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Abstract
The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies 
and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic 
Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South 
Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, 
intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the 
AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predic-
tive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved 
similar results (R2 = 0.38, RMSE% = 31%, MAE = 6.87) and (R2 = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar 
Vegetation Index (RVI) performed marginally (1%) better (R2 = 0.39, RMSE = 30% and MAE = 6.77) compared to the other 
variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 
20% (R2 = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, 
 VHcor  and  VVcor order of importance. These findings (R2 values of 0.35–0.39) suggest that SAR data alone does not fully 
capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. 
Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models 
can be enhanced with the incorporation of texture matrices.
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1 Introduction

The savannah ecosystem is one of the many vital biomes 
that exist on Earth. It is characterised by a rich biodiver-
sity dominated by grasslands co-existing with patches of 

woodlands and shrublands [1, 2]. The grass layer serves as 
a feeding resource for grazing animals, while the woody 
layer serves as a feeding stock for browsing animals. From 
a climate perspective, the savannah grass and woody layers 
account for an estimated 25% of total gross primary produc-
tion (GPP), rendering this ecosystem a vital sink of carbon 
[3]. They help regulate the Earth’s climate and maintain a 
balance of greenhouse gases in the atmosphere.

The woody vegetation layer is known for storing large 
quantities of carbon; however, the sustainability of this 
capability is threatened by extreme weather conditions 
such as drought, heatwaves, and increased fire activity 
[4]. Studies have uncovered a proliferation of mortality in 
woody plants, which is associated with extreme weather 
events [5], fire [6, 7], and wildlife interactions [8, 9]. In 
the face of climate change, the grass layer, due to its bio-
logical configuration, is emerging as a sustainable terres-
trial carbon sink [4]. The grass layer is resilient to various 
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disturbances, including grazing, fire activity, animal stam-
pedes, and extreme weather conditions [10]. This implies 
that the grass layer can sustainably maintain a relatively 
stable carbon stock over time, an attribute that is vital as 
we approach the era of above-normal climate change.

As such, the quantification and monitoring of above-
ground grass carbon stock (AGGCS) will inform emission 
reduction policies and aid in minimising the risks associ-
ated with future climate change. This will align with the 
urgency emphasised in Sustainable Development Goal 13, 
which calls for immediate action to address climate change 
and lessen its repercussions. A further benefit of quantify-
ing AGGCS is the generation of baseline information for 
scientific research and environmental management. The 
Paris Agreement is one environmental management initia-
tive mandating countries to disclose their greenhouse gas 
emissions along with the reduction efforts [11]. In addition, 
statistics on grass carbon stock are essential for meeting 
reporting demands and ensuring transparency and account-
ability in climate actions taken by multiple nations.

A myriad of grass carbon stock quantification missions 
rely on space-borne sensors due to their ability to cap-
ture data over large geographical and temporal footprints 
[12–17]. Primarily, optical sensors have been in use for 
decades, regardless of their limitations. For example, opti-
cal sensors rely on the visible and infrared bands, which 
are obstructed by clouds and smoke, and their interaction is 
limited to the canopy structure of the vegetation [18]. Con-
sequently, optical sensors are unable to ensure a consistent 
distribution of data throughout multiple seasons.

While SAR data has been in existence for decades, its 
application has been hindered by its price tag [18]. Senti-
nel-1 offers new opportunities for quantifying and moni-
toring above-ground carbon stock beyond the visible range 
of the electromagnetic spectrum, at no cost, and across 
smoky, hazy and overcast environmental conditions. Sen-
tinel-1, constructed by the European Space Agency (ESA), 
is a Synthetic Aperture Radar (SAR) satellite mission [19]. 
The mission comprises a duo of identical sensors, namely 
Sentinel-1A and Sentinel-1B. These sensors can capture 
data under several weather conditions, an attribute that 
ensures a consistent flow of data, allowing for continuous 
quantification of carbon stock. Furthermore, Sentinel-1 can 
penetrate beyond the canopy structure of the vegetation, 
making it particularly valuable for capturing intra-canopy 
properties of vegetation [20]. SAR data affords several met-
rics which can be explored for quantifying above-ground 
carbon stock, some of which have been documented to be 
optimal for forests [21–23] and agricultural fields [24–27]. 
Studies showed that incorporating texture matrix with SAR 
data could improve biomass estimation [28–30]. However, 
fewer studies coupled SAR-derived parameters from senti-
nel-1 with texture matrix for estimating above-ground grass 

carbon stocks, particularly in savannah ecosystems. Employ-
ing a tree-based learning algorithm, the aim of this research 
is to identify the most effective SAR parameters, including 
texture for accurately estimating above-ground grass carbon 
stock in savannah ecosystems.

2  Materials and Methods

2.1  Test Site Description

Kruger National Park (KNP) is located in north-eastern 
South Africa, within the savannah ecosystem (Fig. 1). The 
park, particularly the southern part (24°97' to 25°45' S and 
31°00' to 32°01' E), which is bounded by Sabi Park in the 
north, Marloth Park in the south, and Bushbuckridge in the 
west, served as an experimental site for this research. Estab-
lished in 1926, the KNP is one of Africa’s most renowned 
and iconic wildlife reserves and is approximately 20,000 
 km2 in extent. The KNP has a subtropical climate with warm 
summers and moderate winters. The summer months, typi-
cally from October to March, bring higher temperatures and 
rainfall to the region. The average annual rainfall in the park 
ranges from 500 to 700 mm, mostly occurring during the 
summer months. The winters in this area are brief and dry 
[31] with an average annual temperature of 21 °C and maxi-
mum temperature of 25 °C [32]. The vegetation comprises 
dense woodlands and grassy plains [1], the latter being dom-
inated by C4 type grass species [33]. The vegetation types 
present in the area include clay thorn bush, mixed bushveld, 
and sweet and sour lowveld bushveld [34]. The grass layer 
comprises various species such as Themeda triandra, Pani-
cum maximum, Cymbopogon spp., and Chlis gayana. The 
geological substrate consists of granite and gabbro.

2.2  Field Above‑Ground Grass Carbon Stock 
Sampling

A grass biomass sampling campaign was conducted from 
7–14 February 2020 (Fig. 2). With the assistance of KNP’s 
veld condition assessment (VCA) map [35], we randomly 
selected 25 sites from the VCA map and clustered 5 plots 
within/around these sites. This was done because the study 
site was geographically dispersed with a difficult terrain. 
The clustering method aids in minimising the considerable 
distances (3–12 km) between the VCA sites [36]. Using a 
Garmin Montana 650 Global Positioning System (GPS), 
we navigated to these centres of the selected sites and 
demarcated plots of 10 m × 10 m (0.01 ha) at each site. 
This plot size was chosen to ensure consistency with the 
spatial resolution of Sentinel-1. A total of 94 plots were 
sampled. Field measurements involved randomly throwing 
a quadrat of 0.5 m × 0.5 m twice within the demarcated 
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100  m2 plot. All the grasses in each 0.5 m × 0.5 m quadrat 
were clipped to the ground surface, and the fresh biomass 
was weighed using a calibrated scale with a 0.5 g error. 
The samples were then taken to the laboratory where they 
were oven-dried at 65 °C [37] over 48 h until a constant dry 
biomass was obtained (Fig. 3). Then the two quadrats were 
averaged to represent the above-ground biomass at that plot. 
The oven-dried biomass was used as a dependent variable 
in the analysis.

2.3  Satellite Data

2.3.1  Sentinel‑1 Pre‑Processing

For this study, we acquired Level-1 Ground Range Detected 
(GRD) data from Sentinel-1 (S1) in C-band, which was cap-
tured in the Interferometric Wide (IW) Mode on February 
10th, 2020. The image was extracted from the Copernicus 
Open Access Hub, accessible at https:// scihub. coper nicus. 
eu/ dhus/. The image consists of the VV and VH channels 
captured on an ascending mode at a 10 m spatial resolution 

[38]. The pre-processing chain (Fig. 4) started with clipping 
the image to the dimensions of the study site to reduce the 
processing and computation time using the Sentinel Appli-
cation Platform (SNAP) software. We then applied the orbit 
file to determine the satellite's position in space during the 
data acquisition. We also performed radiometric calibration 
to convert the raw digital numbers of the image into back-
scatter coefficients (i.e. sigma nought (σ0) values). Subse-
quently, the image was corrected for terrain using the Shuttle 
Radar Topography Mapper (SRTM) digital elevation model 
(DEM) of 1 s Grid (30-m) to account for the influence of 
terrain elevation on the backscatter values. Furthermore, we 
performed speckle filtering to reduce the noise on the image 
and enhance the image's quality for visualisation purposes. 
Lastly, we converted the backscatter coefficients from linear 
(i.e. sigma nought (σ0) values) to decibels (dB).

2.3.2  Deriving Sentinel‑1 Predictor Variables

To test the sensitivity of SAR in estimating AGGCS, we 
extracted and calculated several parameters from the 

Fig. 1  Map showing the location of Kruger National Park and the test sites in the south. An inset of a Sentinel-1 satellite image is also shown

https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
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Sentinel-1 image, including 2 raw backscatter coefficients, 
2 polarisation intensity ratios, 1 radar indices (radar veg-
etation index), and 2 intensity arithmetic computations, 20 

texture matrices as well as 2 geographic coordinates (Lati-
tude and Longitude), as shown in Table 1. This amounted 
to 29 variables.

Fig. 2  Photos of the data collection process

Fig. 3  A schematic depiction of the approach adopted for field data collection
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2.4  Statistical Analysis

2.4.1  Regression Algorithms

To predict AGGCS using Sentinel-1 derived variables, 
we employed Extreme Gradient Boosting (XGBoost) to 
regress field-measured grass carbon stock against Senti-
nel-1 derived variables. This is an enhanced version of 
techniques such as Gradient Boosting Machines (GBM) 
and AdaBoosts, configured with additional features. It is 
popular for its scalability, efficiency, and ability to deliver 
high performance on a wide range of regression and clas-
sification tasks. XGBoost adheres to the structure of gradi-
ent boosting where the model is built stage by stage, and 
each stage focuses on correcting the errors of the previous 

stage. [39]. Misclassified points receive increased weight 
during each iteration, directing subsequent steps to focus 
on rectifying these misclassifications[39]. It typically 
uses decision trees as base learners. These shallow trees 
help prevent overfitting and keep the model computation-
ally efficient [39, 40]. Furthermore, each subsequent tree 
focuses on rectifying the errors introduced by its prede-
cessors. This is achieved by training each new tree on the 
residuals, representing the discrepancies between the pre-
dicted and actual values of the preceding predictions [39]. 
It uses a weighted sum of the predictions from individual 
trees, where the weights are determined during training 
based on the performance of each tree. The optimal param-
eter identification process is based on a grid search method 
where the hyperparameters are selected based on the 

Fig. 4  A depiction of the Sentinel-1 pre-processing workflow adopted in this study

Table 1  Variables used in 
estimating above-ground grass 
carbon stock

Predictor variable Expression/Description

Polarisation backscatter coefficients VH (Vertical Transmit/horizontal receive
VV (Vertical Transmit/vertical receive)

Polarisation Intensity ratios VH/VV
VV-VH/VV + VH

Radar Indices (RI) RVI (Radar Vegetation Index)
Arithmetic Intensity Computations VH-VV

VV + VH
Texture Matrix VH/VVCon (Contrast)

VH/VVDis (Dissimilarity)
VH/VVHom (Homogeneity)
VH/VVASM (Agular Second Moment)
VH/VVEne (Energy)
VH/VVMax (Maximum Probability)
VH/VVEnt (Entropy)
VH/VVMea (GLCM Mean)
VH/VVVar (GLCM Variance)
VH/VVCor (GLCM Correlation)
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lowest Root Mean Squared Error (RMSE) from a tenfold 
Cross Validation (CV) resampling strategy. More infor-
mation about how XGBoost works can be found in [39]. 
The decision to choose this algorithm was informed by its 
performance in previous studies [41] as well as its ability 
to handle sparse data which is the case with our samples.

We first regressed field-measured grass carbon stocks 
against individual Sentinel-1 derived variables to establish 
their individual sensitivity to predicting AGGCS. We then 
incorporated texture matrices to assess their combined 
effect on the prediction accuracy. Incorporating the tex-
ture matrices increased the dimension of the feature space 
which tends to suffer from multicollinearity. Shrestha [42]  
defines multicollinearity as a condition wherein multiple 
independent variables in a regression analysis are highly 
correlated with each other. To deal with multicollinear-
ity, we performed a pairwise Pearson correlation matrix 
to assess the relationship between SAR parameters and 
texture matrices. As in Chen et al. [43], we selected a 
threshold of R ≥ 0.8) as an elimination criterion to select 
the optimal variables to develop the models. The benefits 
of removing redundant features from a model are dem-
onstrated in Luo et al. [44]. Their results indicated that 
eliminating redundant parameters improved the accuracy 
of their AGB prediction models compared to when no fea-
ture parameter selection is applied.

2.4.2  Model Evaluation

To evaluate how the XGBoost algorithm performs, we 
utilised the tenfold CV method. This validation method 
enhances the reliability of assessing a model’s perfor-
mance by fitting the model several times using different 
training and testing sets each time [45], therefore help-
ing to reduce the impact of variability in the data [46]. 
Furthermore, this method is valuable when working with 
limited samples. The predictor variables listed in Table 1 
were utilised in the regression analysis. The analysis was 
performed at multiple experimental levels (see Table 3), 
based on different configurations of the predictor variables 
to find the optimal Sentinel-1-derived variable suitable 
for estimating above-ground grass biomass in savannah 
ecosystems.

To ensure the accuracy and reliability of the model, we 
computed the coefficient of determination (R2), the root 
mean squared error (RMSE %) metrics, and the Mean 
Absolute Error (MAE) [47] to evaluate the performance of 
the XGBoost. R2 ranges between 0 and 1. An R2 value of 1 
indicates that the model perfectly explains the variance in 
the dependent variable, while a value of 0 indicates that the 
model does not explain any of the variance. These metrics 
were calculated based on the Eqs. (1)–(4) as indicated below.

where Ymeasured is the observed AGGCS, Ypredicted is the 
predicted AGGCS, N is number of observed samples, i is 
the included predictor variable, and Y  is the mean of the 
observed AGGCS. The R2, RMSE, and RMSE% equations 
are adopted from [48], while the MAE is adopted from [49].

3  Results

3.1  Exploratory Analysis of Collected 
Above‑Ground Grass Carbon Stock Samples

Descriptive statistics of the above-ground grass carbon 
stock in the south of Kruger National Park are presented 
in Table  2. The AGGCS observed ranged between 4.5 
and 58.2 g per square metre (g  m−2), the maximum was 
58.2 g  m−2 and the average was 28.7 g  m−2. The standard 
deviation, a measure of the variability or spread of the data 
points around the mean, was 11.89 g  m−2.

3.2  Predictor Selection for Above‑Ground Grass 
Carbon Stock Prediction

A matrix showing the correlation between of Sentinel-1 
derived parameters and texture matrices is presented in 
Fig. 5. As indicated on Fig. 5 of the 29 variables, 25 were 
highly correlated (R =  ≥ 0.8). The variables that were not 

(1)R2 = 1 −

∑
(Ymeasured − Ypredicted)

2

∑
(Ymeasured − Ypredicted)

2
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2

N

(3)RMSE% =

�
1

n

∑N

i−N
− (Ymeasured − Ypredicted)
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Y
× 100
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|
|

n

Table 2  Descriptive statistics of measured above-ground grass carbon 
stock in Kruger National Park

1 StDev = Standard Deviation

Variables No of samples Min Max Mean StDev1

Dry grass carbon stock 
(g  m−2)

94 4.5 58.2 28.73 11.89
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highly correlated included: RVI,  VHCor, and  VVCor. These 
variables were used to predict the AGGCS.

3.3  Predictive Performance of Parameters

The predictive capabilities of Sentinel-1 derived param-
eters coupled with texture matrices and the Extreme Gra-
dient Boosting algorithm from the seven levels of analysis 
are summarised in Table 3. The linear polarisation (i.e. VV) 
and the intensity ratio (i.e. VH/VV) achieved similar results 
(R2 = 0.38, RMSE% = 31, MAE = 6.87) and (R2 = 0.37, 
RMSE% = 31, MAE = 6.9) respectively. The Radar 

Vegetation Index (RVI) performed marginally (≤ 1%) better 
(R2 = 0.39, MAE = 6.77, RMSE% = 30) compared to the other 
SAR predictors. Arithmetic computations between VH and 
VV intensities also yielded moderate R2 values between 0.36 
and 0.37. Meanwhile, combining all SAR variables results in 
a slightly lower R2 of 0.36 compared to the individual experi-
ments. Furthermore, an experiment based on texture matri-
ces alone performed within the same range as SAR param-
eters for both VH and VV (R2 = 0.39–40, MAE = 5.32–5.21, 
RMSE% = 30) respectively. Nonetheless, integrating texture 
matrix with SAR parameters improved the modelling accu-
racy (R2 = 0.60, RMSE% = 20, MAE = 3.97) (Fig. 6).

Fig. 5  A correlation matrix of Sentinel-1 derived parameters and texture matrices

Table 3  Summary of 
combinations for predicting 
above-ground grass carbon 
stock in Kruger National Park

Experiment Matrices R2 RMSE%  
(g  m−2)

MAE

1 Linear polarisation (LI)
Intensity (VH)
Intensity (VV)

0.38
0.38

33.22
31

6.86
6.87

2 Radar Vegetation Index (RVI)
RVI 0.39 30 6.77

3 Intensity ratios (IR)
VH/VV
VV-VH/VV + VH

0.37
0.37

31.03
31.11

6.9
6.9

4 Arithmetic Computations (AC)
VH-VV
VV + VH

0.36
0.37

30.84
31.31

6.73
6.84

5 All variables
All optimal S1 variables 0.36 30.84 7.02

6 Texture Matrices
VH
VV

0. 40
0. 39

30
30

5.32
5.21

Optimal S1  
variable + Texture

7 0.60 20 3.97
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3.4  Important Variable Selection

Figure 7 illustrates the influential variables selected for 
predicting AGGCS as measured by their Gain. The Gain 
metric represents the contribution of each feature to the 
model’s predictive power, with higher values indicating 
greater importance in making accurate predictions. Results 
from the correlation matrix show that of all the 30 vari-
ables calculated, only five had a correlation below the set, 
threshold (i.e. ≥ 0.8). The RVI was the most influential 

from the SAR parameters whereas the  VHcor and  VVcor 
were the least influential from the texture matrices. Over-
all, the combined input of this parameters optimally pre-
dicted  AGGCS (Fig. 6).

3.5  Comparison of Predicted vs Observed 
Above‑Ground Grass Carbon Stock

Figure 8 compares the number of sample points (frequency) 
of the measured and predicted AGGCS. The predicted 
AGGCS for most classes (i.e. < 25 g  m−2, 31–35 g  m−2, 
36–40 g  m−2, and > 40 g  m−2) are close to the observed val-
ues. An exception is the 26–30 g  m−2 range which shows a 
huge underestimate compared to the observed values. This 
overestimation is more pronounced in the lowest AGGCS 
class range. The model seems to have obtained a relatively 
lower error in predicting AGGCS in the 36–40 g  m−2 class 
range.

4  Discussion

Precise estimation of climate-regulating ecosystem services 
in pristine savannah ecosystems such as Kruger National 
Park is essential for monitoring their contribution to climate 
regulation and assessing their potential as carbon sinks. This 
study derived several SAR parameters coupled with texture 
matrix for quantifying above-ground grass carbon stock in 
savannah ecosystems using a tree-based algorithm.

4.1  Predictive Performance of Parameters

In this study, we incorporated a range of SAR-derived 
parameters, raw backscatter coefficients (VH, VV) includ-
ing  polarisation intensity ratios (VH/VV, VV-VH/
VV + VH), radar indices (RVI), and intensity arithmetic 
computations (VH-VV, VV + VH), with the expectation 
that they would optimally predict AGGCS. Particularly, 
the VH/VV Ratio and RVI was anticipated to capture 
the variability of AGGCS because it separates the cross-
polarized (VH) and co-polarized (VV) backscatter signals, 
which can reflect vegetation density and structure. High 
biomass areas often exhibit stronger VH signals due to 
increased volume scattering [50] while VV signals can 
indicate structural orientation in vegetation [51]. The RVI 
considers various polarization channels (e.g. VH, VV); 
therefore, combining information from both co-polarized 
and cross-polarized returns captures additional insights 
regarding vegetation structure, density, and volume, as 
well as water content [25] all of which are closely linked 
to biomass. However, the predictive power of VH/VV was 

Fig. 6  Scatterplot showing the relationship between observed and 
predicted above-ground grass carbon stocks based on the XGBoost 
model integrating texture matrices

Fig. 7  Optimal  parameters selected for predicting above-ground 
grass carbon stock
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limited, potentially due to the sparse vegetation in savan-
nah environments, which reduces volume scattering and 
minimizes the distinction between VH and VV signals. 
Furthermore, the sparse vegetation is often associated with 
bare soil background in savannahs [52], which may affect 
backscatter signals where a larger portion of the signal 
return will emanate from soil that grasses. These traits 
differ from forested ecosystems, where high soil moisture 
and organic content often amplify the vegetation signal in 
SAR data [50].

Similar results were obtained in previous studies, 
for example [53, 54] reported very weak correlation 
(R2 = 0.01–0.05) when biomass reached a high level. They 
attributed this weak correlation to rainfall. In this study, 
AGGCS measurements were done during the wet season. 
The conditions at the test site at the time of data collection 
were such that the grasses could have been wet. Generally, 
wet vegetation tends to exhibit higher backscatter due to 
increased attenuation and scattering effects. Furthermore, 
during the rainy season, soil moisture levels typically 
increase significantly due to precipitation, and this affects 
the radar signal as it is reported to be sensitive to surface 
moisture [55]. Water on leaves after rainfall can cause 
substantial change in SAR backscattering coefficient [56]. 
Nasirzadehdizaji et al. [57] also reported weaker correla-
tions (R2 = −0.49) for agricultural fields where the density 
of the crops was above 70%. Further evidence is provided 
in Rapiya et al. [58] who observed an unsatisfactory cor-
relation between above-ground biomass (AGB) in natural 
rangeland using SAR data and optical data. They reported 
that fluctuation in AGB is most pronounced during peri-
ods of peak productivity, with the highest levels observed 
in late summer, followed by early summer, and gradually 
decreasing during winter (the cold, dry season). We suggest 

that future studies factor in these topo-climatic parameters 
with SAR parameters to better characterise the variability 
of the AGGCS across different landscapes. However, most 
available Rainfall data (Climate Hazards Group Infrared Pre-
cipitation with Station data (CHIRPS) [59] are too coarse 
(i.e. 1km resolution) for small-scale mapping. Studies can 
explore locally available in situ weather station and soil 
moisture data for mapping at higher spatial resolutions, 10 m 
in the case of our study.

Beriaux et al. [60] discovered that the correlation between 
SAR polarimetric parameters and biomass was relatively 
weak due to the complex interactions between radar signals 
and forest structure. In this study, AGGCS measurements 
were done at the peak period where grass growth was at max-
imum. Compared to dormant grasses, grasses at peak grow-
ing stages tend to have taller and denser canopies, which may 
have an impact on SAR signal penetration depth and scatter-
ing processes, and ultimately the accuracy of the AGGCS 
estimation. Further evidence is provided in Rapiya et al. [58] 
who observed an unsatisfactory correlation between above-
ground biomass (AGB) in natural rangeland using SAR data 
and optical data. They reported that fluctuation in AGB is 
most pronounced during periods of peak productivity, with 
the highest levels observed in late summer, followed by early 
summer, and gradually decreasing during winter. The transi-
tioning of grasses from one stage to another (i.e. germination, 
growth, maturity and senescence) may result in variations in 
vegetation structure. Therefore, acquiring SAR data at differ-
ent stages of grass growth may capture these temporal vari-
ations and provide valuable information for biomass estima-
tion. In addition, savannah ecosystems are complex in nature, 
consisting of a mixture of grasslands and scattered trees that 
coexist. The vertical structure and density of grasses and 
trees may significantly affect SAR signals.

Fig. 8  Histogram of measured 
and predicted above-ground 
grass carbon stock. Frequency 
refers to the number of observa-
tions per AGGCS range for each 
category
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Wang et al. [61] also reported a moderate correlation 
between SAR polarimetric parameters and biomass and 
attributed these findings to factors such as soil moisture. 
In this study, SAR and field data acquisitions took place 
in the rainy season. The field conditions at the study site 
at the time of data collection were such that the soil could 
have been wet. During the rainy season, soil moisture levels 
typically increase significantly due to precipitation, and this 
may have an effect on the radar signals, as it is reported to 
be sensitive to surface moisture [62]. We suggest that future 
studies factor in these soil moisture with SAR parameters to 
improve the predictive capabilities of the AGGCS models. 
However, most available Soil moisture products such as the 
Soil Moisture Active Passive (SMAP) [63], Ecosystem Spa-
ceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) Cawse-Nicholson and Anderson [64] and 
the International Soil Moisture Network [65] are usually 
too coarse for localised studies. Studies can explore locally 
available in-situ soil moisture data for mapping at localised 
areas.

Generally, if an increase in AGGCS values does not result 
in a comparable increase in the SAR backscatter values, this 
implies saturation [66]. In a study focusing on forests, Sinha 
et al. [67] observed that the C-band generally saturates at 
about 70 t  ha−1 for tropical forests. In our study, signs of sig-
nal saturation were also observed, particularly at 40 g  m−2. 
Nevertheless, actives sensor with high spatial resolution in 
the L and P spectral bands have been missioned to offer 
enhanced image contracts due to their multi-looking trait 
[66]. These sensors can characterize intra-canopy traits and 
as a result they are able to deal with saturation [29]. How-
ever, in many resources constrained savannah regions, such 
Africa, access to commercial SAR data such as ALOS PAL-
SAR comes at a high cost.

Although the models based solely on SAR parameters 
were the least effective, when combined with the texture 
matrices, the prediction capability was enhanced. This may 
be because of the grey-scale properties of images and the 
spatial position of image pixels, which makes it possible 
to combine them with backscatter variables to reduce the 
underestimation or overestimation. Image textures have been 
reported to be  sensitive to brightness variations arising from 
canopy structure of vegetation [68]. These findings agree 
with [29, 43] who reported improved accuracies when incor-
porating texture variables. Integrating SAR-derived param-
eters with texture matrices offers several complementary 
benefits including leverage on both biophysical and spatial 
attributes. For example, when SAR parameters explain the 
structural properties of grasses, texture matrices capture the 
spatial orientation of these properties. Therefore, providing 
a composite of variables to account most of the variabilities 
in the landscape, which can improve the accuracy of quan-
tifying AGGCS.

Overall, this study underscores the challenges encoun-
tered when utilising single source data to estimate AGGCS, 
especially in complex savannah ecosystems. Nevertheless, 
the study also highlights potential benefit of integrating mul-
tiple parameter from different sources to quantify AGGCS 
in complex landscapes such as savannahs.

4.2  Limitations of the Study

From a biological and environmental perspective, several fac-
tors including precipitation and temperature, along with other 
environmental factors such as soil properties and topography, 
influence the suitability of habitats for different grass species. 
This, in turn, influences the distribution and abundance of 
AGGCS across different landscapes. For instance, Liu et al. 
[69] reported that precipitation and temperature are the most 
essential climate factors influencing the spatial variability of 
above-ground biomass. In this study, attempts were made to 
incorporate soil moisture and rainfall from existing products 
such as Soil Moisture Active Passive (SMAP) [63] and Rain-
fall from the Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS). However, the resolution (i.e. 
9 km and 1 km respectively) of these data was too coarse for 
the scale of our mapping (i.e. 10 m).

Extrapolating predictions from remote sensing-based 
AGGCS models is a common and challenging practice in 
remote sensing, yet essential for mapping at larger scales 
(regional, landscape, national). This uncertainties between 
the measured and predicted AGGCS observed in this study 
can be attributed to the mismatch in the data scale. For exam-
ple, the observed data was extrapolated from a quadrat scale 
(0.5 m × 0. 5 m) to the scale of Sentinel-1 (10 m × 10 m), and 
ultimately to the entire study site. The transition between these 
two scales introduces some level of error and therefore may 
have affected the accuracy thereof. Furthermore, the number 
of plots measured during fieldwork (i.e. two), may have been 
insufficient to capture the variability of AGGCS in the study 
site. A solution would have been to make several measures 
of the same grasses and average such measurement values.

Apart from interferences from the woody layer, the grass 
layer in the study area was characterized by a mix of tall and 
short grasses which may have affected the SAR backscat-
ter. The heterogeneity in canopy cover and the presence of 
low biomass grasses may have resulted in lower backscat-
ter signals. This variability within the savannah landscape 
introduces uncertainty in SAR-based AGGCS predictions, as 
SAR sensors may struggle to detect small changes in sparse 
biomass areas. Another source of uncertainty was sampling 
far from the lab for wet weight. As shown in Fig. 1, the 
sampling sites were far apart resulting in increased com-
muting time from one site to the other and ultimately to the 
lab. Future studies that may find it impractical to immedi-
ately transport wet samples to the lab due to long distances, 
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should explore portable field-weighing tools, such as hang-
ing scales with zero adjuster for measuring the weight of 
grasses. However, field drying requires additional equip-
ment, such as  ovens or dryers, which may not be feasible 
in remote or off-grid location. Nevertheless, the combined 
use of SAR parameters and texture matrices were able to 
quantify AGGCS with an acceptable accuracy.

5  Conclusion

This study examined  the prospect of Sentinel-1-derived 
matrixes coupled with texture matrixes and the XGBoost 
algorithm for predicting above-ground grass carbon stock 
in savannah ecosystems. Based on the findings, this study 
concludes that when utilised separately, SAR parameters 
and texture matrices tends to underperform (R2 = 0.36–0.40, 
RMSE = 5.21–6.9). However, the combined use of SAR 
parameters and texture matrices results with an R2 of 0.39 
and an RMSE of 8.75, suggesting that texture matrices may 
improve the predictive ability of SAR data for AGGCS esti-
mation. The variables that optimally captured the variability 
of AGGCS includes RVI,  VHcor, and  VVcor as well as the 
latitude and longitude. Overall, the integration of Sentinel-
1-derived matrixes coupled with texture matrixes and the 
XGBoost algorithm shows potential in predicting above-
ground grass carbon stock in savannah ecosystems.

Nevertheless, as mandated by the Kyoto Protocol for 
Reducing Emissions from Deforestation and Forest Degra-
dation (REDD +), the findings of this study are essential for 
providing insight into how conservation efforts contribute to 
the global carbon balance and the possibility of regulating 
climate change. Furthermore, adopting this remote-sensing 
approach for estimating AGGCS will ensure regular and up-
to-date statistics on grass carbon stock that are essential for 
meeting reporting demands and ensuring transparency and 
accountability in climate actions taken by multiple nations.
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