeholders have resorted to the use of crop
cultivars that are drought tolerant [8]. The assumption is that their crop water requirements
may vary compared with those of the cultivars used in determining Kc values in recent
decades. Although ETo and Kc values are essential for calculating ETc, emerging approaches
on remote sensing are under development that offer alternative methods for estimating
ETc relying on energy balance approaches other than those which rely solely on these
parameters. However, local calibration and adjustments of some parameters remain crucial
for model improvements and validation; in this case, direct measurements are required to
determine ETa using approaches such as the water balance. The challenging part of this task
is the lack of measurement devices, which are expensive and not economically practical
to install for every parcel of land, especially in developing countries where cash flow is in
tight budgets and prioritized projects. Measured ETa is the biggest data gap in South Africa,
and models are normally benchmarked using standardized methods rather than real-time
data reflecting the true field conditions [9]. However, they are still critical, particularly
for calibration purposes and the determination of Kc values. Although scientists still
rely on published Kc values, their adjustment to local conditions is crucial. A review by
Pereira et al. [10] highlighted several challenges associated with the transferability of Kc
values. In their review, they also reported that Kc values have been used in many studies
and have been updated at local scales where ETa was measured using accurate devices
such as lysimeters.
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The lack of ETa in situ data dates back to two centuries when Dalton [11] developed an
empirical model to estimate ETo. Since Dalton [11], several models have been developed,
including those by Meyer [12], Thornthwaite [13], Penman [14], and Trajkovic [15]. ETo
models simulate ETo based on climatic variables such as temperature, humidity, wind
speed, and solar radiation. As a result, these variables have led to the classification of
ETo models into four classes: radiation models, temperature models, aerodynamic-based
models, and combination models [16]. DehghaniSanij et al. [17] reported that most of these
models were developed, validated, and calibrated in temperate regions. The fact that they
were developed in temperate environments makes them require rigorous validation and
calibration to ensure their accuracy and reliability when transferred and applied in different
environments from those of their origin [18]. The validation process involves comparing
model outputs with observed data to assess their performance, while the calibration process
fine-tunes model parameters to local conditions. These steps are critical because even minor
inaccuracies in ETo estimates can lead to significant errors in irrigation planning, potentially
resulting in either water shortages or excessive usage.

Several studies have evaluated the performance of different micrometeorological
models in different regions specifically for the determination of ETo, and their results
demonstrated that different models are usually accurate when applied to the climate
conditions under which they were developed and calibrated [19–21]. The limitation that
arises from the use of models is their transferability from environments in which they
were developed and calibrated into regions with different climatic and topographical
settings, which vary spatially [22]. As a result, models that are adopted and applied
outside their region of origin have high uncertainties, resulting in poor performance. For
example, Moeletsi et al. [23] compared the performance of two temperature-based models,
namely Hargreaves and Samani [24] and Thornthwaite [13], to estimate decadal ET in
Free State South Africa against the Penman–Monteith model; their selection was based on
“availability-for-use” data, wherein temperature is a common available variable measured
by most weather stations in South Africa. They reported that, compared with the calibrated
Thornwaite model, the uncalibrated models provided very poor results, underestimating
ET, whereas the calibrated Hargreaves and Samani models yielded accurate accuracy
ranges. The major emphasis of their work was that all models used were developed outside
South Africa, and their applications require validation and calibration to local conditions.

The Penman–Monteith model of the FAO has frequently been proposed for estimating
ETo, but its accuracy and reliability are hampered by its data requirements, which is
particularly challenging in areas with limited data availability, such as some South African
areas with limited weather stations [23]. The FAO developed and introduced the standard
ETo model as a combination model to solve irrigation scheduling problems worldwide [1].
Although a standard model exists, its limitations cannot be undermined; the Penman–
Monteith model was developed based on a reference crop fully watered and continuously
growing at a constant height [1]. The assumption that crops have an ample supply of water
is not true in arid environments with limited rainfall and water resources [25].

This study aimed at evaluating ETc estimation by testing 30 ETo micrometeorological
models at the farm level across different cropping seasons. Unlike many previous studies
in South Africa which primarily compared ETo estimates from different models with a
standard model, this study focuses on the accuracy of ETc derived from ETo models using
a smart field weighing lysimeter to directly measure ETa. This study assesses the models’
performance through statistical metrics to determine their suitability for estimating ETc
at local micro-climatic conditions and seasons. This study aims to identify models that
reliably estimate ETc across diverse seasonal conditions and cropping systems, which
addresses the challenges of model transferability and data limitations. The use of real-time
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measurements with the high-accuracy lysimeter at the field scale makes the results of this
study important for improving irrigation water management and sustainable agricultural
practices, particularly in data-scarce environments. This direct measurement approach
significantly reduces the uncertainties associated with model assumptions and enhances
the calibration and validation of micrometeorological models. This study also aims to
adjust Kc values to emphasize the role of local calibration when dealing with irrigation
water management; any slight adjustments in Kc values might also mean a change in
irrigation scheduling. The Kc value adjustments build upon published works such as the
FAO-56, were Kc values which were developed in areas outside of South Africa using crop
cultivars that were suitable then. However, with drought-tolerant cultivars, the crop water
requirements are prone to change. Reliable ETo models can ensure accurate estimation of
crop water requirements, minimizing over- or under-irrigation.

2. Materials and Methods
2.1. Study Area

This study was carried out on an 18 ha experimental farm owned by the South African
Barley Breeding Institute (SABBI) near the town of Hartswater, which is an agricultural hub
in the Frances Baard district municipality in the Northern Cape Province of South Africa
(Figure 1). The farm is located at the central coordinates with latitude 24◦44′25′′ E and
longitude −27◦43′15′′ S (Figure 1). The study area is within South Africa’s largest irrigation
scheme, known as the Vaalharts irrigation scheme. This scheme was established in the early
1930s to alleviate unemployment and poverty [26]. The study area is in the country’s arid
region with water limitations, receiving irrigation water through transfers, predominantly
from the Vaal River through the Bloemhof dam and constructed open canals [27]. Most
farms are irrigated with pivot irrigation systems, although flood irrigation, sprinklers,
drip irrigation, and other methods continue to be employed [28]. Annually, between
November and March, the area receives approximately 450 mm of rain on the Taung side
and approximately 477 mm on the Jan Kempdorp side [29]. Temperatures in the area have
been recorded as high as 48.8 ◦C and as low as −4.4 ◦C [29]. Ref. [30] defined the soils in the
study area as sandy loam in texture. Salinity has been extensively researched in this area
as a major issue that limits groundwater usage [29]. The area is well known for its pecan
production; however, it also grows winter wheat, barley, maize, groundnuts, sorghum,
cotton, lucerne, soybeans, tobacco, and other cash crops [31]. Limited cattle and poultry
farming also exist [32]. This study area was chosen based on the availability of weather
stations, a suitable arid environment with limited water, and the variety of crops used to
assess crop water usage.

2.2. Meteorological and Lysimeter Data Acquisition
2.2.1. Acquisition of Meteorological Data

The meteorological data were obtained from an automatic weather station installed
in the experimental field for four cropping seasons located at the following coordinates:
24◦ 44′ 29.43′′ E and −27◦ 43′ 14.82′′ S (Figure 2) at an elevation of 1092 m above sea level.
The weather station measured and recorded various climate variables, which allowed for
the computation of ETo while also serving as a tool to understand the local climate of
the study area. The measured variables were measured at a 10 min temporal resolution,
whereas some variables were measured on an hourly basis. A tipping bucket rain gauge
linked to the weather station facilitated precise measurements of irrigation and natural
precipitation, which is crucial for understanding irrigation amounts. To ensure the ac-
curacy of meteorological data, all sensors at each weather station were calibrated at the
beginning of each cropping season and periodically checked for consistency; this detail
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is well explained in the climate datasets of South Africa, of which the weather stations
used are a part, as explained by Moeletsi et al. [34]. The calibration procedures followed
manufacturer-recommended protocols, and detailed logs were maintained to document the
calibration dates and outcomes. The sensors measured climate variables at 10 min intervals,
ensuring high-resolution data. Routine maintenance and testing were conducted monthly
to prevent drift in sensor accuracy, particularly for critical components such as the tipping
bucket rain gauge and temperature sensors.
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2.2.2. Actual Evapotranspiration Determination Using a Smart Field Weighing Lysimeter

To determine the ETa, smart field weighing lysimeters (SFL-600) developed by ME-
TER Group©, Pullman, Washington, USA were installed and used to measure different
components of the water balance from 2019 through to 2021, and more data are being
collected through continuous projects (Table 1). According to our knowledge, this is the
first lysimeter of its kind in the country. Its introduction attempts to fill the gap of direct
field ETa measurements in the country, which limits its extrapolation to non-agricultural
zones outside its reference region. The installation process involved placing specialized
lysimeter cylinders, each equipped with a weighing balance mechanism, into protective
barrels occupying excavated holes in the ground. These protective barrels were sealed with
impermeable rubber membranes to isolate the soil column within the lysimeters. To capture
detailed data on the soil–water relationship, sensors were placed at multiple depths within
each lysimeter (5, 30, and 55 cm). The sensors were designed to measure various essential
parameters, including temperature, moisture content, water potential, and soil electrical
conductivity. This allowed for a detailed characterization of the soil–water conditions and
how they changed over time. The sensors were connected to a data logger system, which
recorded data at minute intervals. This frequent data collection ensured a high-resolution
dataset, providing insights into the dynamic soil–water interactions.

Table 1. Measurements of ETa and cropping seasons for different crop types.

Cropping Season Measurement Year Crop Type

Season 1 winter 2019 Barley
Season 2 summer 2019–2020 Maize
Season 3 winter 2020 Barley

Season 4 summer 2020–2021 Soybean

2.3. Methods Used for Determining ETo from Meteorological Data and ETa from Lysimeter Data
Model Selection for Estimation of ETo

A total of 30 micrometeorological models for estimating ETo were used to estimate
ETc for the four cropping seasons. The selected models were chosen based on their his-
torical use, relevance to arid and semi-arid agro-climatic conditions, and availability of
input data that aligned with the study’s resources. Geographical representativeness was
a key criterion, with models originating from diverse climatic backgrounds to ensure a
robust evaluation. The choice was further motivated by the need for comprehensive evalu-
ation across different classes of micrometeorological models, including radiation-based,
temperature-based, aerodynamic, and combination models. This extensive range allows for
a robust assessment of their performance under diverse climatic and seasonal conditions,
ensuring that the findings provide a reliable basis for selecting the most suitable models
for specific applications. While the volume may seem extensive, it was necessary to en-
compass the breadth of models developed over decades to address varying environmental
challenges. Models beyond the selected 30 were excluded either due to limited applicability
in the study’s arid and semi-arid context, lack of required input parameters, or insufficient
documentation for accurate implementation and comparison. Radiation-based models, as
shown in Table 2, estimate ET using solar radiation (Rs), temperature (T), and humidity
(RH). As solar radiation increases, the energy available for water evaporation increases,
which increases ET from soil and plants [33]. The temperature drives this process by
warming the land surface, which increases the vaporization rate. Relative humidity helps
in modeling moisture potential, which defines how much water vapor can be drawn into
the air [34]. In the temperature-based models shown in Table 3, temperature is the primary
driver of ET. Higher temperatures provide more energy for water to evaporate, promoting
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ET. Some models also consider potential radiation (PR) as a supplementary factor. The
aerodynamic-based models in Table 4 rely on the wind speed (u), temperature, and relative
humidity to estimate ET based on mass transfer principles. These factors can be influenced
by wind speed, which promotes moisture transfer from surfaces to the air and captures
the effects of air movement on ET. The combination model shown in Table 5 integrates
multiple factors, including solar radiation, wind speed, temperature, and relative humidity,
to estimate ET. Solar radiation heats land surfaces, whereas wind speed increases moisture
transfer, with temperature and humidity shaping vapor gradients, which together enables
accurate ET estimation.

Table 2. Radiation-based models for estimating ETo.

ETo Model Equation Input Parameters References

ETo_P-T 1
λ

[
α ∆

∆+γ (Rn − G)
]

Elevation; Tmean; SR [21]

ET-Makkink 0.7
(

Rs
λ

)[
∆
∆ + γ

]
− 0.12 Elevation; Tmean; SR [19]

Turc

0.0133 ×
(

Tm
Tm+15

)
× (Rs + 50) if RH > 50%

0.0133 ×
(

Tm
Tm+15

)
× (Rs + 50)×(

1 + 50 − RH
70

)
(if RH < 50%)

Tmean; SR; RHmean [35]

Hansen 0.408 × 0.70
(

∆
∆+γ

)
Rs SR [36]

Irmak_Rn −0.611 + 0.149 × Rs + 0.079Tmean SR; Tmean [37]
Irmak_Rs (3.75 + 0.503u2)(es − ea) SR; Tmean [37]

Jensen-Haisen Rs (0.025 × T + 0.08) Tmean; SR [38]
Tabari 1 −0.642 + 0.174Rs + 0.0353Tmean Tmean; SR [39]
Tabari 2 −0.478 + 0.156Rs − 0.0112Tmax + 0.0733Tmin SR; Tmax; Tmin. [39]
Caprio (0.01092708 × T) + (0.0060706 × Rs) Tmean; SR [40]

Calibrated Christiansen 0.53 × (Rs
λ ) RS [41]

Table 3. Temperature-based models for estimating ETo.

Reference
Evapotranspiration Model Equation Input Parameters References

Ivanov 0.00006 × (25 + Tmean)2 × (100 − RH)
Mean Temperature; Mean Relative

Humidity [42]

Trajkovic
[
0.0023Ra(Tmean+17.8)(Tmax−Tmin)0.424

]
λ

Latitude; Tmean; Tmax; Tmin [15]

Schendel 16 ×
( Tmean

RH

)
Tmean; RH [43]

Ravazzani (0.817 + 0.00022 × Z)0.0023 Ra(Tmean + 17.8)(Tmax − Tmin)0.5 Elevation; Tmean; Tmax; Tmin; [44]
Hamon k(0.1651 × 216.7)N × ( es

T+272.3 ) Tmean; Tmax; Sunshine Hours [45]
Papadakis 2.5(es − ea) Tmax; Tmin [46]

Droogers and Allen 0.003 × (Tmean + 20)(Tmax − Tmin)0.4Ra Latitude; Tmean; Tmax; Tmin. [47]
Hargreaves and Allen (0.0135Tmean + 0.2403)× Rs

λ
Tmean; SR [20]

Hargreaves and Samani
[
0.0023×Ra(Tmean+17.8)(Tmax−Tmin)0.5

]
λ

Latitude; Mean Temperature;
Maximum Temperature; Minimum

Temperature.
[24]

Table 4. Aerodynamic-based models for estimating ETo.

Reference Evapotranspiration Model Equation Input Parameters References

ET_Albrecht (0.1005 + 0.297 × u2)× (es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [48]
Trabert 0.408 × (0.3075 ×√

u2)× (es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [49]

Meyer (3.75 + 0.503u2)(es − ea) Tmax; Tmin; RHmax; MeanU2;
RHmin. [12]

WMO (1.298 + 0.934u2 )(es − ea) Tmax; Tmin; RHmax; MeanU2;
RHmin. [50]

ROhWER (3.3 + 0.891u2)(es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [51]
Brockamp–Wenner

(
0.543u2

0.456
)
(es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [52]

Penman 0.35 × (1 + 0.24 × u2)× (es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [14]
Mahringer

(
0.286u2

0.5
)
(es − ea) Tmax; Tmin; RHmax; MeanU2; RHmin [53]

Dalton (3.648 + 0.7223u2)(es − ea) Tmax; Tmin; RHmax; MeanU2;
RHmin. [11]
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Table 5. Combination model for estimating ETo.

Reference
Evapotranspiration Model Equation Input Parameters References

ETo_P-M FAO-56 0.408∆(Ra−G)+γ( 900
T+273 )u2(es−ea)

∆+γ(1+0.34u2)

Latitude; Tmean; Tmax;
Elevation; Tmin; RHmean;

RHmax; MeanU2; SR; RHmin.
[1]

2.4. Calculation of the Actual Evapotranspiration

The water balance Equation (1) was used to calculate evapotranspiration:

ET = P − Rf − ∆S (1)

where ET represents the water lost through evaporation (E) and plant transpiration (T), P
represents precipitation, Rf denotes rainfall, and ∆S denotes the change in storage.

Due to the exclusion of irrigation, the ETa equation changed to Eta, equaling change
in storage, which was calculated as in Doležal et al. [54] using Equation (2):

ETa =
(LYWn + SWWn)− (LYWn+1 + SWWn+1)

Lysimeter Area
(2)

where ETa is the actual crop evapotranspiration (mm), LYWn = lysimeter weight at the nth
time, SWWn = drainage weight at the nth time, LYWn+1 = lysimeter weight at n+1 time,
and SWWn+1 = drainage weight at n + 1 time. The lysimeter area was calculated using
Equation (3) as follows:

Lysimeter Area = πr2 = π× (0.15)2 = 0.0707m2 (3)

When the drainage is zero, evapotranspiration can be obtained directly by multiplying
the change in storage with the density of water, which can be calculated using Equation (4):

kg of seepage water = 0.001m3 =
0.001m3

0.0707m2 = 0.014 m = 14 mm (4)

2.5. Determination of Local Kc Values

Crop coefficients for most crops have been published by the FAO in their irrigation
and drainage guidelines published in the late 1990s [1]. The transfer of crop coefficients has
been reported to present several challenges [10]. In this study, the crop coefficients were
determined for local climate conditions using Equation (5):

Kc =
ETa
ETo

(5)

where ETa is determined from the lysimeter and ETo is the reference evapotranspiration
determined using the FAO’s procedure.

2.6. Evaluation of ETo Models in Estimating ETc Using Lysimeter ETa

The ETa obtained from the smart field weighing lysimeter was directly compared
with the ETc obtained from various micrometeorological models using a simple linear
regression model. Statistical metrics were used to evaluate the performance of all the
models in estimating ETc, with lysimeter ETa as a benchmark. Four statistical metrics were
used, which included the root mean square error (RMSE), bias—which reflects whether the
model consistently over-estimates or under-estimates values—mean absolute error (MAE),
and coefficient of determination (R2). The correlation coefficient (R) was also used. These
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metrics were collectively used to provide an understanding of the performance of the ETo
models in determining ETc. The statistical performance metrics used for the evaluation of
different ETo models are represented using Equations (6)–(9):

RMSE =

√
∑n

i=1 (ETaLysimeter − ETcEstimated)
2

N
(6)

Bias =
1
n ∑n

i=1

(
ETcEstimated − ETaLysimeter

)
(7)

MAE =
1
n ∑n

i=1

∣∣ETcEstimated − ETaLysimeter
∣∣ (8)

R2 = 1 − ∑n
i=1 (ETaLysimeteri − ETcEstimatedi)2

∑n
i=1 (ETaLysimeteri − ETaLysimeter)

2 (9)

where n is the number of observations and ETc Estimatedi is the estimated ETc value for
the ith observation. The measured ETa of the lysimeter i is the lysimeter-measured ETa
value for the ith observation.

2.7. Ranking of ETo Models in Estimating ETc

To rank the models based on various performance metrics, the metrics were considered
individually. Each metric has its own meaning; for example, when looking at the bias and
RMSE, lower values are better, whereas when considering R2, higher values are better.
Upon ranking each model’s performance using metrics, a cumulative rank was assigned for
each model by summing their individual ranks across all the metrics. A lower cumulative
rank indicates better overall performance.

Ranking Based on Cumulative Ranking

Ranking of the evaluated micrometeorological models using statistical metrics was
performed using cumulative ranking methods to aggregate the different metric scores. In
this approach, the weighted sum of each metric was multiplied by a weight for each season
and then summed. Equation (10) was used for the score calculation as follows:

Score = ∑n
i=1 Normalized Metrici (10)

where n is the total number of metrics being considered, i is the index representing each
individual metric being summed, and the normalized metric is the value of the normalized
metric for the ith variable.

The ranking was based on the scores obtained by each model, and the assumption of
equal weights for all the metrics was calculated based on the overall score for each model
by summing the normalized metrics using Equation (11):

W_Sum = WRMSE × RMSE + WBias × Bias + WMAE × MAE + WR2 (11)

where W_sum is the weighted sum and WRMSE is the weighted metric score with all the
scores weighted and summed.

2.8. Analysis of Meteorological Variable Influence in ETc

To understand the role of different meteorological variables in estimating ETc, varia-
tions in meteorological variables across different cropping seasons were evaluated using
Pearson’s correlation coefficient, which measured the strength and direction of the linear
relationship between each variable and the estimated model ETc. The analysis included
data from four cropping seasons from 2019–2021, which covered both winter and summer



Water 2025, 17, 187 10 of 35

to capture the seasonal variability in climatic conditions. To identify the most influential
variables regardless of the season, average Pearson correlation values were computed by
aggregating the seasonal correlations. This approach ensured that the analysis reflected
the overall contribution of each variable to ETc estimation across diverse climatic scenarios.
Since the meteorological variables such as solar radiation, temperature, relative humidity,
wind speed, and dew point are expressed in different units, normalization was performed
to standardize their scales. Normalization ensured that all variables were on a comparable
scale; this eliminated biases caused by differences in units or magnitudes, while it allowed
for a more accurate assessment of their relative influence on ETc.

3. Results
3.1. Comparative Analysis Between Published Kc Values and Locally Derived Kc Values

The comparison of the FAO published Kc values with locally derived Kc values for
different crops and seasons provides insights into the local crop water requirements. For
barley in 2019, the initial local Kc value is not available, while the mid-stage Kc values are
quite similar. However, the final stage shows a slight increase in the local value. In the case
of maize during the 2019–2020 season, there was good agreement across all stages, with
local values closely matching the FAO values (Table 6). However, for barley in 2020, the
initial local Kc is higher than the FAO value, whereas the middle and final stages show
slight variations. The soybean Kc values in the 2021 season present a significant difference
in the final stage, where the local Kc is much lower than the FAO range. The Kc values for
the soybean crop in 2021 demonstrated the changing water requirements throughout the
growing season.

Table 6. Comparison of crop coefficient (Kc) values between published and locally adjusted values
from the 2019–2021 seasons.

Season Crop Kc Initial
Published

Kc Initial
Local

Kc Mid
Published Kc Mid Local Kc Final

Published
Kc Final

Local

2019 Barley 0.3 - 1.15 1.13 0.25–0.4 0.4
2019–2020 Maize 0.3 0.32 1.15–1.2 1.18 0.35–0.6 0.47

2020 Barley 0.3 0.39 1.15 1.12 0.25–0.4 0.36
2020–2021 Soybean 0.4 0.46 1.15 1.15 0.5–0.55 0.22

3.2. Comparative Analysis Between ETc Estimated from Different Micrometeorological Models and
Lysimeter-Measured ETa

The comparative relationship between radiation-based models and lysimeter-measured
ETa during the 2019 cropping season is demonstrated with scatterplots presented in
Figure 3. The R2 values represent the strength of the linear relationship between the
estimated ETc and measured ETa values. The performance of the radiation models shows
a clear hierarchy in terms of accuracy in the following order: Jensen and Haise > Turc
> Irmark Rs = Priestley–Taylor = Makkink > Tabari 1 > Hansen > Tabari 2 = Irmark Rn
> Calibrated Christiansen > Caprio. The Jensen and Haise model is the most accurate
among the other models, with estimates that closely align with the lysimeter-measured
ETa. The Turc model is slightly less precise but yields strong ETc estimates. The Irmak Rs,
Priestley–Taylor, and Makkink models are equally accurate, with estimates closer to the ETa
values, although they are not as precise as the Jensen and Haise or Turc models. The Tabari
1 model demonstrates a lower accuracy than the models behind it, whereas the Hansen
model shows even less reliable ETc estimates. Furthermore, the Tabari 2 and Irmak Rn
models show similar behaviors of low performance and accuracy, with estimates deviating
further from the actual lysimeter measurements. The calibrated Christiansen model shows
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significant inaccuracies, whereas the Caprio model is the least accurate model, with poor
results and the lowest R2 value of 0.48.
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Figure 3. Scatterplots between radiation-based model ETc and lysimeter-based ETa in 2019.

The scatterplots of the aerodynamic-based models for the 2019 cropping season, 
which demonstrate a comparison between the estimated ETc and measured ETa, are 
shown in Figure 4. The plots show a consistent positive correlation between the lysimeter 
ETa measurements and the different aerodynamic models that estimated ETc during this 
period, with resulting R2 values ranging from 0.45 to 0.75, which indicates moderate to 
strong relationships. This resulted in the following model performance rankings from best 
to worst: Meyer = Penman > Dalton > Rower > WMO > Mahringer > Brockamp–Wenner > 
Trabert > Albrecht. Across these ranks, variations in the slopes and intercepts of the re-
gression lines exist, suggesting different levels of agreement between the estimates by dif-
ferent models and lysimeter measurements. For example, the Albrecht and Brockamp–
Wenner models demonstrate steeper slopes of 1.33 and 1.36, respectively, potentially 
over-estimating ETc at higher values, whereas models such as Trabert and Mahringer ex-
hibit flatter slopes of 0.03 and 0.26, respectively, which are possibly under-estimating ETc 
values as the lysimeter ETa values increase. The Meyer, Dalton, and Rower models 
yielded slopes closer to 1, with values of 0.84, 0.91, and 0.92, respectively, which are in 
better agreement with the lysimeter ETa measurements, with R2 values of 0.75, 0.73, and 
0.7.

Figure 3. Scatterplots between radiation-based model ETc and lysimeter-based ETa in 2019.

The scatterplots of the aerodynamic-based models for the 2019 cropping season, which
demonstrate a comparison between the estimated ETc and measured ETa, are shown in
Figure 4. The plots show a consistent positive correlation between the lysimeter ETa
measurements and the different aerodynamic models that estimated ETc during this period,
with resulting R2 values ranging from 0.45 to 0.75, which indicates moderate to strong
relationships. This resulted in the following model performance rankings from best to worst:
Meyer = Penman > Dalton > Rower > WMO > Mahringer > Brockamp–Wenner > Trabert >
Albrecht. Across these ranks, variations in the slopes and intercepts of the regression lines
exist, suggesting different levels of agreement between the estimates by different models
and lysimeter measurements. For example, the Albrecht and Brockamp–Wenner models
demonstrate steeper slopes of 1.33 and 1.36, respectively, potentially over-estimating ETc
at higher values, whereas models such as Trabert and Mahringer exhibit flatter slopes of
0.03 and 0.26, respectively, which are possibly under-estimating ETc values as the lysimeter
ETa values increase. The Meyer, Dalton, and Rower models yielded slopes closer to 1, with
values of 0.84, 0.91, and 0.92, respectively, which are in better agreement with the lysimeter
ETa measurements, with R2 values of 0.75, 0.73, and 0.7.
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Figure 4. Scatterplots between the aerodynamic-based model ETc and lysimeter-based ETa in 2019.

The comparisons between the temperature-based models for estimating ETc and ly-
simeter ETa are shown in Figure 5 for the 2019 barley cropping season. Similar to the other 
models, the R2 values are used. The performances of these models are in the following 
order: Papadakis > Hargreaves–Samani = Ravazzani > Trajkovic = Droogers and Allen > 
Hargreaves and Allen > Ivanov = Hamon > Schendel. The rankings demonstrate the mod-
els’ performance based on their accuracy in estimating ETc. The Papadakis model, com-
pared to the other models, appears to be the most accurate temperature-based model, 
providing estimates that closely match the ETa measurements. This is closely followed by 
the Hargreaves–Samani and Ravazzani models, which have similar levels of accuracy, 
although they are slightly lower than those of the Papadakis model. The Trajkovic model 
as well as the Droogers and Allen model follow; these models demonstrate comparable 
performances, with moderate accuracy. The Hargreaves and Allen model follows, with a 
reduced precision in estimating ETc compared with the other models. The Ivanov and 
Hamon models have the same level of accuracy, with reduced accuracy in estimating ETc. 
Lastly, the Schendel model yields the least accurate estimates, with an R2 value of 0.65.

Figure 4. Scatterplots between the aerodynamic-based model ETc and lysimeter-based ETa in 2019.

The comparisons between the temperature-based models for estimating ETc and
lysimeter ETa are shown in Figure 5 for the 2019 barley cropping season. Similar to the
other models, the R2 values are used. The performances of these models are in the following
order: Papadakis > Hargreaves–Samani = Ravazzani > Trajkovic = Droogers and Allen
> Hargreaves and Allen > Ivanov = Hamon > Schendel. The rankings demonstrate the
models’ performance based on their accuracy in estimating ETc. The Papadakis model,
compared to the other models, appears to be the most accurate temperature-based model,
providing estimates that closely match the ETa measurements. This is closely followed
by the Hargreaves–Samani and Ravazzani models, which have similar levels of accuracy,
although they are slightly lower than those of the Papadakis model. The Trajkovic model
as well as the Droogers and Allen model follow; these models demonstrate comparable
performances, with moderate accuracy. The Hargreaves and Allen model follows, with
a reduced precision in estimating ETc compared with the other models. The Ivanov and
Hamon models have the same level of accuracy, with reduced accuracy in estimating ETc.
Lastly, the Schendel model yields the least accurate estimates, with an R2 value of 0.65.
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Figure 5. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model in 
2019.

A comparison between the estimated ETc during the 2019–2020 cropping season us-
ing radiation models and the measured ETa is shown in Figure 6. Based on the R2 values, 
the models are ranked in the following order: Irmark Rs = Irmark Rn > Priestley–Taylor > 
Caprio > Makkink > Calibrated Christiasen > Jensen and Haise > Turc > Hansen > Tabari 
2 > Tabari 1. These rankings evaluate various models based on their accuracy in estimating 
ETc. The plots show that the Irmak Rs and Irmak Rn models performed similarly at the 
top of the rank, providing the most accurate estimates, with minimal deviation from the 
lysimeter ETa values. The model that closely follows these two models is the Priestley–
Taylor model. This model also shows good performance, although it is slightly less accu-
rate. The Caprio model then provides moderately accurate estimates. Following this 
model, the Makkink model demonstrated a lower accuracy than the models above it. The 
calibrated Christiansen model has a greater accuracy. Tabari 1 is at the bottom, providing 
the least accurate ETc estimates among the radiation-based models.

Figure 5. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model
in 2019.

A comparison between the estimated ETc during the 2019–2020 cropping season using
radiation models and the measured ETa is shown in Figure 6. Based on the R2 values, the
models are ranked in the following order: Irmark Rs = Irmark Rn > Priestley–Taylor >
Caprio > Makkink > Calibrated Christiasen > Jensen and Haise > Turc > Hansen > Tabari 2
> Tabari 1. These rankings evaluate various models based on their accuracy in estimating
ETc. The plots show that the Irmak Rs and Irmak Rn models performed similarly at the
top of the rank, providing the most accurate estimates, with minimal deviation from the
lysimeter ETa values. The model that closely follows these two models is the Priestley–
Taylor model. This model also shows good performance, although it is slightly less accurate.
The Caprio model then provides moderately accurate estimates. Following this model, the
Makkink model demonstrated a lower accuracy than the models above it. The calibrated
Christiansen model has a greater accuracy. Tabari 1 is at the bottom, providing the least
accurate ETc estimates among the radiation-based models.
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Figure 6. Scatterplots between radiation-based model ETc and lysimeter-based ETa in the 2019–2020 
season.

A comparison of the aerodynamic-based models for estimating ETc with ETa meas-
ured by the smart field weighing lysimeter from 2019–2020 is shown in Figure 7. Based on 
the R2 values of the models, the models are ranked in the following order: Penman > Meyer 
> Dalton > Rower > WMO > Mahringer = Tabert = Brockamp–Wenner > Albrecht. On this 
basis, the Penman model leads with the highest accuracy, providing ETc estimates that 
are closer to the ETa measurements. The Meyer model provides slightly less accurate es-
timated values, but it still performs very well. Following Meyer, the Dalton and Rower 
models demonstrate moderate accuracy levels that are lower than those of Penman and 
Meyer. The Mahringer, Tabert, and Brockamp–Wenner models yield similar perfor-
mances, with reduced accuracy. Finally, the Albrecht model ranks the lowest, providing 
the least accurate ETc estimates among the aerodynamic-based models, with an R2 value 
of 0.14.

Figure 6. Scatterplots between radiation-based model ETc and lysimeter-based ETa in the
2019–2020 season.

A comparison of the aerodynamic-based models for estimating ETc with ETa measured
by the smart field weighing lysimeter from 2019–2020 is shown in Figure 7. Based on the
R2 values of the models, the models are ranked in the following order: Penman > Meyer
> Dalton > Rower > WMO > Mahringer = Tabert = Brockamp–Wenner > Albrecht. On
this basis, the Penman model leads with the highest accuracy, providing ETc estimates
that are closer to the ETa measurements. The Meyer model provides slightly less accurate
estimated values, but it still performs very well. Following Meyer, the Dalton and Rower
models demonstrate moderate accuracy levels that are lower than those of Penman and
Meyer. The Mahringer, Tabert, and Brockamp–Wenner models yield similar performances,
with reduced accuracy. Finally, the Albrecht model ranks the lowest, providing the least
accurate ETc estimates among the aerodynamic-based models, with an R2 value of 0.14.

The scatterplots displayed in Figure 8 show the relationships between the ETc val-
ues estimated using different temperature-based models and the lysimeter-measured ETa
values. These models are ranked from best to worst as follows: Ivanov > Trajkovic >
Hargreaves–Saamani = Ravazzani > Papadakis > Hamon > Schendel > Hargreaves and
Allen > Droogers and Allen. This reflects that the Ivanov model ranks first, providing the
most accurate ETc estimates relative to the actual lysimeter measurements. The Trajkovic
model yields slightly less accurate estimates, although it still performs well. Two models,
Hargreaves–Saamani and Ravazzani, demonstrate similar performance levels, with mod-
erate accuracy. On the other hand, the Papadakis model has a lower accuracy than the
models above it. The Droogers and Allen models are at the bottom of the ranking hierarchy,
offering the least accurate ETc estimates among the temperature-based models, resulting in
an R2 value of 0.07.
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Figure 7. Scatterplots between the aerodynamic-based model ETc and lysimeter-based ETa during 
the 2019–2020 season.

The scatterplots displayed in Figure 8 show the relationships between the ETc values 
estimated using different temperature-based models and the lysimeter-measured ETa val-
ues. These models are ranked from best to worst as follows: Ivanov > Trajkovic > Har-
greaves–Saamani = Ravazzani > Papadakis > Hamon > Schendel > Hargreaves and Allen 
> Droogers and Allen. This reflects that the Ivanov model ranks first, providing the most 
accurate ETc estimates relative to the actual lysimeter measurements. The Trajkovic model 
yields slightly less accurate estimates, although it still performs well. Two models, Har-
greaves–Saamani and Ravazzani, demonstrate similar performance levels, with moderate 
accuracy. On the other hand, the Papadakis model has a lower accuracy than the models 
above it. The Droogers and Allen models are at the bottom of the ranking hierarchy, of-
fering the least accurate ETc estimates among the temperature-based models, resulting in 
an R2 value of 0.07.

Figure 7. Scatterplots between the aerodynamic-based model ETc and lysimeter-based ETa during
the 2019–2020 season.

The 2020 winter barley cropping season estimates of ETc by different radiation-based
models are presented in Figure 9. Based on the R2 values, these models are ranked from
best to worst in the following order: Jensen and Haise = Caprio > Turc = Makkink >
Priestley–Taylor > Irmak Rs > Table 2 > Table 1 > Irmak Rn > calibrated Christiansen >
Hansen. The Jensen and Haise models, along with the Caprio model, are in the upper part
of the hierarchy and are the best-performing models for estimating ETc, providing values
closer to the lysimeter ETa with minimal deviation. Following these models, the Turc and
Makkink models demonstrate equal performance in estimating ETc with reduced accuracy,
although they still perform well. The Priestley–Taylor model follows, with moderate
accuracy. The Hansen model ranks at the bottom of the hierarchy, providing the least
accurate ETc estimates among the other radiation-based models, with an R2 value of 0.43.

The scatterplots comparing ETc estimated by different aerodynamic models with
ETa measured using a lysimeter are displayed in Figure 10. These models were ranked
from best to worst for the 2020 winter barley season considering the R2 value for each
plot in the following order: Penman > Meyer > Dalton > Rower > WMO > Mahringer >



Water 2025, 17, 187 16 of 35

Brockamp–Wenner > Albrecht > Tabert. The plots show that the Penman model is the most
accurate model, providing estimates that are closest to the actual lysimeter measurements.
Following that, Meyer’s model provides slightly less accurate estimates, although the
performance is still good. The Dalton and Rower models have moderate accuracy levels
that are lower than those of the Penman and Meyer models. Finally, in the hierarchy,
the Tabert model is at the bottom rank, providing the least accurate estimates among the
aerodynamic-based models.
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Figure 8. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model in 
the 2019–2020 season.

The 2020 winter barley cropping season estimates of ETc by different radiation-based 
models are presented in Figure 9. Based on the R2 values, these models are ranked from 
best to worst in the following order: Jensen and Haise = Caprio > Turc = Makkink > Priest-
ley–Taylor > Irmak Rs > Table 2 > Table 1 > Irmak Rn > calibrated Christiansen > Hansen. 
The Jensen and Haise models, along with the Caprio model, are in the upper part of the 
hierarchy and are the best-performing models for estimating ETc, providing values closer 
to the lysimeter ETa with minimal deviation. Following these models, the Turc and Mak-
kink models demonstrate equal performance in estimating ETc with reduced accuracy, 
although they still perform well. The Priestley–Taylor model follows, with moderate ac-
curacy. The Hansen model ranks at the bottom of the hierarchy, providing the least accu-
rate ETc estimates among the other radiation-based models, with an R2 value of 0.43.

Figure 8. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model in
the 2019–2020 season.

The relationships between the ETc estimates of various temperature models and the
ETa measurements obtained using a smart field weighing lysimeter during the 2020 winter
barley cropping season are displayed in Figure 11, with each plot showing the regression
slopes and R2 values. Based on the R2 values, the models are placed in a hierarchy from
best to worst in the following order: Hargreaves and Allen > Hangreaves–Semani =
Ravazzani = Drogers and Allen = Trajkovic > Papadakis > Hamon > Ivanov = Schendel.
The Hargreaves and Allen model leads the hierarchy, providing estimates that are closest
to the actual lysimeter values. Following this model, four models, Hargreaves–Semani,



Water 2025, 17, 187 17 of 35

Ravazzani, Droogers and Allen, and Trajkovic, demonstrated similar performance levels,
with slightly lower accuracy than Hargreaves and Allen. The Papadakis model then
follows, with reduced accuracy in its ETc estimates. The Ivanov and Schendel models at
the bottom of the hierarchy yield poor ETc estimates, which are farthest from the actual
lysimeter measurements.
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Figure 9. Scatterplots between radiation-based ETc models and lysimeter-based ETa models in the 
2020 season.

The scatterplots comparing ETc estimated by different aerodynamic models with ETa 
measured using a lysimeter are displayed in Figure 10. These models were ranked from 
best to worst for the 2020 winter barley season considering the R2 value for each plot in 
the following order: Penman > Meyer > Dalton > Rower > WMO > Mahringer > Brockamp–
Wenner > Albrecht > Tabert. The plots show that the Penman model is the most accurate 
model, providing estimates that are closest to the actual lysimeter measurements. Follow-
ing that, Meyer’s model provides slightly less accurate estimates, although the perfor-
mance is still good. The Dalton and Rower models have moderate accuracy levels that are 
lower than those of the Penman and Meyer models. Finally, in the hierarchy, the Tabert 
model is at the bottom rank, providing the least accurate estimates among the aerody-
namic-based models.

Figure 9. Scatterplots between radiation-based ETc models and lysimeter-based ETa models in the
2020 season.

The radiation-based models successfully estimated ETc during the soybean cropping
season in 2021 and were compared with the lysimeter measurements as shown in Figure 12.
The comparison was based on linear regression scatterplots, with each plot indicating
the slope and R2 value. The models were hierarchically ranked from best to worst in the
following order: Priestley–Taylor > Irmak Rn > Irmak Rs > Tabari 1 > Turc = Makkink >
Jensen and Haise > Tabari 2 > Hansen = Calibrated Christiansen > Caprio. The Priestley–
Taylor model is the most accurate model for demonstrating estimates that are closest to
actual lysimeter field measurements. The Irmak Rn and Irmak Rs models also closely
follow, which also indicates good performance, although they are slightly less accurate than
the Priestley–Taylor model. Tabari 1 shows that the model has a moderate performance
accuracy. However, the Turc and Makkink models have similar performance levels, whereas
the Jensen and Haise models are less accurate than the models above. Finally, the Caprio
model ranks last, which demonstrates the least accurate ETc estimates, which are further
from the actual measurements obtained by the smart field weighing lysimeter.
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Figure 10. Scatterplots between aerodynamic-based model ETc and lysimeter-based ETa in the 2020 
season.

The relationships between the ETc estimates of various temperature models and the 
ETa measurements obtained using a smart field weighing lysimeter during the 2020 win-
ter barley cropping season are displayed in Figure 11, with each plot showing the regres-
sion slopes and R2 values. Based on the R2 values, the models are placed in a hierarchy 
from best to worst in the following order: Hargreaves and Allen > Hangreaves–Semani = 
Ravazzani = Drogers and Allen = Trajkovic > Papadakis > Hamon > Ivanov = Schendel. 
The Hargreaves and Allen model leads the hierarchy, providing estimates that are closest 
to the actual lysimeter values. Following this model, four models, Hargreaves–Semani, 
Ravazzani, Droogers and Allen, and Trajkovic, demonstrated similar performance levels, 
with slightly lower accuracy than Hargreaves and Allen. The Papadakis model then fol-
lows, with reduced accuracy in its ETc estimates. The Ivanov and Schendel models at the 
bottom of the hierarchy yield poor ETc estimates, which are farthest from the actual ly-
simeter measurements.

Figure 10. Scatterplots between aerodynamic-based model ETc and lysimeter-based ETa in the
2020 season.

A total of nine aerodynamic-based models used to estimate ETc during the 2021
cropping season were compared against the ETa measured at the field level using a smart
field weighing lysimeter. Linear regression analysis was performed across all the models, as
demonstrated in Figure 13, with their corresponding R2 values reported. The comparison
of the estimated values with the actual field-measured values revealed that these models
were ranked from best to worst in the following order: Penman > Meyer > Dalton >
Rower > WMO > Brockamp–Wenner > Tabert > Albrecht > Mahringer. In this hierarchy,
the Penman model is the most accurate model, as its estimates are closely aligned with
the actual field measurements. This is followed by Meyer’s model, which has a good
performance, although it is slightly less accurate than the Penman model. The Brockamp–
Wenner and Tabert models show similar performances, with low accuracy. At the bottom
of the hierarchy is the Mahringer model, which yields the least accurate ETc estimates.
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Figure 11. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model 
in the 2020 season.

The radiation-based models successfully estimated ETc during the soybean cropping 
season in 2021 and were compared with the lysimeter measurements as shown in Figure 
12. The comparison was based on linear regression scatterplots, with each plot indicating 
the slope and R2 value. The models were hierarchically ranked from best to worst in the 
following order: Priestley–Taylor > Irmak Rn > Irmak Rs > Tabari 1 > Turc = Makkink > 
Jensen and Haise > Tabari 2 > Hansen = Calibrated Christiansen > Caprio. The Priestley–
Taylor model is the most accurate model for demonstrating estimates that are closest to 
actual lysimeter field measurements. The Irmak Rn and Irmak Rs models also closely fol-
low, which also indicates good performance, although they are slightly less accurate than 
the Priestley–Taylor model. Tabari 1 shows that the model has a moderate performance 
accuracy. However, the Turc and Makkink models have similar performance levels, 
whereas the Jensen and Haise models are less accurate than the models above. Finally, the 
Caprio model ranks last, which demonstrates the least accurate ETc estimates, which are 
further from the actual measurements obtained by the smart field weighing lysimeter.

Figure 11. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model in
the 2020 season.

The scatterplots presented in Figure 14 demonstrate the performance of the different
temperature-based models during the 2021 soybean cropping season. The model perfor-
mances are ranked in the following order from best to worst: Hargreaves and Allen >
Hagreaves–Saamani > Hamon > Trajkovic = Ravazzani = Droogers and Allen > Papadakis
= Schendel > Ivanov. Among these models, the Hargreaves and Allen model performs best,
with ETc estimates closer to the ETa values. This is followed closely by the Hargreaves–
Samani and Hamon models, with less accurate estimates, although they are still better
than the models below them. The Trajkovic, Ravazzani and Droogers, and Allen models
have similar performances, showing moderate ETc estimation accuracy, whereas the Pa-
padakis and Schendel models also exhibit comparable but less accurate ETc estimations.
The Ivanov model ranks the lowest on the hierarchy, with the farthest deviation from the
ETa measurements.
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Figure 12. Scatterplots between radiation-based ETc models and lysimeter-based ETa models in the 
2021 season.

A total of nine aerodynamic-based models used to estimate ETc during the 2021 crop-
ping season were compared against the ETa measured at the field level using a smart field 
weighing lysimeter. Linear regression analysis was performed across all the models, as 
demonstrated in Figure 13, with their corresponding R2 values reported. The comparison 
of the estimated values with the actual field-measured values revealed that these models 
were ranked from best to worst in the following order: Penman > Meyer > Dalton > Rower 
> WMO > Brockamp–Wenner > Tabert > Albrecht > Mahringer. In this hierarchy, the Pen-
man model is the most accurate model, as its estimates are closely aligned with the actual 
field measurements. This is followed by Meyer’s model, which has a good performance, 
although it is slightly less accurate than the Penman model. The Brockamp–Wenner and 
Tabert models show similar performances, with low accuracy. At the bottom of the hier-
archy is the Mahringer model, which yields the least accurate ETc estimates.

Figure 12. Scatterplots between radiation-based ETc models and lysimeter-based ETa models in the
2021 season.
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Figure 13. Scatterplots between aerodynamic-based model ETc and lysimeter-based ETa in the 2021 
season.

The scatterplots presented in Figure 14 demonstrate the performance of the different 
temperature-based models during the 2021 soybean cropping season. The model perfor-
mances are ranked in the following order from best to worst: Hargreaves and Allen > 
Hagreaves–Saamani > Hamon > Trajkovic = Ravazzani = Droogers and Allen > Papadakis 
= Schendel > Ivanov. Among these models, the Hargreaves and Allen model performs 
best, with ETc estimates closer to the ETa values. This is followed closely by the Har-
greaves–Samani and Hamon models, with less accurate estimates, although they are still 
better than the models below them. The Trajkovic, Ravazzani and Droogers, and Allen 
models have similar performances, showing moderate ETc estimation accuracy, whereas 
the Papadakis and Schendel models also exhibit comparable but less accurate ETc estima-
tions. The Ivanov model ranks the lowest on the hierarchy, with the farthest deviation 
from the ETa measurements.

Figure 13. Scatterplots between aerodynamic-based model ETc and lysimeter-based ETa in the
2021 season.
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Figure 14. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model 
in the 2021 season.

The Penman–Monteith model is a stand-alone model that combines radiation tem-
perature and aerodynamic models. As a result, the comparison of this model’s estimation 
of ETc across different cropping seasons compared with the lysimeter ETa were separated 
from the other groups and are presented in Figure 15. The plots revealed that during the 
2019 cropping season, the model estimated ETc the best, followed by the 2019–2020 maize 
season, with R2 values of 0.77 and 0.72, respectively. During the 2020 winter barley season, 
the accuracy although good, decreased with an R2 value of 0.7, whereas the lowest perfor-
mance occurred during the 2021 soybean cropping season, with an R2 value of 0.67, which 
is still moderate. However, when the Penman–Monteith model was compared with the 
other models in each category’s highest-performing models, this model outperformed all 
the other models in each season, as the R2 values in 2019 ranged between 0.73 and 0.75, 
with the Penman–Monteith model resulting in an R2 value of 0.77. For the 2019–2020 sea-
son, the R2 range was between 0.48 and 0.64, whereas the Penman–Monteith method re-
sulted in an R2 value of 0.72. In the 2020 barley season, the R2 values of the other models 
ranged between 0.58 and 0.65, whereas the Penman–Monteith model resulted in an R2 
value of 0.7. During the final soybean cropping season, the range of R2 values among the 

Figure 14. Scatterplots between the temperature-based ETc model and lysimeter-based ETa model in
the 2021 season.

The Penman–Monteith model is a stand-alone model that combines radiation temper-
ature and aerodynamic models. As a result, the comparison of this model’s estimation of
ETc across different cropping seasons compared with the lysimeter ETa were separated
from the other groups and are presented in Figure 15. The plots revealed that during
the 2019 cropping season, the model estimated ETc the best, followed by the 2019–2020
maize season, with R2 values of 0.77 and 0.72, respectively. During the 2020 winter barley
season, the accuracy although good, decreased with an R2 value of 0.7, whereas the lowest
performance occurred during the 2021 soybean cropping season, with an R2 value of 0.67,
which is still moderate. However, when the Penman–Monteith model was compared with
the other models in each category’s highest-performing models, this model outperformed
all the other models in each season, as the R2 values in 2019 ranged between 0.73 and
0.75, with the Penman–Monteith model resulting in an R2 value of 0.77. For the 2019–2020
season, the R2 range was between 0.48 and 0.64, whereas the Penman–Monteith method
resulted in an R2 value of 0.72. In the 2020 barley season, the R2 values of the other models
ranged between 0.58 and 0.65, whereas the Penman–Monteith model resulted in an R2

value of 0.7. During the final soybean cropping season, the range of R2 values among
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the models was between 0.24 and 0.61 among the best-performing models in each group,
whereas the Penman–Monteith method resulted in an R2 value of 0.67.
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models was between 0.24 and 0.61 among the best-performing models in each group, 
whereas the Penman‒Monteith method resulted in an R2 value of 0.67.

Figure 15. Scatterplots between combination-based model ETc and lysimeter-based ETa from the 
2019–2021 seasons, where (a) is the 2019 season, (b) is the 2019-2020 season, (c) represent the 2020 
season while (d) is the 2021 cropping season.

3.3. Evaluation Metrics Based on Comparisons Between Model-Estimated ETc and 
Lysimeter-Measured ETa

The statistical metrics output when 30 micrometeorological model estimates for ETc 
were compared with those for ETa for the four seasons are presented in Figures 16–19. 
The green circles represent the bias, while the blue filled boxes resemble the MAE. The 
purple, pyramid-shaped marks represent the correlation coefficient (r) values, and the or-
ange stars represent the RMSE values. Figures 16–19 demonstrate some degree of overes-
timation and underestimation. These findings in certain seasons can be attributed to their 
sensitivity to dominant climatic factors. For example, radiation-based models tend to 
overestimate ETc during seasons with high solar radiation due to their reliance on tem-
perature and solar inputs [55,56]. On the contrary, aerodynamic models may underper-
form in conditions with low wind speeds, as they are heavily influenced by air movement 
[57]. Seasonal variability in rainfall, humidity, and crop growth stages also affect model 
accuracy. For instance, during dry winter seasons, models that inadequately account for 
soil moisture content may underestimate ETc. Understanding these limitations empha-
sizes the importance of directing model selection towards seasonal climatic conditions 
and crop water requirements.

Figure 15. Scatterplots between combination-based model ETc and lysimeter-based ETa from the
2019–2021 seasons, where (a) is the 2019 season, (b) is the 2019–2020 season, (c) represent the 2020
season while (d) is the 2021 cropping season.

3.3. Evaluation Metrics Based on Comparisons Between Model-Estimated ETc and
Lysimeter-Measured ETa

The statistical metrics output when 30 micrometeorological model estimates for ETc
were compared with those for ETa for the four seasons are presented in Figures 16–19. The
green circles represent the bias, while the blue filled boxes resemble the MAE. The purple,
pyramid-shaped marks represent the correlation coefficient (r) values, and the orange stars
represent the RMSE values. Figures 16–19 demonstrate some degree of overestimation and
underestimation. These findings in certain seasons can be attributed to their sensitivity to
dominant climatic factors. For example, radiation-based models tend to overestimate ETc
during seasons with high solar radiation due to their reliance on temperature and solar
inputs [55,56]. On the contrary, aerodynamic models may underperform in conditions with
low wind speeds, as they are heavily influenced by air movement [57]. Seasonal variability
in rainfall, humidity, and crop growth stages also affect model accuracy. For instance,
during dry winter seasons, models that inadequately account for soil moisture content may
underestimate ETc. Understanding these limitations emphasizes the importance of directing
model selection towards seasonal climatic conditions and crop water requirements.

3.3.1. Evaluation Metrics for the 2019 Cropping Season Estimates

The statistical metrics used to evaluate the different models during the 2019 winter
barley cropping season are shown in Figure 16. During this season, the Penman–Monteith
model showed a bias value just above zero, indicating a slight overestimation of ETc. The
Jansen and Haise models show similar biases, whereas the Tabari 1 model shows a negative
bias below 0, indicating an underestimation of ETc, whereas Caprio and Tabari 2 show the
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most negative bias values, which are related to an underestimation of ETc. The Hansen
model shows the most positive bias, approaching 6, demonstrating ETc over-estimation.
The errors, which include the MAEs and RMSEs, appear to be minimal for the Penman–
Monteith, Meyer, Dalton, and calibrated Christiansen models. There are good correlations
in some model estimates of ETc compared with those of the lysimeter ETa, as demonstrated
by the high r values. These models include the Penman–Monteith, Meyer, Papadakis,
Trajkovic, and Makkink models, with the Penman–Monteith model achieving the highest
correlations with the measured ETa values. Although the Penman–Monteith shows good
correlations, other models such as Penman, Papadakis, Meyer, and Dalton also demonstrate
good correlations, suggesting that they can be used as an alternative under such seasonal
and crop conditions. The overestimation and underestimation observed could be linked
to the inherent parametrization of the evaluated models and their sensitivity to seasonal
meteorological conditions. For example, the Penman–Monteith model, with a bias slightly
above zero, slightly overestimates ETc. This overestimation can be attributed to its sensitiv-
ity to solar radiation and temperature, which might be higher than actual winter conditions
warrant. Similarly, the Hansen model, which shows the most positive bias (approaching
6), overestimates ETc likely due to an over-reliance on temperature or an amplification
of the limited energy available in winter. On the other hand, models such as Tabari 1,
Caprio, and Tabari 2 exhibit negative biases, indicating an underestimation of ETc. This
underperformance could emerge from the simplified model structures that inadequately
capture the reduced energy inputs and complex microclimatic conditions associated with
the winter season. As a result, these models may lack mechanisms to account for localized
variations in net radiation or soil heat flux, leading to lower ETc estimates.
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Figure 19. Statistical metrics for the 2021 model ETa against the lysimeter ETa evaluation.

3.3.2. Evaluation Metrics for the 2019–2020 Cropping Season Estimates

During the 2019–2020 maize cropping season, the statistical metrics shown in Figure 17
demonstrated minimal errors, including Irmak Rs, Penman, Hansen, and Penman–
Monteith. Higher correlations were achieved by the Penman–Monteith, Irmak Rs, and the
Hargreaves and Samani models. In terms of bias, the Irmak Rs and the Penman–Monteith
models appear near zero, which shows minimal differences between the estimated ETc and
measured ETa values. These findings suggest that, in situations where the applicability
of the Penman–Monteith is not practical possibly due to limited data availability, models
such as the Irmak Rs, Meyer, and Papadakis can be used as alternatives. The model over-
performance may emerge from the parameterization and calibration to the local climatic
data of the models, while the underperformance in other seasons may be due to limited
consideration of certain meteorological variables such as wind speed or vapor pressure
deficits, which become more critical in seasons with higher variability, such as summer. For
instance, models like Hargreaves and Samani might have underperformed in seasons where
factors beyond temperature, such as solar radiation or soil moisture limitations, play a more
significant role. Simpler models may excel under stable and predictable weather patterns.

3.3.3. Evaluation Metrics for the 2020 Cropping Season Estimates

The statistical metrics for the 2020 winter barely cropping season are shown in
Figure 18, with bias, MAE, RMSE, and r values. The best-performing models based on
these metrics are the Penman–Monteith model; Meyer, Jensen and Haise; and Hargreaves
and Allen, with minimal errors, bias, and high correlations. The Penman–Monteith method
appears to have the least errors with high correlation coefficient values among all the
models. The Penman–Monteith model consistently outperformed the others due to its
consideration of multiple meteorological variables. This versatility makes it highly reliable
in capturing the reduced ETc dynamics during winter when energy inputs are lower. The
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Meyer and Jensen and Haise models also performed well, likely because they incorporate
solar radiation and temperature, which remain the dominant factors even in colder seasons.
The underestimation of the other models could be attributed to their reliance on simplified
assumptions or exclusion of key meteorological variables relevant during winter. For
example, temperature-based models like Hargreaves and Samani might overestimate ET
on sunny winter days due to their high sensitivity to temperature without adequately
accounting for the reduced vapor pressure deficit and aerodynamic resistance. Similarly,
empirical models calibrated for summer conditions may not translate well to winter condi-
tions, leading to higher errors. Models such as Trajkovic, Priestley–Taylor, Irmak Rs, Irmak
Rn and Hargreaves and Samani, Hargreaves and Allen, and the Meyer model demonstrated
good performance, which implies that they can be used as alternative models.

3.3.4. Evaluation Metrics of the 2021 Cropping Season Estimates

A comparison between ETc and ETa during the 2021 season, when soybean was
the crop of the season, based on statistical metrics is shown in Figure 19. The statistics
demonstrate that the Penman–Monteith model was the best-performing model across
the season, with the lowest RMSE and MAE values. A slightly negative bias indicates
minimal underestimation of ETc values with a moderate value of r, making it the most
accurate among the compared models. The Priestley–Taylor, Hargreaves, and Allen models
demonstrate good performances, with low errors and good correlations. However, the
Hansen model has the highest RMSE and MAE, with a substantial positive bias and a weak
r value, which indicates its poor estimation capability. The positive bias of approximately
11.63 is significantly greater than that predicted by the Hansen model, indicating that it
consistently predicts values much higher than the actual measured values. The model
might overestimate the influence of variables such as solar radiation or temperature, which
are key drivers of evapotranspiration. If actual ETa is limited by factors like low soil
moisture or high relative humidity, the model would still predict higher values based on its
assumptions. Although the Penman–Monteith model has good performance, alternative
models such as the Hargreaves and Samani, Dalton, Irmark Rs, Irmark Rn, and Makkink
also demonstrate good performance during this season. This can be applied if similar
environmental settings lack the full datasets to complete the Penman–Monteith model.

3.4. Model Ranking Across Different Seasons Based on Metric Scores

The overall rankings of the models across different seasons are presented in Figure 20,
which shows the performance rankings of the various micrometeorological models in
estimating ETc when they are compared with the measured field ETa. According to the
rankings, the Penman–Monteith model stands out as the top-performing model, consis-
tently ranking high in three seasons, with ranks of 1, 1, 4, and 1 in the 2019, 2019–2020,
2020 and 2021 seasons, respectively, and the lowest average rank of 1.75. Models such as
Irmak Rs and Jensen and Haise show variable performance; for example, Irmak Rs excels
in seasons 2 and 4 but falls significantly in seasons 1 and 3, which results in an average
rank score of 8.75. The Jensen and Haise model performs exceptionally well in Seasons
1 and 3 but decreases in Season 4, which leads to an average rank of 11.75. The Meyer,
calibrated Christiansen, and Makkink models demonstrate strong performance but have
occasional dips. Moreover, models such as the Hansen and Tabert models consistently
rank lower across all seasons, with average rank scores of 23.75 and 29, respectively, which
indicate poor performance. The Hargreaves–Samani and Dalton models maintain relatively
good ranks, although they experience occasional variability. The Schendel and Ivanov
models exhibit stable performance, with moderate ranks in each season. The Trajkovic,
Papadakis, and Brockamp–Wenner models perform well in some seasons, although they
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are inconsistent. The World Meteorological Organization, Droogers and Allen, and Turc
models have consistently lower ranks, which indicates less-effective performance across
the seasons.
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3.5. Rankings of Micrometeorological Models

The rankings of the models for estimating ETc in comparison with ETa measured
by a lysimeter reveal that the Penman–Monteith model is the most accurate, followed by
Irmak Rs and Schendel, which also provide close estimates (Figure 21). Models such as
Dalton, Hargreaves–Samani, and Meyer perform reasonably well, whereas mid-ranked
models such as Makkink and Jensen and Haise show moderate accuracy. The lower-ranked
models, including the Irmak Rn, Hamon, and traditional Penman models, demonstrate
significant discrepancies. The least-accurate models, such as the World Meteorological
Organization model and the Tabert model, exhibit substantial deviations from the actual ETa
values, indicating less reliability in estimating ETc. Most models show seasonal variability
in performance; although they do not reflect ETc accurately in some seasons, they are
still usable in seasons where their data requirements are favorable. This is important in
areas where the applicability of the Penman–Monteith model is not practical due to input
data constraints.
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strate significant discrepancies. The least-accurate models, such as the World Meteorolog-
ical Organization model and the Tabert model, exhibit substantial deviations from the 
actual ETa values, indicating less reliability in estimating ETc. Most models show seasonal 
variability in performance; although they do not reflect ETc accurately in some seasons, 
they are still usable in seasons where their data requirements are favorable. This is im-
portant in areas where the applicability of the Penman–Monteith model is not practical 
due to input data constraints.

Figure 21. Model rankings according to their respective groups.

3.6. Comparison Between Model Estimates and Measured Lysimeter Seasonal ETa

Table 7 lists the ETa and ETc values measured by the lysimeter and estimated by the 
top-performing models for each class of ETo model. The lysimeter values here are used as 
a benchmark for barley, maize, and soybean crops against the ETc models (Penman‒Mon-
teith, Schendel, Dalton, and Irmak Rs). The comparison in terms of which model estimates 
ETc with values closer to the lysimeter ETa measurements on the ground reveals that the 
Penman‒Monteith model provides ETc estimates closer to the lysimeter ETa measure-
ments for barley in both seasons and the maize crop, whereas it shows an over-estimated 
ETc in the soybean cropping season. On the other hand, the Schendel and Dalton models 
have greater differences between the modeled ETc and measured ETa. The Irmak Rs 
model provides estimates of ETc that are reasonably closer to the lysimeter-measured ETa 
values for some crops and seasons, rendering them reliable under some conditions. Alt-
hough the Penman–Montieth model provides estimates closer to those measured by the 
lysimeter, its applicability can be limited by its high volume of data required. In data-
scarce environments, alternative models such as Irmark can be used for favorable seasons 
when it performs better.

Table 7. Comparative analysis of different models for estimating ETc across seasons.

Season 1 Season 2 Season 3 Season 4
Model Group Model/Measurement ETc Barley (mm) ETc Maize (mm) ETc Barley (mm) ETc Soybean (mm)

Field data Lysimeter ETa 162.83 304.64 422.83 494.19
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3.6. Comparison Between Model Estimates and Measured Lysimeter Seasonal ETa

Table 7 lists the ETa and ETc values measured by the lysimeter and estimated by the
top-performing models for each class of ETo model. The lysimeter values here are used as a
benchmark for barley, maize, and soybean crops against the ETc models (Penman–Monteith,
Schendel, Dalton, and Irmak Rs). The comparison in terms of which model estimates ETc
with values closer to the lysimeter ETa measurements on the ground reveals that the
Penman–Monteith model provides ETc estimates closer to the lysimeter ETa measurements
for barley in both seasons and the maize crop, whereas it shows an over-estimated ETc
in the soybean cropping season. On the other hand, the Schendel and Dalton models
have greater differences between the modeled ETc and measured ETa. The Irmak Rs
model provides estimates of ETc that are reasonably closer to the lysimeter-measured
ETa values for some crops and seasons, rendering them reliable under some conditions.
Although the Penman–Montieth model provides estimates closer to those measured by the
lysimeter, its applicability can be limited by its high volume of data required. In data-scarce
environments, alternative models such as Irmark can be used for favorable seasons when it
performs better.

Table 7. Comparative analysis of different models for estimating ETc across seasons.

Season 1 Season 2 Season 3 Season 4

Model Group Model/Measurement ETc Barley (mm) ETc Maize (mm) ETc Barley (mm) ETc Soybean (mm)

Field data Lysimeter ETa 162.83 304.64 422.83 494.19
Combination Penman–Monteith 178.33 323.63 455.27 458.09
Temperature Schendel 118.68 372.23 365.9 398.5
Aerodynamic Dalton 124.53 402.86 375.48 390.26

Radiation Irmak Rs 140.81 304.49 384.13 446.89

3.7. Analysis of Meteorological Variables’ Impact on Estimated ETc by Different Models

A detailed analysis of meteorological influence on ETc estimation across different
seasons from different modes is depicted in Figure 22. The figure shows an average
Pearson correlation coefficient from four cropping seasons relating estimated ETc with
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solar radiation, temperature, relative humidity, wind speed, and dew point. Across the
radiation models, solar radiation is the primary driver of ETc; however, during the winter
season, this variable is normally low. As a result, the influence of solar radiation may be
reduced, although it still dominates the process of ETc as radiation-based model input.
On the other hand, during winter, temperatures are also normally low, and the influence
of temperature might be reduced as the vapor pressure deficit decreases. Solar radiation
and temperature appear to be the dominant factors influencing ETc across most models,
with solar radiation exhibiting the strongest correlation. This is evident in energy-based
models like Priestley–Taylor and Penman–Monteith. Temperature also has a significant
impact, especially on temperature-driven models like Hargreaves and Allen, where it
affects the vapor pressure deficit and ET potential. Relative humidity and wind speed
show moderate to weak correlations, while wind speed played a more prominent role
in aerodynamic models and relative humidity, inversely influencing ETc by reducing the
vapor pressure deficit. Dew point has the weakest correlation, reflecting its limited role as
a direct driver of ETc. In winter, reduced solar radiation and temperature diminish ETc,
making energy-based models more reliable, while in summer, higher solar radiation and
temperature amplify ETc, highlighting the importance of these variables.
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Temperature Schendel 118.68 372.23 365.9 398.5
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3.7. Analysis of Meteorological Variables’ Impact on Estimated ETc by Different Models

A detailed analysis of meteorological influence on ETc estimation across different 
seasons from different modes is depicted in Figure 22. The figure shows an average Pear-
son correlation coefficient from four cropping seasons relating estimated ETc with solar 
radiation, temperature, relative humidity, wind speed, and dew point. Across the radia-
tion models, solar radiation is the primary driver of ETc; however, during the winter sea-
son, this variable is normally low. As a result, the influence of solar radiation may be re-
duced, although it still dominates the process of ETc as radiation-based model input. On 
the other hand, during winter, temperatures are also normally low, and the influence of 
temperature might be reduced as the vapor pressure deficit decreases. Solar radiation and 
temperature appear to be the dominant factors influencing ETc across most models, with 
solar radiation exhibiting the strongest correlation. This is evident in energy-based models 
like Priestley–Taylor and Penman–Monteith. Temperature also has a significant impact, 
especially on temperature-driven models like Hargreaves and Allen, where it affects the 
vapor pressure deficit and ET potential. Relative humidity and wind speed show moder-
ate to weak correlations, while wind speed played a more prominent role in aerodynamic 
models and relative humidity, inversely influencing ETc by reducing the vapor pressure 
deficit. Dew point has the weakest correlation, reflecting its limited role as a direct driver 
of ETc. In winter, reduced solar radiation and temperature diminish ETc, making energy-
based models more reliable, while in summer, higher solar radiation and temperature am-
plify ETc, highlighting the importance of these variables.

Figure 22. Pearson correlation coefficients between estimated ETc and meteorological variables 
across different models (average of four seasons).
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4. Discussion
The importance of saving water has long been emphasized to support and achieve

the sustainable development goals set by the United Nations. In agriculture, more water
is used and wasted on irrigation, which requires immediate intervention by introducing
accurate and timely water applications. The only practical approach to solve this problem
is to accurately understand how much water is lost after each irrigation. To achieve this
with limited direct measurements of crop water use devices, accurate models to quantify
ET are needed. This study evaluated 30 micrometeorological models to estimate ETc, which
were compared with ETa values from a smart field weighing lysimeter. This was necessary
in this study because none of these models were developed in South Africa, and they
have mostly been used for estimating ETo. For most applications in South Africa, these
models have been evaluated using the standard Food and Agriculture Organization (FAO)
Penman–Monteith model. None of the evaluations have been performed using a smart
field lysimeter or data with high accuracy for determining ETc.

Moreover, the determination of ETc is based on integrating Kc values, which are crop-
specific to ETo, and adjusting Kc values is important to avoid errors in irrigation timing,
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which can compromise crop yields. Ko et al. [58] noted that variations in temperature,
humidity, and crop development can significantly impact Kc values. The study findings on
the determination of local Kc values compared with the published Kc values by the FAO
for barley, maize, and soybean demonstrated disparities in some crop stages, emphasizing
the fact that Kc values can vary from one region to another, which could induce errors
in ETc, resulting in the water being used not matching the required amounts. Previous
studies, such as those by Tarantino and Onofrii [59] and Doorenbos and William [60],
emphasized that there are mostly discrepancies between locally derived Kc values and
those published by the FAO when experiments are conducted, which supports the notion
of crop locality-specific adjustments of Kc values. In this study, the initial Kc values, which
ranged from 0.32 to 0.46 during the germination stages, indicated that these crops used only
32% to 46% of the water required by a reference crop. This can be attributed to the small
leaf surface area and significant soil water evaporation during the early growth stages. As
the crops advanced to the midseason stages, their demand for water increased, which was
reflected by their Kc values ranging from 1.12 to 1.18. This peak can be attributed to the
increase in leaf surface area and transpiration rates, which demonstrated the critical crop
growth period that necessitated additional water between 12% and 18%. Moreover, as
these crops matured and approached senescence stages, the Kc values decreased to values
between 0.22 and 0.47, which could have been a sign of a reduction in water demand as the
crops were preparing for harvest and naturally drying out.

While the main objective of this study was to evaluate several ETc estimation models
following the successful determination of locally derived Kc values, the results demon-
strated variable performance of different models, revealing instances of both overestima-
tion and underestimation of ETc across all seasons, reflected in the regression scatterplots
and the bias values. The variability in performance has been reported in the study by
Bakhtiari et al. [61], who used a lysimeter to evaluate six models in arid environments
in Iran. This variability suggests several critical insights into each model’s performance,
reliability, and applicability under different climatic and farm management conditions [2].
The occurrence of both overestimation and underestimation of ETc indicates that most
models cannot consistently provide accurate ETc estimates for each season with different
climate conditions. This variability can be attributed to the differences in the structure of
different models and the specific climatic parameters they incorporate when estimating
ETc [62,63]. Models such as the Penman–Monteith model require more meteorological data,
which are not always available in most regions, particularly in developing countries with
limited stations [23]. However, in the study area, the model might have performed well
because data were available but might not yield the same results when data are scarce
or less accurate. A study conducted by Córdova et al. [64] supports such suggestions,
observing that the accuracy of ETo calculations based on the Penman–Monteith model
decreased as the number of missing variables increased, with significant overestimations
observed when key parameters such as solar radiation were inadequately represented.
This explains why other models have been developed that require limited data [65,66].
However, ET is not a single variable component; it has variables which change, requiring
models that can capture different elements that contribute to ETc. The overestimation of
ETc in some models suggests that these models might be overly sensitive to certain climatic
inputs, leading to higher water use predictions than those experienced in the field [67].
For example, radiation-based models that estimate ETc based on solar radiation or tem-
perature might overestimate ETc in seasons where these factors are particularly intense.
This suggests that models sensitive to specific climatic inputs may yield higher water
use predictions than what is observed in practice, leading to inefficient water use, over
irrigation, increased water waste, and potential negative impacts on crop health and soil
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conditions. On the other hand, the underestimation of ETc by some models suggests that
they might not fully capture the actual crop water requirements under certain conditions.
This could be due to models underestimating factors such as wind speed, humidity, or
specific crop stress responses [68]. Underestimation can lead to under-irrigation, stressing
crops and potentially reducing yields.

The seasonal variability in model performance further emphasizes the complexity
of accurately predicting ETc. Each season presents different climatic conditions, such as
varying temperatures, rainfall patterns, irrigation amounts, and sunshine hours, which can
impact model accuracy [69–71]. As a result, the study findings demonstrated that models
that perform well in one season might not necessarily do so in another, indicating that
their calibration might be season-specific or that they require adjustments for different
times of the year. For example, while the Penman–Monteith model demonstrated good
performance, as evidenced by the ranking, the Irmark Rs model demonstrated good
performance, mostly in the summer cropping season, whereas it demonstrated weak
performance for winter crops. As a result, among the 30 models evaluated, the Penman–
Monteith model emerged as the most accurate, demonstrating consistently high ranks
across all the seasons. The appearance of this model in the first rank indicates that the
Penman–Monteith model is highly reliable, regardless of seasonal variations. The accuracy
of this model has been highlighted in several studies, and it is recognized as the standard
model for determining ETo as well as ETc [72,73]. On the other hand, other models,
such as the Irmak Rs and Jensen and Haise radiation-based models, exhibited variable
performance, suggesting that while they can be effective, their reliability may be season
dependent. The Meyer, calibrated Christiansen, and Makkink models also displayed strong
overall performance, but with occasional dips, indicating that while these models can
provide good results, they may be susceptible to specific seasonal factors that affect their
accuracy. At the lower end of the evaluation spectrum, models such as Hansen and Tabert
consistently ranked lower across all seasons, indicating that these models are less reliable
and may not be suitable for applications requiring high accuracy. The effectiveness of
the Penman–Monteith method across diverse climatic settings has been highlighted in
several studies [74,75]. Although effective in representing actual field crop water use, the
Penman–Monteith model overestimated ET in the current study. The superiority of the
FAO-56 Penman–Monteith model was observed in the study by López-Urrea et al. [76],
who evaluated ETo models using a lysimeter in a semi-arid environment. Babaee et al. [9]
also used the lysimeter approach to evaluate different methods to estimate ETo, finding that
the Penman–Monteith model performs best compared with the models they evaluated in a
semi-arid region. The over performance or underperformance of specific models in certain
seasons can be attributed to their sensitivity to dominant climatic factors. For instance,
radiation-based models tend to overestimate ETc during seasons with high solar radiation
due to their reliance on temperature and solar inputs. Conversely, aerodynamic models
may underperform in conditions with low wind speeds, as they are heavily influenced
by air movement. Seasonal variability in rainfall, humidity, and crop growth stages also
affect model accuracy. For example, during dry winter seasons, models that inadequately
account for soil moisture content may underestimate ETc.

5. Conclusions
This study demonstrated the critical need for site-specific validation and calibration of

micrometeorological ET models in agricultural landscapes to improve their reliability in
supporting irrigation scheduling. The model performance varied across different seasons
and crop types. This emphasizes that applying globally developed models without local
adjustments can introduce significant errors in irrigation schedules while potentially im-
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pacting crop yields, water availability, and soil health. The findings highlight the advantage
of integrating comprehensive meteorological data, as demonstrated by the accuracy of the
Penman–Monteith model across all seasons, whereas simpler models such as Irmak Rs
can offer practical alternatives when full meteorological data are unavailable. However,
using the Penman–Monteith model can challenge regions with weather stations that can
measure all the model input variables due to its high data input requirements, as these data
might not always be available in some areas. Limitations such as the scarcity of direct ETa
measurement tools and limited weather station coverage reduced the spatial applicability
of the results. To address this, future research should expand ETa measurement networks
across diverse agro-ecological zones in South Africa and refine region-specific crop coef-
ficients, while they should also consider integrating remote sensing with ground-based
measurements for improved ETc estimation. This could include selecting appropriate
remote sensing platforms such as satellites and drones for capturing vegetation indices
and surface temperature data, complemented by ground-based measurements from eddy
covariance towers, lysimeters, and soil moisture sensors for calibration. The temporal
and spatial scaling methods such as downscaling of remote sensing data and data fusion
techniques such as machine learning can improve the accuracy of ETc. Expanding the ETa
measurement network could involve geospatially targeting agro-ecologically diverse zones
by using GIS tools to identify critical sites for ground stations and employing automated
systems for real-time data collection. A phased approach should be adopted, beginning
with pilot studies for model development, which must be followed by expansion, network
integration, and regional scaling, ensuring the data are validated and refined through
continuous monitoring. These approaches can offer reliable ETa estimates that cater to
varying local conditions across agro-ecological zones.
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