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Abstract: The COVID-19 pandemic led to a surge in interest among scholars and public health profes-
sionals in identifying the predictors of health shocks and their transmission in the population. With
temperature increases becoming a persistent climate stress, our aim is to evaluate how temperature
specifically impacts the incidences of contagious disease. Using annual data from 1 AD to 2021
AD on the incidence of contagious disease and temperature anomalies, we apply both parametric
and nonparametric modelling techniques and provide estimates of the contemporaneous, as well as
lagged, effects of temperature anomalies on the spread of contagious diseases. A nonhomogeneous
hidden Markov model is then applied to estimate the time-varying transition probabilities between
hidden states where the transition probabilities are governed by covariates. For all empirical specifi-
cations, we find consistent evidence that temperature anomalies have a statistically significant effect
on the incidence of a contagious disease in any given year covered in the sample period. The best fit
model further indicates that the contemporaneous effect of a temperature anomaly on the response
variable is the strongest. As temperature predictions continue to become more accurate, our results
indicate that such information can be used to implement effective public health responses to limit the
spread of contagious diseases. These findings further have implications for designing cost effective
infectious disease control policies for different regions of the world.

Keywords: temperature anomaly; contagious disease; general additive model; nonhomogeneous
hidden Markov model; climate change; public health

JEL Classification: C1; H1; Q0

1. Introduction

The global scale and impact of the COVID-19 pandemic led to heightened interests
and efforts among scientists, governments, and academics across different fields to identify
ways to minimize the cumulative damage from the spread of infectious diseases to human
health and the global economy. Infectious diseases are caused by pathogens, such as
viruses and harmful bacteria. They include both noncommunicable and communicable or
contagious diseases. These diseases can spread through disease vectors, such as mosquitoes,
and other transmission pathways, such as air, water, food, and direct human contact. The
macro impact caused by the spread of an infectious disease depends on the number of
individuals affected by the disease, the speed at which the disease spreads through a
population, and the length of time the disease persists in any population. For example, an
epidemic is characterized by an accelerated increase in the number of affected individuals
in a given region; whereas an endemic refers to a situation when a disease persists in a
region for a long time. A pandemic is a scaled-up epidemic, where a contagious infectious
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disease spreads at an expedited rate through a larger geographic area. It has an epicenter
in a region of the world from where the disease spreads rapidly across multiple countries
affecting different populations and causing widespread economic losses. It can happen
decades and even centuries after the occurrence of an earlier pandemic, which may have a
different epicenter located thousands of miles away.

It is extremely challenging to compare epidemics and pandemics given that a myriad
of contextual factors lies behind each occurrence. Given the rarity and uniqueness of
such events, identifying a common set of contributory factors that cause these events
and influence the transmission rates through space and time can be a demanding task
for scholars. For example, each event is characterized by a specific point of origin and
shaped by a unique line of historical events leading to the onset of that event. The extent of
damage to human lives has also varied greatly among the major disease outbreaks over
the last 2000-plus years. For example, the World Health Organization estimates that the
total number of deaths from COVID-19 is close to 7 million [1]. In contrast, the estimated
number of deaths caused by the Black Death plague of Central Asia between 1347 and 1351
has been estimated to be between 75–200 million [2]. However, in spite of all the challenges
inherent in this type of analysis, the effort is always worthwhile, given that epidemics and
pandemics are large-scale disruptive events that result in shocks to one or more economies
and affect society’s overall wellbeing. The expected damages associated with such events
can sometimes affect multiple generations of the population, albeit in different ways. Any
lesson learned and applied could potentially lead to scores of human lives being saved
during a future occurrence. Unlike earlier pandemics, the 2003 SARS-COVID pandemic
and the 2019 COVID-19 happened at a time when ample scientific evidence was available
on global warming [3], which has spurred interests among scientists and policymakers
alike about the relationship between ambient temperature and the transmission rate of
contagious diseases.

The Climate Change 2021 report presented by the Intergovernmental Panel on Climate
Change presents some startling changes in the global environment that have happened
over the past few decades, which are unprecedented in recent human history. For example,
Figure 1 below shows that the global surface temperature increased sharply between 1950
and 2020 when contrasted with the relatively moderate rise in surface temperature between
1850 and 1950. The left panel in the following figure shows the changes in the global surface
temperature over the past 2000 years using both reconstructed and observed temperature
data [4]. The reconstructed data cover the period from 1 AD until the year 2000; whereas
the observed data cover the 1850 to 2020 timeframe. The panel on the right focuses on
the 1850–2020 period, showing the changes in global surface temperature. The black
line indicates observed temperature data. The brown line shows simulated temperature
data accounting for both natural and human-related factors, while the blue line indicates
simulated surface temperature data that only account for natural climate-change-related
factors. The gap between the brown and the blue lines represents an approximate measure
of the rise in global surface temperature that stem from factors related to anthropogenic
activities, particularly those following the first industrial revolution.

Between 1970 and 2020, the global surface temperature increased faster than any other
50-year period over at least the past 2000 years. Hot extreme events, such as heatwaves,
have become more frequent and intense since 1950; whereas cold extreme events have
become less frequent and less severe. Human-induced climate events have led to droughts.
While the facts about the changes in the global environment are gravely concerning by
themselves, they do not capture the full magnitude of potential adversity that can stem
from such changes in the future, such as hastening the spread of infectious diseases in
the future [5]. Geographic boundaries of disease ranges are climate sensitive. They can
both shift and expand with changes in temperature through the effects of various disease-
carrying vectors. For example, valley fever is a fungal disease that is endemic to the
southwestern United States [6], with the region’s temperature and precipitation affecting
the number of valley fever cases and the extent of the spread of the disease across the region.
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Using climate projections for the 21st century along with a climate niche model derived
from contemporary climate and disease incidence data, [6] predicted that throughout this
century the endemic region will spread north reaching up to the Canadian border covering
the western U.S. states and resulting in 50% more cases.
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Climate Change 2021: The Physical Science Basis (page 6) [4]. 

Between 1970 and 2020, the global surface temperature increased faster than any 
other 50-year period over at least the past 2000 years. Hot extreme events, such as heat-
waves, have become more frequent and intense since 1950; whereas cold extreme events 
have become less frequent and less severe. Human-induced climate events have led to 
droughts. While the facts about the changes in the global environment are gravely con-
cerning by themselves, they do not capture the full magnitude of potential adversity that 
can stem from such changes in the future, such as hastening the spread of infectious dis-
eases in the future [5]. Geographic boundaries of disease ranges are climate sensitive. They 
can both shift and expand with changes in temperature through the effects of various dis-
ease-carrying vectors. For example, valley fever is a fungal disease that is endemic to the 
southwestern United States [6], with the region’s temperature and precipitation affecting 
the number of valley fever cases and the extent of the spread of the disease across the 
region. Using climate projections for the 21st century along with a climate niche model 
derived from contemporary climate and disease incidence data, [6] predicted that 
throughout this century the endemic region will spread north reaching up to the Canadian 
border covering the western U.S. states and resulting in 50% more cases. 

Mora et al. [7] systematically analyzed empirical examples of 375 infectious diseases 
to find that 58% of those diseases have been aggravated by climatic hazards. Their re-
search revealed 1006 unique pathways in which climate hazards, through different trans-
mission types, led to pathogenic diseases. In some situations, climate-related hazards, 
such as heat waves and droughts, resulted in habitat destruction, which led to shifts in the 
geographical range of different species that brought pathogens and vectors closer to hu-
man populations. Warmer temperatures and precipitation expanded the areas covered by 
vectors, such as mosquitoes, ticks, and fleas. In their review, Caminade et al. [8] high-
lighted the impact of climate change on the distributions of vectors and pathogens in peri-
Arctic, Arctic, temperate, and high-altitude regions in tropical zones. Malaria is a fatal 
vector-borne infectious disease caused by a plasmodium species that is transmitted be-
tween humans by infected female anopheles mosquitoes. Its incidence is affected by 
changes in temperature, rainfall, and humidity. Siraj et al. [9] used Ethiopian and Colom-
bian data to demonstrate the impact of temperature on malaria, as warmer temperatures 
increased the incidence of malaria at higher altitudes. The geographic spread of dengue, 
a common mosquito-borne viral disease, is also affected by temperature changes and how 
the vectors respond to such changes [10]. 

Figure 1. History of global temperature change and causes of recent warming. Source: IPCC, 2021:
Climate Change 2021: The Physical Science Basis (page 6) [4].

Mora et al. [7] systematically analyzed empirical examples of 375 infectious diseases
to find that 58% of those diseases have been aggravated by climatic hazards. Their research
revealed 1006 unique pathways in which climate hazards, through different transmission
types, led to pathogenic diseases. In some situations, climate-related hazards, such as heat
waves and droughts, resulted in habitat destruction, which led to shifts in the geographical
range of different species that brought pathogens and vectors closer to human populations.
Warmer temperatures and precipitation expanded the areas covered by vectors, such as
mosquitoes, ticks, and fleas. In their review, Caminade et al. [8] highlighted the impact
of climate change on the distributions of vectors and pathogens in peri-Arctic, Arctic,
temperate, and high-altitude regions in tropical zones. Malaria is a fatal vector-borne
infectious disease caused by a plasmodium species that is transmitted between humans by
infected female anopheles mosquitoes. Its incidence is affected by changes in temperature,
rainfall, and humidity. Siraj et al. [9] used Ethiopian and Colombian data to demonstrate
the impact of temperature on malaria, as warmer temperatures increased the incidence of
malaria at higher altitudes. The geographic spread of dengue, a common mosquito-borne
viral disease, is also affected by temperature changes and how the vectors respond to such
changes [10].

Since contagious diseases often affect the human population through carrier organisms,
it is essential to understand the effect of temperature changes on the spread of contagious
diseases among wildlife. While the frequency of infectious disease outbreaks among
wildlife has increased in recent decades paralleling global climate, the exact mechanisms
through which climate change affects the spread of infectious disease largely remains
unknown. To address this gap in the knowledge, using both laboratory experiments and
field prevalence estimates, refs. [11,12] tested the thermal mismatch hypothesis, which
posits that cool-adapted host species are more susceptible to pathogen infection during
warm temperature periods; whereas warm-adapted host species are more susceptible to
pathogens during periods of cool temperatures. The datasets used in these studies include
a large and highly diverse spectrum of wildlife hosts and parasites that vary in ecologically
important traits across a worldwide climatic gradient. Their results confirmed the thermal
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mismatch hypothesis, which suggests that as climate change shifts hosts away from their
optimal temperature ranges, hosts can become more susceptible to infectious diseases,
though the exact effect will be dependent on the particular host and the direction of the
shift in climate patterns. Another example is from [13] who compared the 1918 influenza
pandemic with the 2019 COVID pandemic, two disastrous health emergencies caused by
different viruses that occurred a century apart from each other. The authors were able to
identify similarities in both the clinical, pathological, and epidemiological features of the
two pandemics and in the civic, medical, and public health responses to these events.

In this paper, we take a historical perspective to understand the relationship between
contagious disease outbreaks and changes in ambient temperature. Using alternative
model specifications, both parametric and nonparametric, we first derive estimates for
the causal relationship between temperature anomalies and contagious disease outbreaks
in any given year, modelled as a binary variable. The time evaluation of the transition
probabilities of switching between contiguous disease and noncontiguous disease states or
time periods are further studied using a nonhomogeneous hidden Markov model, under
the assumption that the data generated follow a Markov process. Bearing the name of
Russian mathematician Andrey Markov, the hidden Markov model (HMM) is a stochastic
model that is assumed to involve a Markov process in which a sequence of events is
characterized by their dependance only on the state that has occurred prior to that event
and not on any preceding states. The Markov process is essentially a stochastic process with
a memoryless property, implying that if the current state is given, past states do not play
any role in its transition from a current state to a future state. Note, the transition process
itself remains unobserved and is assumed to follow a Markov process. The probability of
the process transitioning from a given state in the present to a future state is referred to as a
transition probability. A transition matrix provides the set of transition probabilities that
describe the likelihood of transition from any present state to all possible future states. The
“hidden” in the term refers to the prior states remaining unobserved. HMM models have
wide-ranging applications in finance [14,15], statistics [16,17], cognitive science [18,19],
mobile communication [20,21], and climatology [22,23]. The HMM model can be extended
to a nonhomogeneous HMM model (NHMM), if we relax the assumption of homogeneity
among the transitions and allow them to depend on additional variables.

The analysis presented in this paper contributes to the strand of academic literature
that aims to develop our understanding of the determinants of the outbreak and spread of
contagious diseases, both contemporarily and temporally. The extent of damages associated
with a communicable disease is characterized by a set of environmental and socio-economic
factors, some of which are unique to the region, while others are common determinants
across space, time, and disease type. For example, disease transmission rates can be
affected by precipitation and humidity [24,25], population density [26,27], the rate of
urbanization [28], and human migration [29], among others. Social outcomes, such as
residential segregation, can impact the spread of contagious diseases [30].

Our interest lies in identifying the role played by a common factor, temperature
anomalies, in contagious disease spreads over the past two millennia. We believe that
comparing different public health events over time and identifying similar features can
offer valuable lessons to help inform and improve public health surveillance systems across
regions. Public health surveillance systems are the major defensive mechanisms of nations
to prevent and control the spread of diseases. Involving a complex network of government
officials, public health practitioners, healthcare providers, and the general population,
they systematically collect data and information on the status of public health, identify-
ing disease outbreaks and the transmission of communicable diseases. Epidemiological
studies depend on this information to identify risk factors and effective prevention and
control measures. Studies involving predictive modelling use this information to anticipate
alternative scenarios and identify the likelihood of future events [31].

We demonstrate that temperature changes have always played a fundamental role is
the spread of contagious diseases, thereby identifying a common factor in epidemics and
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pandemics covering the past two millenniums. The insights from these findings provide
opportunities to develop region-specific and disease-specific policy recommendations that
would account for the role of temperature anomalies in the spread of contagious diseases.
In tropical and subtropical regions, such as Sub-Saharan Africa and Southeast Asia, tem-
perature anomalies often exacerbate the conditions favorable to vector-borne diseases, like
malaria and dengue fever. High temperatures accelerate vector reproduction and expand
habitats into previously unaffected regions [9]. Policy measures should prioritize vector
control programs, including insecticide-treated nets, community awareness campaigns,
and investments in early warning systems based on real-time temperature and precipitation
data [8]. In temperate areas, anomalously warm periods can extend the activity of vectors,
such as ticks, increasing the risk of diseases like Lyme disease [32]. Alternatively, low
temperature anomalies can displace vectors and wildlife, creating novel interactions that
may trigger outbreaks. Public health responses should include enhanced surveillance and
biodiversity monitoring to detect emerging zoonotic disease risks promptly [33]. In arid
and semi-arid zones, such as the Sahel, rising temperatures combined with unpredictable
rainfall can lead to shifts in the distribution of waterborne diseases, such as cholera. In-
frastructure development focused on clean water access and improved sanitation should
be prioritized in these areas [34]. In Arctic regions and high-altitude locations, warming
trends can thaw permafrost, potentially reactivating dormant pathogens like anthrax [35].
Governments and global organizations must invest in pathogen containment measures
and disaster preparedness to address the risks associated with environmental changes in
these fragile ecosystems. Urban areas with high population densities face compounded
risks due to the urban heat island effect. Temperature anomalies can intensify disease
outbreaks by creating favorable conditions for diseases like influenza and respiratory in-
fections. Policies should focus on green infrastructure to reduce heat retention and ensure
equitable healthcare access during outbreaks [28]. While earlier scholars have provided
evidence on region-specific temperature effects on disease spreads, we provide evidence
on the role of temperature anomalies in the transmission of contagious diseases using a
very long timeseries. Our findings indicate that, while the exact nature of the effects will be
region-specific, temperature anomalies can be expected to play a significant role in disease
outbreaks and spreads, regardless of location.

The paper is organized as follows: Section 2 provides our data sources and presents a
description of the dataset. In Section 3, we present the methodology used in the analysis,
which is followed by a discussion of the results in Section 4. In Section 5, we include some
reflections and concluding remarks.

2. Data Sources and Description

The data used in this paper were obtained from the data on contagious diseases
presented in Table 1 in [2], which runs until 2019. We then include the years 2020 and 2021
as periods associated with the COVID-19 pandemic. Table 1 in this paper follows [2] and
lists the contagious disease events included in our analysis [2,36–38]. The table provides
information about the primary regions of the world that were affected and the estimated
death tolls.

Table 1. Contagious disease events and dates included in the sample.

Event Start Year End Year Location Estimated Deaths

Plague of Athens −429 −426 Greece, Libya, Egypt, Ethiopia 75,000–100,000

Antonine Plague 165 180 Roman Empire 5–10 million

Plague of Cyprian 250 266 Europe 310,000

Plague of Justinian 541 542 Europe, West Asia 15–100 million

Plague of Amida 562 562 Mesopotamia (modern day Turkey) 30,000

Roman Plague of 590 590 590 Rome, Byzantine Empire Unknown
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Table 1. Cont.

Event Start Year End Year Location Estimated Deaths

Plague of Sheroe 627 628 Bilad al-Sham 25,000+

Plague of the British Isles 664 689 British Isles Unknown

Plague of Basra 688 689 Basra (southeast Turkey) 200,000

Japanese Smallpox Epidemic 735 737 Japan 2 million

Black Death 1331 1353 Eurasia and North Africa 75–200 million

Sweating Sickness 1485 1551 Britain 10,000+

Smallpox Epidemic in Mexico 1520 1520 Mexico 5–8 million

Cocoliztli Epidemic of 1545–1548 1545 1548 Mexico 5–15 million

1563 London Plague 1562 1564 London, England 20,100

Malta Plague Epidemic 1592 1593 Malta 3000

Plague in Spain 1596 1602 Spain 600,000–700,000

New England Epidemic 1616 1620 New England Unknown

Italian Plague of 1629–1631 1629 1631 Italy 1 million

Great Plague of Sevilla 1647 1652 Spain 500,000

Plague in Kingdom of Naples 1656 1658 Italy 1,250,000

Plague in the Netherlands 1663 1664 Amsterdam, Netherlands 24,148

Great Plague of London 1665 1666 England 100,000

Plague in France 1668 1668 France 40,000

Malta Plague Epidemic 1675 1676 Malta 11,300

Great Plague of Vienna 1679 1679 Vienna, Austria 76,000

Great Northern War plague Outbreak 1700 1721 Denmark, Sweden, Lithuania 164,000

Great Smallpox Epidemic in Iceland 1707 1709 Iceland 18,000+

Great Plague of Marseille 1720 1722 France 100,000

Great Plague of 1738 1738 1738 Balkans 50,000

Russian Plague of 1770–1772 1770 1772 Russia 50,000

Ottoman Plague Epidemic 1812 1819 Ottoman Empire 300,000+

Caragea’s Plague 1813 1813 Romania 60,000

Malta Plague Epidemic 1813 1814 Malta 4500

First Cholera Pandemic 1816 1826 Asia, Europe 100,000+

Second Cholera Pandemic 1829 1851 Asia, Europe, North America 100,000+

Typhus Epidemic in Canada 1847 1848 Canada 20,000+

Third Cholera Pandemic 1852 1860 Worldwide 1 million+

Cholera Epidemic of Copenhagen 1853 1853 Copenhagen, Denmark 4737

Third Plague Pandemic 1855 1960 Worldwide (India, China) 12–15 million

Smallpox in British Columbia 1862 1863 Pacific Northwest, Canada, US 20,000+

Fourth Cholera Pandemic 1863 1875 Middle East 600,000

Fiji Measles outbreak 1875 1875 Fiji 40,000

Yellow Fever 1880 1900 Mississippi, New Orleans, US 17,000+

Fifth Cholera Pandemic 1881 1896 Asia, Africa, Europe, South America 298,600

Smallpox in Montreal 1885 1885 Montreal, Canada 3164

Russian Flu 1889 1890 Russia, Worldwide 1 million

Sixth Cholera Pandemic 1899 1923 Europe, Asia, Africa 800,000

China Plague 1910 1912 China 40,000

Encephalitis Lethargica Pandemic 1915 1926 Worldwide 500,000

American Polio Epidemic 1916 1916 United States 7130
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Table 1. Cont.

Event Start Year End Year Location Estimated Deaths

Spanish Flu 1918 1920 Worldwide 17–100 million

HIV/AIDS Pandemic 1981 2023 Worldwide 42 million

Poliomyelitis in USA 1946 1946 United States 9000

Asian Flu 1957 1958 Worldwide 1–4 million

Hong Kong Flu 1968 1969 Worldwide 1–4 million

London Flu 1972 1973 United States 1027

Smallpox Epidemic of India 1974 1974 India 15,000

Zimbabwean Cholera Outbreak 2008 2009 Zimbabwe 4293

Swine Flu 2009 2009 Worldwide 151,700–575,400

Haiti Cholera Outbreak 2010 2020 Haiti 10,075

Measles in D.R. Congo 2010 2014 Democratic Republic of Congo (DRC) 4500

Ebola in West Africa 2013 2016 Worldwide (Guinea, Liberia, Sierra Leone) 11,323+

Indian Swine Flu Outbreak 2015 2015 India 2035

Yemen Cholera Outbreak 2016 2020 Yemen 3981

2018-2019 Kivu Ebola Epidemic 2018 2020 DRC and Uganda 2280

Measles in D.R. Congo 2019 2020 DRC 7018

Dengue Fever 2019 2020 Asia-Pacific, Latin America 3930

COVID-19 Pandemic 2019 To date Worldwide 7–29.3 million

The temperature anomaly data from 1 AD until 2019 were acquired from [39] and
then updated from the National Oceanic and Atmospheric Administration (NOAA) until
2021 AD. Table 2 describes the data characteristics for the different variables used in the
analysis. The complete dataset including observations on temperature anomalies and
contagious disease breakouts contains 2021 observations. It has been divided into two
subsamples comprising the “nondisease” and “disease” periods. A temperature anomaly
occurs either when the observed temperature is higher than a reference value, such as the
long-run average value of the temperature (a positive anomaly) or when it is lower than the
reference value (a negative anomaly) [40]. A high temperature anomaly occurs when the
standard deviation between the observed temperature, and the reference value is greater
than 0.25 points; whereas a low temperature anomaly occurs when the difference is less
than 0.25 points.

Table 2. Descriptive statistics.

(1)
Temperature

Anomaly:
Full Sample

(2)
Temperature

Anomaly:
Nondisease

Periods

(3)
Temperature

Anomaly:
Disease Periods

(4)
Low Temperature

Anomaly:
Disease Periods

(5)
High

Temperature
Anomaly:

Disease Periods

(6)
Contagious

Disease

Observations 2021 1662 359 342 17 2021
Mean −0.2565 −0.2439 −0.3148 −0.3630 0.6542 0.1776
S.D. 0.1626 0.1315 0.2544 0.1315 0.1789 0.3823
Min −0.7128 −0.6688 −0.7128 −0.7128 0.4428 0.0000
Max 1.0071 0.5680 1.0071 0.0774 1.0071 1.0000

Skewness 1.8552 0.6627 2.8153 0.6760 0.4781 1.6856
Kurtosis 10.3064 4.2776 9.2488 0.4030 −1.2498 0.8417

JB 10,128.7200 *** 1394.1920 *** 1776.7710 *** 28.8250 *** 1.5200 1018.6720 ***
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Table 2. Cont.

(1)
Temperature

Anomaly:
Full Sample

(2)
Temperature

Anomaly:
Nondisease

Periods

(3)
Temperature

Anomaly:
Disease Periods

(4)
Low Temperature

Anomaly:
Disease Periods

(5)
High

Temperature
Anomaly:

Disease Periods

(6)
Contagious

Disease

Q(1) 1608.9177 *** 1218.9419 *** 291.7578 *** 208.1254 *** 9.8364 *** 1574.3151 ***
Q(4) 5750.1233 *** 4171.6226 *** 981.4622 *** 629.5901 *** 17.7115 *** 4927.1886 ***

ARCH(1) 1844.5608 *** 1297.6202 *** 335.4321 *** 136.2012 *** 4.5872 ** 1574.9812 ***
ARCH(4) 1876.8272 *** 1346.6727 *** 337.1974 *** 157.6724 *** 4.6465 1585.6803 ***

Note: The table reports descriptive statistics for the temperature anomaly (ht) and contiguous disease variables
( dt), with annual data covering the period from 1 AD to April 2021 (2021observations). In addition to the
full sample (column 1), the descriptive statistics for the temperature anomaly are reported for four additional
subsamples: periods of noncontiguous disease (dt = 0; column 2), periods of contiguous disease (dt = 1; column
3), periods of low temperature anomaly and contiguous disease (dt = 1 and ht ≤ 0.25; column 4), and periods
of high temperature anomaly and contiguous disease (dt = 1 and ht > 0.25; column 5). The table reports mean,
standard deviation (S.D.), minimum, maximum, skewness, and kurtosis, as well as the Jarque–Bera normality
test (JB), the first- [Q(1)] and fifth order [Q(5)] Ljung–Box portmanteau test for serial correlation, and the first-
[ARCH(1)] and fifth-order [ARCH(5)] autoregressive conditional heteroskedasticity tests. **, and *** denote
rejection at 5%, and 1% level, respectively.

3. Methodology

Let t = 1, 2, . . . , 2021 denote the year of observation, dt denote a binary variable taking
the value of 1 if a contiguous disease occurred in the year t and zero, otherwise; ht denote
temperature anomaly; and τt denote a linear time trend, i.e., τt = t.

We start with the linear probability model:

dt = β0 + β1ht + β2ht−1 + β3ht−2 + β4τt + εt (1)

where εt is an identically and independently distributed error term with zero mean and con-
stant variance σ2, εt ∼ iid

(
0, σ2). Defining xt = (1, ht, ht−1, ht−2, τt)

′ and
β = (β0, β1, β2, β3, β4)

′, we can write Equation (1) as

dt = β′xt + εt, t = 1, 2, . . . , T (1’)

Defining πt = π(xt) = P(dt = 1|xt), the linear probability model implies that
πt = E(dt = 1|xt) = β′xt while E(dt = 0|xt) = 1 − πt = 1 − β′xt.

We use the linear probability model as one of the benchmark models. The second
benchmark model we use is the logistic probability model defined as:

dt =
exp {g(xt)}

1 + exp {g(xt)}
+ εt (2)

where the logistic link function g(xt) is defined as

g(xt) = log {π(xt)/[1 − π(xt)]} = β′xt (3)

Thus, we can write dt = π(xt) + εt, where π(xt) = exp {g(xt)}/[1 + exp {g(xt)}].
Here, εt is distributed with mean zero and variance equal to π(xt)[1 − π(xt)].

A generalized additive model (GAM) replaces the logistic link function in Equation (3)
with

g(xt) = β0 + s1(ht) + s2(ht−1) + s3(ht−2) + s4(τt) (4)

where si(·), i = 1, 2, . . . , 4, is the univariate smooth function of the arguments. For the
GAM model in Equation (4), we specify the smooth terms si(·) as nonparametric functions,
which are estimated using thin-plate regression splines [41]. We also specify a first order,
serially correlated GAM specification, where εt follows a first-order autoregressive process
[AR (1)], i.e., εt = ρεt−1 + vt with vt ∼ iid

(
0, σ2

v
)
.
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The time evaluation of the probabilities of switching between contiguous disease
and noncontiguous disease states (periods) can be studied using a hidden Markov model
(HMM), which is a statistical model that defines a probability distribution over possible
sequences of observations in which each observation is a member of a discrete set of
outcomes. It is often used to model time-varying processes.

Hidden Markov models are particularly suitable for modeling disease outbreaks due
to their ability to capture time-varying processes with latent states, reflecting the episodic
nature of disease dynamics. In this study, we leverage HMM to model transitions between
“disease” and “nondisease” states, allowing these transitions to depend on external covari-
ates, such as temperature anomalies. This flexibility, extended through nonhomogeneous
HMM (NHMM), enables the integration of environmental factors, uncovering how climate
fluctuations influence the likelihood of outbreaks. HMM’s memoryless property aligns with
the stochastic nature of disease spread, while its ability to incorporate latent states surpasses
simpler models in capturing underlying dynamics. This methodology builds on the prior
applications of HMM in environmental and epidemiological modeling [17,22,26], making it
a robust framework for analyzing complex temporal data and informing predictive models
of disease occurrence under changing climatic conditions.

A hidden Markov model is based on the assumption that the underlying process
that generates the data is a Markov process, and that the hidden states of the process are
unobserved. In our case, the binary variable dt, which indicates the presence or absence of
a contiguous disease in year t, is a two-state process, with dt taking values 0 or one. Let
these finite states be Λ = {1, 2}. The HMM model expresses Markov evolution on the
measurable space Λ in terms of a regular Markov chain using the latent variable St ∈ {1, 2},
where St = 1 denotes the nondisease stated and St = 2 denotes the disease state. In
general, St may have M states, St ∈ Λ = {1, 2, . . . , M}, with the evolution of the state space
expressed with the transition probability matrix P =

[
pij

]
, i, j = 1, 2, . . . , M, and stationary

probability distribution π = (π1, π2, . . . , πM)′. The transition probability of switching
from state i in year t − 1 to state j in year t is defined with the following properties:

pij = P(St = j|St−1 = i) ∈ (0, 1), ∀i, j
∑M

j=1 pij = 1, ∀i = 1, 2, . . . , M (5)

In our case, with M = 2, we have two free transition probabilities, p12 = (St = 2|St−1 = 1)
and p21 = (St = 1|St−1 = 2), with p11 = 1 − p12 and p22 = 1 − p21. The stationary
probabilities = (π1, π2, . . . , πM)′ are defined with the following properties:

πi = P(St = i) ∈ (0, 1), ∀i
∑M

i=1 πi = 1,
(6)

which implies one free state probability π2, since π1 = 1 − π2 with M = 2.
If the transition probabilities pij are independent of time, then the HMM is time

invariant or homogenous. However, the homogenous HMM is quite restrictive for many
real-world cases where the transition probabilities change over time, likely due to the
effects of some underlying factors. We can relax this restrictive assumption by allowing the
transition probabilities to be time-varying, which leads to a nonhomogenous HMM model.
The time-varying transition probabilities model is an extension of the standard HMM.
In the standard Markov model, the transition probabilities between states are constant
over time. In the time-varying transition probabilities model, the transition probabilities
can vary over time. The time-varying transition probabilities model is a more accurate
representation of reality than the standard HMM. It can be used to model processes
that change over time, such as the spread of disease, the growth of a population, or the
price of a stock. An attractive approach to making transition probabilities time-varying
is to allow them to depend on some other covariate. The NHMM model with time-
varying transition probabilities and covariates zt = (z1t, z1t, . . . , zKt)

′ can be represented
as pij(zt) = P(St = j|St−1 = i, zt). The transition probabilities between hidden states are
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allowed to vary over time and are governed by covariates zt. In this model, the probability
of transitioning from one hidden state to another at any given time t depends on both
the value of the covariate at that time and the values of the transition probabilities at
previous times.

Given that the observed state variable dt is binary, we use a NHMM with a logistic
link function. The covariates are specified to include the temperature anomaly series ht
and a linear time trend in addition to a constant vector, i.e., zt = (1, ht, τt)

′. The logistic
HMM model specifies the transition probabilities

{
pij, i, j ∈ Λ

}
and stationary distribution

components {πi, i ∈ Λ} with the following logistic models:

pij(zt) =
exp

{
α′

ijzt

}
1 + exp

{
α′

ijzt

} =
exp

{
α0,i + α1,ijht + α2,ijτt

}
1 + exp

{
α0,i + α1,ijht + α2,ijτt

} , i, j ∈ Λ (7)

πi(zt) =
exp

{
γ′

izt
}

1 + exp
{

γ′
izt

} =
exp{γ0 + γ1,iht + γ2,iτt}

1 + exp{γ0 + γ1,iht + γ2,iτt}
, i ∈ Λ (8)

where αij =
(
α0,i, α1,ij, α2,ij

)′ and γi = (γ0, γ1,i, γ2,i)
′ are parameters to be estimated. In

reality, only two sets of transition probabilities and one set of stationary state probabilities
are estimated for a two-state model, since probabilities sum to one.

There are a number of ways to characterize the statistical properties of a logistic hidden
Markov model for binary time series. One common approach is to consider the model’s
ability to correctly predict the next time step in the series, given the previous time steps.
Another approach is to consider the model’s ability to accurately estimate the underlying
probabilities of the time series. Using the later approach, we estimate the parameters of
the NHMM model using maximum likelihood (ML) estimation, where the maximization is
performed using the expectation maximization (EM) algorithm. Once the NHMM model is
estimated, there are a number of methods for decoding the states and obtaining the relevant
probabilities. For our purposes, smoothed probabilities are appropriate, as they give us the
full sample information for inference in each time point locally.

4. Results and Discussion

Figures 2–9 showcase various attributes of the data. In panel Figure 2a, the dummy
variable indicating a contagious disease in a given year is plotted, while Figure 2b shows
both the temperature anomalies and years with contagious diseases (shaded bars) between
1 AD and 2021 AD. We use density plots to provide a visualization of the data. In Figure 3,
we plot the conditional distributions of the temperature anomaly using kernel density
estimates and box plots. The distribution of the temperature anomaly is conditional on
the contagious disease periods with high temperature anomaly levels (above 0.25) and
low temperature anomaly levels (below 0.25), respectively. Using a Gaussian kernel, the
probability densities at each data point are estimated, which are then smoothed to generate
continuous curves. In panel Figure 3a, the kernel density estimates are displayed for the
conditional probability distribution function of the temperature anomaly series, while, in
Figure 3b, the boxplots with overlayed observations conditional on the contagious disease
status are presented.
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Figure 2. Contagious disease and temperature anomaly series. Note: The figure plots the dummy 
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Heatmap color intensity in Panel (a) indicates the count of the number of contiguous disease year 
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Figure 2. Contagious disease and temperature anomaly series. Note: The figure plots the dummy
indicator for the contiguous disease and the temperature anomaly over the years from 1 AD to 2021.
Heatmap color intensity in Panel (a) indicates the count of the number of contiguous disease year in
consecutive 25-year intervals. Panel (b) displays the temperature anomaly series.
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Figure 3. Conditional distribution and temperature anomaly series. Note: The figure displays the
density and boxplots of the temperature anomaly conditional on the status of the contagious disease
with high and low temperature anomaly levels. High and low anomaly levels are defined values
above 0.25 and below 0.25, respectively, where the value naturally splits disease occurrences into
these classes. Panel (a) displays kernel density estimates with a Gaussian kernel. Panel (b) displays
boxplots with overlayed observations conditional on the contagious disease status.
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Figure 5. Linear, logistic, and logistic generalized additive model fit assessment. Note: The figure 
presents the model assessment for the best, among all models considered, logistic generalized ad-
ditive model (GAM-Logistic), a logistic model that has the best AIC among the logistic models, and 
a benchmark linear model. Panel (a) plots predictions (𝜋ො௧) against the residuals (𝑑௧ − 𝜋ො௧) with a 
local polynomial regression (LOESS) fits using a second-degree polynomial. Panel (b) plots the pre-
dicted probability of the occurrence of a contiguous disease by temperature anomaly with the trend 

Figure 4. Autocorrelations and cross-correlations of contagious disease and temperature anomaly.
Note: The figure displays the autocorrelation function (ACF), partial autocorrelation function (PACF),
cross-correlation function (CCF), and partial cross-correlation function (PCCF) of contiguous disease
and temperature anomaly series. All four measures (ACF, PACF, CCF, and PCCF) when a binary
contiguous disease series is involved are obtained using Cohen’s κ statistic [42] p. 130, a measure of
signed serial dependence for discrete-valued time series.

Figure 3 provides a detailed examination of the conditional distribution of temperature
anomalies during periods of contagious disease outbreaks. The kernel density plots in Panel
(a) reveal that high temperature anomalies (ht > 0.25) are more prominently associated
with years experiencing disease outbreaks compared to nondisease years. This suggests
that elevated temperatures likely exacerbate conditions favorable to the transmission of
infectious diseases, such as increased vector activity or accelerated pathogen replication
rates. Conversely, the boxplots in Panel (b) show that, during low anomaly periods
(ht < −0.25), while less frequent, outbreaks are not negligible. This supports the notion
that cooler conditions may indirectly influence disease spread by altering host–pathogen
interactions, such as through the thermal mismatch hypothesis, where hosts displaced from
their thermal optima become more vulnerable to infections. Both high and low temperature
anomalies can have marked effects on disease transmission, but the mechanisms differ
significantly. Tian et al. [43] demonstrated that temperature extremes impact both the
susceptibility of human populations and the dynamics of disease vectors. High anomalies
can increase vector activity and expand the range of diseases like malaria, while low
anomalies can displace populations and hosts, creating novel interactions that facilitate
outbreaks. These findings underscore the duality of risk posed by temperature extremes,
necessitating targeted public health strategies based on regional climatic trends.

The autocorrelation (ACF) and the partial autocorrelation function (PACF) of the
contagious disease variable and the temperature anomaly behavior are presented in Figure 4
along with the cross-correlation and partial cross-correlation functions. Together, they
provide insights about the time series characteristics of the data. The ACF provides the
correlation between the current and the lagged values of a variable; whereas the PACF
is used to measure the correlation between the current observation of the variable and
an observation from a previous time period, after controlling for the observations at the
intermediate lags. In Figure 4, the gradual decline in ACFs and PACFs together helps to
define the autoregressive process of the two variables. The cross-correlation and partial
cross-correlation plots show the relationship between the two time series used in the model.
To provide a visual representation of the assessments of the three models, i.e., the logistic
generalized additive model (GAM-Logistic), a logistic model, and the benchmark linear
model are presented in Figure 5. We plot the predicted probabilities of the occurrence of a
contagious disease against the estimated residuals (dt − π̂t), temperature anomalies, and
time, in panels (a), (b), and (c), respectively.
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Figure 5. Linear, logistic, and logistic generalized additive model fit assessment. Note: The figure
presents the model assessment for the best, among all models considered, logistic generalized addi-
tive model (GAM-Logistic), a logistic model that has the best AIC among the logistic models, and a
benchmark linear model. Panel (a) plots predictions (π̂t) against the residuals (dt − π̂t) with a local
polynomial regression (LOESS) fits using a second-degree polynomial. Panel (b) plots the predicted
probability of the occurrence of a contiguous disease by temperature anomaly with the trend variable set
equal to zero. Panel (c) plots the predicted probability of the occurrence of a contiguous disease by the
time trend with the temperature anomaly set equal to zero. Panel (d) plots the receiver operating curves.

The receiver operating curves (ROC) in panel (d) plot the model sensitivity (true
positive rate) against the false positive rate. The true positive rate represents the proportion
of observations that are predicted to be positive when the observations are positive; whereas
the false positive rate indicates the proportion of observations that are predicted to be
positive when they are, in fact, negative. The area under the curve indicates the quality of
a model in predicting the observations. The GAM-Logistic model with the highest area
under the curve indicates the best fit among three models.

In Figure 6, we plot the quantile–quantile (QQ) plot on the histograms of the residuals
of the logistic generalized additive model (GAM-Logistic). The points in the QQ plot
fall on a straight line, indicating the residuals of the model approximately follow the
normal distribution. The histogram of the residuals indicates that the residuals are centered
around zero.

Figures 7–9 provide further visualization of various features of the logistic generalized
additive model. The smoothed transition and state probabilities estimated using the
nonhomogenous hidden Markov model are plotted in Figure 10.
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Figure 6. Diagnostics for the logistic generalized additive model. Note: The figure presents model
diagnostics for the selected logistic GAM model. Quantile–quantile (QQ) plots of the model residuals
are obtained by generating reference quantiles that associate each data point with a quantile of the
uniform distribution. The residual vs. linear predictor plots are based on the fitted model prediction
of a binomial link function of expected values for each data point.
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Figure 7. Conditional predictions from the logistic generalized additive model. Note: The figure dis-
plays conditional predictions for the probability of contagious diseases from the logistic generalized
additive model. In Panel (a), predictions for the time trend τt conditional on three specific values of
temperature anomaly are displayed: high temperature anomaly (Case A: ht = 0.654) corresponding
to the mean temperature anomaly in high temperature contagious disease periods (ht > 0.25 and
dt = 1), medium temperature anomaly (Case B: ht = −0.244) corresponding to the mean temper-
ature anomaly in no contagious disease periods (dt = 0), and low temperature anomaly (Case C:
ht = −0.363) corresponding to the mean temperature anomaly in low temperature contagious disease
periods (ht ≤ 0.25 and dt = 1). In Panel (b), predictions for the temperature anomaly (ht) conditional
on three specific values of time are displayed. The time periods that the predictions are conditioned
on are τt = 1900 (Case D), τt = 1800 (Case E), and τt = 1700 (Case F).

The estimates are obtained using maximum likelihood based on the expectation
maximization (EM) algorithm. The estimation results from the alternative parametric and
nonparametric model specifications are presented in Tables 3–6. The tables indicate when
the null hypothesis of zero effect of the temperature anomaly on disease spread can be
rejected at the 1% (***), 5% (**), and 1% (*) levels. The R-square, log likelihood function,
Akaike information criterion (AIC), and the Schwartz Bayesian information criterion (BIC)
values provide measures for the quality of the respective models and help us to compare
them. The models with the better fits have lower AIC and BIC values.

Table 3. Linear probability model estimates.

Model: (1) (2) (3) (4) (5) (6) (7)

Intercept −0.102 ***
(0.019)

−0.101 ***
(0.019)

−0.100 ***
(0.018)

−0.099 ***
(0.018)

−0.098 ***
(0.018)

−0.098 ***
(0.018)

0.077 ***
(0.016)

ht
−0.080
(0.121)

−0.108
(0.115)

−0.185 ***
(0.050)

−0.393 ***
(0.052)

ht−1
−0.034
(0.138)

−0.084
(0.115)

−0.087
(0.117)

−0.186 ***
(0.051)

ht−2
−0.089
(0.123)

−0.115
(0.117)

−0.192 ***
(0.052)

τt
0.00022 ***
(0.00001)

0.00022 ***
(0.00001)

0.00023 ***
(0.00001)

0.00022 ***
(0.00001)

0.00023 ***
(0.00001)

0.00023 ***
(0.00001)
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Table 3. Cont.

Model: (1) (2) (3) (4) (5) (6) (7)
R-squared 0.139 0.139 0.139 0.139 0.139 0.139 0.028

Log L −772.311 −772.532 −772.573 −773.186 −773.021 −772.851 −895.195

AIC 1556.622 1555.064 1555.146 1554.372 1554.042 1553.703 1796.389

BIC 1590.284 1583.116 1583.198 1584.421 1576.483 1576.144 1813.220

Note: The table reports the estimates for the linear probability model in Equation (1) with various zero restrictions
on the parameters. The variable ht denotes the temperature anomaly in year t, t = 1, 2, . . . , 2021, and τt denotes
a linear time trend for year t. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of
likelihood (Log L), Akaike information criterion (AIC), and Schwarz’s Bayesian information criterion (BIC). The
standard errors of the estimates are given in brackets. Boldface denotes the minimum AIC and BIC values.
*** denotes rejection of the null hypothesis of zero effect at the 1% level.
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Figure 8. Partial effects and partial derivatives in the logistic generalized additive model. Note:
The figure depicts the partial effects and partial derivatives of the temperature anomaly ht and
time trend τt in the logistic GAM model, which is specified as the g(ht, τt) = c + sh(ht) + sτ(τt),
where the function g(·) is a logistic link function defined as g(·) = log{π(·)/[1− π(·)]}, where
π(ht, τt) = P(dt = 1|ht, τt) = exp {g(ht, τt)}/(1 + exp{g(ht, τt)}).
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Figure 9. The joint partial effects of temperature anomaly and trend in the logistic generalized
additive model. Note: The figure presents the full joint effects of temperature anomaly and trend
variables with over-imposed contour lines. The partial effect estimates are obtained from a tensor
product smoother with a logistic link function defined as g(ht, τt) = c + s(ht, τt), where the function
g(·) is a logistic link function defined as g(·) = log{π(·)/[1− π(·)]} with π(ht, τt) = P(dt = 1|ht, τt).
The tensor product smooth s(·) is constructed using row Kronecker products.

Table 4. Logistic model estimates.

Model: (1) (2) (3) (4) (5) (6) (7)

Intercept −4.254 ***
(0.217)

−4.247 ***
(0.217)

−4.247 ***
(0.217)

−4.237 ***
(0.216)

−4.234 ***
(0.216)

−4.237 ***
(0.216)

−2.518 ***
(0.149)

ht
−0.609
(0.902)

−0.767
(0.859)

−1.237 ***
(0.334)

−3.501 ***
(0.451)

ht−1
−0.191
(1.045)

−0.592
(0.860)

−0.518
(0.875)

−1.240 ***
(0.339)

ht−2
−0.527
(0.919)

−0.717
(0.875)

−1.271 ***
(0.345)

τt
0.002 ***
(0.0001)

0.002 ***
(0.0001)

0.002 ***
(0.0001)

0.002 ***
(0.00001)

0.002 ***
(0.0001)

0.002 ***
(0.000)

R-squared 0.164 0.163 0.164 0.163 0.163 0.163 0.036

Log L −790.317 −790.545 −790.481 −790.782 −790.881 −790.657 −911.140

AIC 1590.634 1589.090 1588.963 1587.564 1587.763 1587.315 1826.280

BIC 1618.686 1611.532 1611.404 1604.395 1604.594 1604.146 1837.501

Note: The table reports the estimates for the logistic probability model in Equation (2) with various zero restrictions
on the parameters. The variable ht denotes the temperature anomaly in year t, t = 1, 2, . . . , 2021, and τt denotes
a linear time trend for year t. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of
likelihood (Log L), Akaike information criterion (AIC), and Schwarz’s Bayesian information criterion (BIC). The
standard errors of the estimates are given in brackets. *** denotes rejection of the null hypothesis of zero effect at
the 1% level. Minimum AIC and BIC values appear in bold.
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Figure 10. Smoothed transition and state probability estimated from a nonhomogenous hidden
Markov model. Note: The figure depicts the time-varying transition and state probabilities from a two-
state (St ∈ {1, 2} with St = 1 denoting the noncontagious disease state and St = 2 contagious disease
state) nonhomogenous hidden Markov model. The transition probability estimates given in Panels

(a–d) are specified as pij(zt) = P(St = j|St = i, zt) = exp
{

α′
ijzt

}
/
(

1 + exp
{

α′
ijzt

})
, i, j ∈ {1, 2},

where zt = (1, ht, τt)
′ and αij =

(
α0i,, α1,ij, α2,ij

)′
.

Table 5. Logistic generalized additive model estimates.

Model: (1) (2) (3) (4) (5) (6) (7)

Intercept −4.739 ***
(0.750)

−4.767 ***
(0.755)

−4.753 ***
(0.754)

−4.829 ***
(0.764)

−4.784 ***
(0.760)

−4.791 ***
(0.760)

−1.822 ***
(0.075)

s1(h t)
12.337 **
(3.933)

13.788 **
(3.964)

73.866 ***
(5.246)

251.475 ***
(6.633)

s2(h t−1
) 9.124

(4.186)
29.620 ***

(5.257)
10.414 *
(4.145)

70.326 ***
(5.429)

s3(h t−2
) 0.499

(1.243)
3.048

(2.053)
64.645 ***

(4.986)
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Table 5. Cont.

Model: (1) (2) (3) (4) (5) (6) (7)

s4(τ t)
207.781 ***

(12.176)
208.388 ***

(12.188)
208.685 ***

(12.182)
209.577 ***

(12.214)
210.482 ***

(12.196)
209.530 ***

(12.199)

R-squared 0.393 0.390 0.393 0.384 0.389 0.388 0.167

Log L −544.991 −549.450 −545.648 −556.882 −551.469 −550.085 −789.674

AIC 1141.834 1145.625 1138.606 1151.717 1141.915 1138.542 1595.723

BIC 1287.286 1276.693 1271.321 1258.182 1251.255 1246.180 1641.660

UBRE 595.411 598.140 595.064 603.269 598.528 596.767 803.486

Note: The table reports the estimates for the logistic probability model in Equation (4) with various restricted
variants. The variable ht denotes the temperature anomaly in year t, t = 1, 2, . . . , 2021, and τt denotes a linear
time trend for year t. The smooth terms si(·) are represented using penalized regression splines with smoothing
parameters selected by unbiased risk estimator (UBRE) criterion. The table reports the estimates of the intercept
with its standard error in brackets. For the smooth terms si(·), the table reports the approximate significance χ2

statistics with effective degrees of freedom in brackets. The table also reports McFadden’s pseudo-R squared (R-
squared), logarithm of likelihood (Log L), Akaike information criterion (AIC), and Schwarz’s Bayesian information
criterion (BIC), and unbiased risk estimator (UBRE) score. *, **, and *** denote rejection of the null hypothesis of
zero effect at the 10%, 5%, and 1% level, respectively. Minimum AIC and BIC values appear in bold.

Table 6. Logistic generalized additive model estimates with serial correlation.

Model: (1) (2) (3) (4) (5) (6) (7)

Intercept −4.682 ***
(0.697)

−4.683 ***
(0.697)

−4.695 ***
(0.701)

−4.729 ***
(0.705)

−4.713 ***
(0.705)

−4.719 ***
(0.705)

−1.823 ***
(0.074)

s1(h t)
11.569 **
(3.546)

13.269 ***
(3.595)

75.069 ***
(4.931)

250.085 ***
(6.239)

s2(h t−1
) 9.393 **

(3.832)
67.878 ***

(5.178)
9.887 **
(3.713)

69.784 ***
(5.051)

s3(h t−2
) 0.862

(1.000)
2.127

(1.000)
67.738 ***

(4.676)

s4(τ t)
192.115 ***

(12.023)
192.891 ***

(12.029)
193.256 ***

(12.030)
195.289 ***

(12.056)
195.721 ***

(12.043)
195.017 ***

(12.045)

ρ 0.891 0.858 0.858 0.854 0.858 0.885 0.878

R-squared 0.393 0.389 0.393 0.383 0.388 0.388 0.167

Log L −599.653 −602.125 −600.074 −607.753 −603.168 −601.435 −802.978

AIC 1217.306 1218.251 1214.148 1225.505 1216.337 1212.870 1611.955

BIC 1267.799 1257.523 1253.421 1253.557 1244.389 1240.922 1628.786

Note: The table reports the estimates for the logistic probability model with AR(1) error structure in Equation (4)
with various restricted variants. The variable ht denotes the temperature anomaly in year t, t = 1, 2, . . . , 2021, and
τt denotes a linear time trend for year t. The smooth terms si(·) are represented using penalized regression splines
with smoothing parameters selected by generalized cross-validation (GCV). The table reports the estimates of
the intercept with its standard error in brackets. For the smooth terms si(·), the table reports the approximate
significance χ2 statistics with effective degrees of freedom in brackets. The table also reports McFadden’s pseudo-R
squared (R-squared), logarithm of likelihood (Log L), Akaike information criterion (AIC), and Schwarz’s Bayesian
information criterion (BIC). Parameters are estimated using a generalization of the penalized quasi likelihood
algorithm. ** and *** denote rejections of the null hypothesis of zero effect at the 5% and 1% levels, respectively.
Minimum AIC and BIC values appear in bold.

In Table 3, the results of the benchmark linear probability model (LPM) are presented,
with the first column providing the estimates of the unrestricted model. Columns 2 through
7 represent the restricted versions of the model with estimates of the core model under
different zero restrictions on the parameters of the contemporaneous and different lagged
terms along with the trend variable. The first column represents the estimated coefficients
of the unrestricted model. None of the coefficients that show the relationship between the
temperature anomalies and the dependent variable are statistically significant. Column 2
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presents the coefficient of the contemporaneous effect (β1), which is restricted to zero. In
column (5), the results of a restricted version of the model with both the coefficients of ht
and ht−2 set to zero are presented. A comparison of the alternative versions indicates that
the restricted models in columns 5 and 6 are closely comparable. However, column 6 with
the coefficients of ht−1 and ht−2 set to zero gives the best results qualitatively in terms of
the information requirement, as confirmed by the AIC and BIC scores. The coefficient for
the contemporaneous effect is statistically significant at 1%.

While relatively straightforward to specify and estimate, linear probability models are
often not a suitable choice, because the predicted probability values can end up being below
zero or greater than 1. To counter the standard limitations of the LPM, a logistic model was
estimated. The results are presented in Table 4. Qualitatively, the results from the logistic
model are in line with our findings from the benchmark model for both the unrestricted
and restricted versions. The best results are for the model that includes a contemporaneous
effect of temperature anomalies and a trend term.

The results of the nonparametric logistic general additive model (GAM) are presented
in Table 5. A GAM is a powerful analytical tool because of its ability to fit many types
of nonlinear data. However, because of this flexibility, it can be easy to overfit the data.
The goal of the model is to strike a balance between two objectives. First, the model must
capture the relationship exhibited in the data as closely as possible. This is indicated
by the “likelihood” function, which indicates how well a model captures patterns in the
data it is fitted to. Second, we want to avoid overfitting the data, which is captured by
the “wiggliness” in the fit. In the model, the smoothing functions, s(.), are represented by
penalized regression splines to avoid complex overfitting of the model. A smooth or a spline
is essentially a function that can take a wide variety of shapes. The smoothing functions
are estimated with thin plate splines, which do not depend on the prior knowledge of the
functional form of the data. Thin plate regression splines can be computationally more
costly relative to other smoothing options, such as cubic splines. However, they have the
advantage of not requiring knots placements that are a feature of conventional regression
spine modelling [44].

We estimate Equation (4) with various restrictions imposed on the smooth functions.
In column (2), the results presented are conditioned on the smooth function for ht set to zero.
Similarly, the results in column (5) are derived based on the assumption that the two-period
lagged effect and the contemporaneous effect of the temperature anomaly of dt are assumed
to be zero. The estimates presented in column (6) indicate that the contemporaneous effect
of the temperature anomaly on the incidence of a contagious disease in a given year is
statistically significant at the 1% level. This restricted model also provides the lowest AIC
and BIC values, indicating a better fit than the alternative versions of the nonparametric
model we estimated.

In order to account for the possibility that the error term in Equation (4) might be corre-
lated over time, we also run a version of the GAM specificizing a first-order autoregressive
process for the error structure. The results are presented in Table 6, which also includes
estimates of ρ, the autocorrelation parameter. The estimates from both specifications of
the nonparametric model are similar to column 6 (in both tables), indicating the best fit
to the data compared to the alternative restricted versions of the core model. In fact, the
results from the parametric and nonparametric models are qualitatively consistent. In all
specifications, the restricted version of the model that includes the contemporaneous effect
of the temperature anomaly and the linear trend term provide the best fit compared to the
complete unrestricted specification and the alter zero-restriction variations we imposed.

Table 7 includes the estimates of the parameters of the transition probability expression
in Equation (7) and the parameters in (8) used to derive a set of stationary state probabilities
for the logistic HMM model. The transition probabilities are calculated at the zero values
of the covariates. The sum of the estimated probabilities of a particular state (disease or
nondisease) in any time period evolving into either the same state or the alternative state in
the following period adds up to 1. Regardless of the initial state, the estimated transition
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probabilities imply that the probability of transitioning from a given state in a year to the
same year in the following year is significantly higher than the probability of transitioning
to the other state (0.999 versus 0.0010).

Table 7. Estimates of the hidden Markov model.

Parameter Estimate Probabilities at Zero Values of the Covariates

α0,2 −6.9516 *** (0.7727)

α1,12 −0.8445 (0.9618) p11 0.9990

α2,12 0.0023 *** (0.0004) p12 0.0010

α0,2 2.3465 *** (0.0016) p21 0.0010

α1,22 −0.0184 (0.1223) p22 0.9990

α2,22 0.00002 *** (0.000002)

γ0 −683.0342 (23.2476)

γ1,2 17.7412 (18.0686)

γ2,2 0.4651 *** (0.0155)

Log L −262.0879

AIC 542.1758

BIC 592.6779
Note: The table reports the estimates for the nonhomogenous hidden Markov model defied in Equations (5)–(8).
The variable ht denotes the temperature anomaly in year t, t = 1, 2, . . . , 2021, and τt denotes a linear time trend
for year t. The table also reports the logarithm of likelihood (Log L), Akaike information criterion (AIC), and
Schwarz’s Bayesian information criterion (BIC) score. *** denotes rejection of the null hypothesis of zero effect at
the 1% level.

5. Conclusions

The pace and extent of transmission of any contagious disease depend on many
contextual factors, such as the availability of healthcare-related services, governmental
efficacy in management of the spread, the nature of the diseases, and local and regional
socioeconomic and environmental conditions at the epicenter. In this paper, we used
annual data on contagious disease outbreaks and temperature anomalies from 1 AD to 2021
AD and parametric and nonparametric modelling approaches to derive the estimates of
contemporaneous and lagged effects of temperature anomalies on the spread of contagious
diseases. Our results indicate that temperature anomalies have played an influential
role in the spread of transmissible diseases over the last two thousand years, thereby
identifying a common cause among different disease spreads over time. These findings
can be used to develop public health surveillance systems across different regions of
the world, characterized by considerable uncertainty in changes in weather and climate
patterns. Region-specific climate forecasting results can be combined with demographic
information to develop location-specific, cost-effective disease control policy responses
and transmission-based precautionary measures. This is particularly important given
that regions across the world vary greatly in available resources that can be dedicated to
mitigating the damages associated with the transmission of infectious diseases. Future
avenues of research could potentially focus on this line of interdisciplinary work. Our
analysis does not include data on covariates other than temperature anomalies. Given the
length of the time series, our study did not include other environmental and socioeconomic
explanatory variables that have been shown to impact the spread of contagious diseases.
Also, while historical data allow us to obtain a long-term perspective of the evolution of
relationships and helps us avoid sample selection bias, it comes at the cost of some degree
of inaccuracy, as the data might originate from alternative sources. We acknowledge these
limitations, but there is no other way of handling the issues in the current context. Future
research that focuses on shorter time lengths can address these concerns and also explore
the complex dynamics among the contagious diseases mentioned in this study.
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